0

2
3

文字

分享

0
2
3

基本粒子的標準模型

賴昭正_96
・2018/10/09 ・6493字 ・閱讀時間約 13 分鐘 ・SR值 577 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

我想近代物理已無可否認地偏袒柏拉圖(Plato)。事實上,物質的最小單位已不再是我們一般所認為的「東西」,而是僅能用數學語言才能精確地表達的形式與觀念。
── 1932 年,海森伯(W. Heisenberg),1932 諾貝爾物理獎

大約在西元前 400 年左右,古希臘哲學家德謨克利特(Democritus)就提出原子論:世界萬物都是由不可再被分割之看不見的各種大小及形狀之固態原子(atom)所組成的。他可以說是人類歷史上的第一位基本粒子物理學家;他的此一想法終於這在十九世紀初完全被證實了。西元 1811 年道爾頓(John Dalton)提出了到現在還是整個化學基礎的「原子論」:化學反應──產生萬物──只是各種不同原子在空間的重新排列組合而已!西元 1869 年,門德列夫(Dimitri Mendeleev)提出元素週期表後;這一理論的發展可以說是達到高峰。化學家已不再懷疑原子的實在性;但儘管證據確鑿,大部分的物理學家卻遲至二十世紀初才相信原子之存在的!

就在物理學家開始相信原子存在之時,他們卻也開始覺察到原子並不是不可再被分割。物理學家不但相繼地發現了組成原子之電子、質子、以及中子,他們也了解到了那時已知的物理根本不適用於了解這些微觀世界的現象!因此在普朗克(Max Planck[1])及愛因斯坦(Albert Einstein[2])先後提出奇怪的觀念後,物理學家竟然群策群力地於 1920 年代末發展出一套更令人迷惑的「量子力學」(quantum mechanics)!1930 年代初,他們也漸漸清楚重力(gravity)及電磁作用力(electromagnetic force)不能夠解釋(1)為何質子及中子可以聚在一起組成原子核、及(2)放射性元素的蛻變,而意識到了微觀世界裡應該還有兩種新的作用力量存在:強作用力(strong force)及弱作用力(weak force)。

隨著加速器技術的發展,物理學家也不斷地繼續發現其它許許多多生命期甚短的新粒子!在相信上帝不應該會如此笨手笨腳地製造出這麼許多不同的「原子」的信仰下,經過 40 年的努力,物理學家終於在 1970 年代真正確定了不可再被分割的古希臘「原子」,以及瞭解了它們如何相互作用,建立了基本粒子的標準模型(standard model)。2012 年 7 月 4 日,當兩組歐洲核子研究組織(CERN)裡的科學家同時宣布在大強子碰撞機(LHC)裡偵測到了該模型中尚未被發現的希格斯玻色子(higgs)時,此一標準模型算是正式被「證實」了!

在〈規範對稱與基本粒子〉[3]一文裡,筆者已介紹了規範對稱及基本粒子的發展史,因此在本文裡,筆者將只做個基本粒子的標準模型之敘述性的總結。還有,在這裡我們也不談非常重要但甚弱的重力場(gravitational field)及可能存在的重力子(graviton)──雖然在這裡所談到的所有基本粒子都會與它作用。

基本粒子

標準模型的數學基礎是綜合了古典場論、特殊相對論、以及量子力學所發展出來之「量子場論」(quantum field theory)。古典場只是一個時、空的函數,但量子場論將它「量化」了:基本粒子只是充滿時空之動力場(dynamic field)的激態而已;因此每種基本粒子都有其自己的量子場。這些場的相互作用之「運動方程式」形式則受制於(需符合)「局部規範對稱」(local gauge symmetry)群 SU(3)×SU(2)×U(1) 。(詳見「群論、對稱、與基本粒子」[4]。)

基本粒子如下表所示分成兩大類,自旋(spin)數為 1/2 之費米子(fermion)及自旋數為整數之玻色子(boson):

費米子需符合費米─迪拉克統計(Fermi-Dirac statistics),不許兩個或兩個以上的粒子在同一量子狀態下,為構成不同化學元素的重要條件。玻色子則需符合玻色─愛因斯坦統計(Bose-Einstein statistics),比較喜歡群聚[5],為雷射及日常生活中之電磁波出現的原因。除了希格斯玻色子(higgs boson, H)外,其它玻色子都是因「局部規範對稱」之要求而「出現」,因此稱之為「規範玻色子」(gauge boson),為基本粒子之間相互作用的媒介。

費米子之間的相互作用可依其強度分成具 SU(3) 對稱之強作用及具 SU(2)×U(1) 對稱之電弱作用(electroweak interaction)兩種。雖然所有的費米子均能感到電弱作用;但只有最上面兩排的夸克(u,d,c,s,t,b)可以感受到強作用力。夸克之所以可感受到強作用力是因為每個均帶有稱為藍 (B)、紅 (R)、或綠 (G)之「強作用力電荷」的關係。因此嚴格來說,夸克不應該只 6 種,而是 18 種;但因為 SU(3) 對稱之關係,不同顏色的夸克[如紅、藍、綠之 u])應具完全同樣的性質,在實驗室中是無法分辨的──因此實在沒有另外給予名字的必要。傳達強作用力的「規範玻色子」稱為黏子(gluon):共有 8 種,因本身也帶強作用力電荷(同時帶顏色及反顏色[8]),故也感受到強作用力。

除了希格斯玻色子外,所有表中的其它基本粒子均因「局部規範對稱」之要求而不能具有質量!此一與實驗結果不符的要求,阻擋了「局部規範對稱」理論的發展長達十二年之久。不只如此,因為 SU(2) 對稱之關係,第一行與第二行之上、下夸克(u 及 d 等)應具同樣的性質,在實驗室中應是無法分辨的;同樣地,第三行與第四行之上、下輕子(lepton, υe 及 e 等)也應具同樣的性質,在實驗室中也應是無法分辨的!既然也像黏子顏色一樣在實驗室中沒辦法分辨,為什麼我們在這裡卻給它們不同的名字呢?原來是它們的 SU(2)×U(1) 對稱在宇宙的演進中被破壞了──因此在實驗室中可以分辨了!

自發對稱性破壞

「自發對稱性破壞」在基本粒子裡是一個非常重要的觀念,因此筆者在此除了重覆一段《量子的故事》裡的描述外,將進一步地用一數學例子來闡釋此一觀念:

「假設我們是生活在一個非常巨大的磁鐵裡,磁鐵的 N 極指向北方。磁鐵是由許多小磁鐵整齊排列而造成的,但決定此排列的作用力事實上與方向無關,磁鐵的 N 極沒什麼理由一定要指向北方,它照樣可以指向東方。但它一旦指向了北方,則對住在裡面的我們而言,空間方向的對稱性(均勻性)便被破壞了:北方對我們而言是很特別的。因為該磁鐵的極性影響了我們的所有實驗,而我們又沒辦法去改變其極性的方向,因此如果有外太空人告訴我們說:『自然界的物理定律是與方向無關的』,我們是很難相信的。小磁鐵間的作用力是不具方向性的,但它的「狀態」破壞了空間方向的對稱性。例如當溫度高得使小磁鐵的動能足以克服其與周遭之作用力時,磁鐵便不再具有極性,空間方向的對稱性便可顯示出來。當溫度下降,而致小磁鐵整齊排列時,此一對稱性便被隱住(破壞)了。」

如果你想進一步了解,且不怕看到數學方程式,那圓形鼓面的震動將是一個更具體的例子。圓形鼓面在(x,y)平面上具有圓形的對稱性,因此使用極坐標(r,θ)來表示將較方便。

鼓面受敲打後的上、下震動震輻 H(r,θ,t)的「運動方程式」可用牛頓力學導出;

式中 u 為波的傳播速度,t 為時間,R 為圓鼓的半徑。H(r,θ,t)為一時、空函數,在物理上稱為「場」。因為除了微分部份外,式中不含 θ,因此該運動方程式具有垂直軸旋轉的對稱(用 θ →θ +c(任一常數)代入,方程式不變;所有的常數 {c} 構成一個數學上的「群」[4])。下面是此運動方程式許多解中的三個解之圖形:

如果你在鼓面上一點輕輕一敲,鼓面的震動一般都會是相當複雜的(但可用所有可能的解來表示);但如果你「敲對」了,你將可能只激發了上面的一種震動形態而已!上圖中的左右兩個震動形態均保持著原來之垂直軸旋轉的對稱性;但中間的一個則不再具有原來之垂直軸旋轉的對稱,造成了所謂的「自發對稱性破壞」:從這一個特別解裡,我們看不出原來方程式所具有的對稱;此一特別解破壞(隱藏)了原來之對稱。

希格斯玻色子破壞電弱作用對稱

在宇宙出現時,「希格斯場」(Higgs field)即像其它場一樣充滿了宇宙;但它卻不像其他場一樣,其真空平均值(vacuum expectation value)不為零,其位能形狀則像酒瓶瓶底:中間內凸、(能量)較周邊為高。此一希格斯場具有以酒瓶中心為軸旋轉之對稱性(如上圖);因此在宇宙初現、溫度(能量)還是非常非常高之際,沒有任何基本粒子在意這一個不平的酒瓶瓶底。但隨著宇宙溫度的下降,希格斯場的能量也漸漸下降,最後終於像本無磁性之磁鐵需要選擇一個方向磁化下來一樣,掉到周邊之較低的能量溝內的某一點(自發對稱性破壞);因溝內那一點的位能不為零,因此破壞(隱藏)了原來之電弱作用的 SU(2)×U(1) 對稱性,將它分家成了兩種我們現在所知道的電磁作用(electromagnetic interaction)及弱作用(見下圖)。

電弱作用破壞前之四個 SU(2)×U(1)「規範玻色子」──B、W1、W2 及 W3 ⎯⎯因與此一希格斯場之作用而重新組合成帶電之 W+ 與 W-,以及不帶電之 Z° 與光子 (ϓ)。W+、W-及 Z° 成為弱作用中的規範玻色子(嚴格來說,弱作用不具 SU(2) 之局部規範對稱);新出現的光子是唯一還保持零質量的規範玻色子:正是具 U(1) 局部規範對稱之量子電動力學(quantum electrodynamics,QED)中的規範玻色子(但不是原來之 SU(2)×U(1) 中的 U(1))。事實上除了微中子 υe 、υμ、及 υτ 外,其它能感受到弱作用的所有基本粒子(包括 W+、W-、及 Z° 本身)也均因與希格斯場之作用而取得了質量(見表)!因為黏子不參與弱作用,故還可以保持不具質量的身材;可是這下子問題又來了:依照特殊相對論,一個質量為零的粒子應只能以光速運動,所以黏子應該像光子一樣,以光速傳遞強作用力到遠方才對,怎麼強作用力也像弱作用力一樣是短距的呢?

漸近自由

因為強作用力的規範玻色子(黏子)本身也參與強作用的關係,使得強作用力具有一種非常不尋常的「漸近自由」(asymptotic freedom)的性質:當兩個帶顏色之粒子漸漸接近時,它們之間的作用力越來越小!反之,當它們漸漸遠離時,它們之間的作用力將越來越大,最後將大到有足夠的能量產生新的一對帶顏色之粒子。換言之,帶顏色之粒子不可能單獨存在,它們將永遠地被綁在一起⎯⎯稱為「幽禁」(confinement)。正是這一個原因,使得黏子不能(不需)像光子一樣傳遞長距離的作用力!事實上,量子色動力學(quantum chromodynamics,QCD)裡還要求「穩定」的粒子均是白色的:說明了為什麼實驗室中所能偵測到的粒子均是由三個夸克(紅+藍+綠=白色)、或兩個夸克(顏色+反顏色=白色)組成的。

電磁作用力的規範玻色子(光子)本身則不參與電磁作用,因此不具有「漸近自由」的性質:電磁作用力隨作用距離之增加而降低。此一特性事實上也是因為規範對稱的關係;U(1) 在群論(group theory)上有一與 SU(2) 或 SU(3) 非常不同的性質:前者的對稱運作與先後次序無關[4]。事實上正是U(1) 之此一特性使得透過電磁作用之費米子(如電子)可以具有質量。所以我們可以說物理學家很幸運,不需尋找讓電子具質量的原因,很早就能成功地發展出具局部規範對稱之量子電動力學,成為後來發展強、弱作用之局部規範對稱理論的藍圖!誰說成功不需要靠運氣?

手徵性

事實上除了 SU(2)×U(1) 要求費米子不能具質量外,弱作用破壞了鏡像對稱[7]的這一實驗的結果,也要求費米子不應具質量!依照特殊相對論,一個質量為零的粒子應只能以光速運動,因此如果它具有自旋,則便應該有兩種可能的手徵性(chirality):自旋與運動方向相同或者相反( 如下圖 )。

但具質量之粒子不能以光速運動,因此當觀察者的速度由比它慢變成比它更快時,手徵性將由左撇改成右撇(或由右撇改成左撇),故具質量之粒子沒有固定的手徵性;換言之,手徵性不是具質量之粒子的性質。因此如果弱作用只能與左撇(left handed)費米子作用,顯然費米子也不應具質量!

與希格斯場作用的結果,費米子不但取得了質量,也透過希格斯玻色子使左撇及右撇費米子混成一個我們在實驗室中所觀察到的不具手徵性之費米子:同時具有左撇及右撇的量子態。因左撇及右撇費米子具有同樣的自旋及電荷,故依自旋及電荷「不滅定律」,做媒婆之希格斯玻色子的自旋必須為零且不帶電:正是實驗所發現的結果。

這許多因希格斯玻色子而取得了質量的費米子當中,很奇怪的卻不包括微中子[8];更奇怪的是:微中子如果沒有取得質量,就對稱的觀點來看,左撇及右撇都應該可能存在才對,但物理學家卻從未在宇宙或實驗室中發現過右撇的微中子!因此在標準模型裡認為右撇的微中子根本就不存在。

殘留強作用力

我們前面提過「穩定」的粒子均必須是白色的,因此質子是由分別帶紅藍綠之三個夸克 uud 組成的,而中子則是由分別帶紅藍綠之三個夸克 udd 組成的。可是它們一旦變成白色,依量子色動力學,它們之間便應該沒有強作用力了,那為何質子及中子可以聚在一起組成原子核呢?我們不是想了解此一原因才發展出強作用力理論嗎?

事實上我們早就在化學上碰到同樣的問題:氫原子是由帶正電的質子及帶負電的電子所組成的,因此是不帶電的,但兩個氫原子還是可以透過電磁作用力而結合成氫分子的。我們知道其原因是因為兩個氫原子核「合用」了它們外圍的電子,形成化學鍵所致。同樣地,質子或中子之間的作用也是透過帶有顏色之成份的 u 或 d 夸克來達成的:交換(合用)由一夸克及一反夸克組成之介子(meson),如不帶電之 π0(見上圖[9])。正像化學鍵比直接的電磁作用弱一樣,這稱為殘留強作用力(residual strong force)、核子強作用力(nuclear strong force)、或核子力(nuclear force)雖然比直接的強作用力弱得多,但是還是足夠克服質子間之靜電排斥力,將質子及中子結合成穩定的原子核(但不像強作用力,它的強度隨粒子間距離的增加而急速減弱,所以質子或中子可以是被分離、單獨存在的)!

我們說希格斯玻色子使許多基本粒子得到質量,但是這些質量卻不是我們周遭物體質量的主要來源:例如質子是由 uud 三個夸克組成的,但那三個夸克的總質量大約只有實驗室中量得之質子質量的百分之一而已!質子或中子之其它質量都在使那三個夸克在一起的束縛能量裡(m=E/c2)。

結論

物理學家於 1897 年發現了不可再被分割之電子;經過 100 多年的努力,終於在 2012 年發現了理論上必須存在的最後一種不可再被分割之希格斯玻色子,奠定了瞭解宇宙萬物組成與運行之基本粒子的標準模型理論。

現在的基本粒子雖然不是像當初古希臘哲學家所追求的只有一種,但是卻比化學上之基本粒子──化學元素⎯⎯少得多。如果不算反粒子及顏色[10],物理學上只有 12 種基本費米子、以及 6 種玻色子而已!就日常生活以及化學來看,我們所常「接觸到」的基本粒子事實上只有四種而已: u 夸克、 d 夸克、電子、及光子!離當初所追求的「只有一種」也算是不遠了!儘管如此,化學上的原子似乎還可以想像,讓人有「實際存在」(實在)的感覺;但現在物理學上的基本粒子則似乎是有點「玄」了!

注解:

  • [1]:「量子力學的開山祖師──普朗克」,《科學月刊》,1982 年 4 月號;《我愛科學》,第 51 頁。
  • [2]:「太陽能與光電效應」,《科學月刊》,2013 年 4 月號;《我愛科學》,第 155 頁。
  • [3]:「規範對稱與基本粒子」,《科學月刊》,2014 年 11 月號;《我愛科學》,第 186 頁。
  • [4]:「群論、對稱、與基本粒子」,《科學月刊》,2018 年 9 月號。
  • [5]:這命名正好與當事人相反:玻色較害羞內向,費米則非常合群外向。
  • [6]:黏子之所以有八種,乃是因所帶之顏色不同的關係。黏子同時有顏色(R,G,B)及反顏色(r,g,b),因此理論上應該有九種才對,為什麼只有八種呢?那是因為代表 SU(3) 之 3×3 矩陣只有八個獨立變數[4];就顏色的組合上來講,(Rr+Gg+Bb)組合不受 SU(3) 對稱轉換的影響,不能作為傳遞強作用的規範玻色子;(9 個自由度 – 1 個條件)只剩下 8 個在 SU(3) 對稱轉換下「相同」的黏子。
  • [7]:沒有任何物理學家知道為什麼:事實上當他們發現自然界竟然是這樣時,他們也非常感到意外;詳見「對稱與物理」,《科學月刊》,2010年3月號;《我愛科學》,第 178 頁。事實上不止微觀世界這樣,巨觀世界裡也是充滿著鏡像不對稱的現象。詳見「左旋還是右旋?化學對稱跟你我的身體有關!」, 2015 年 9 月 25 日泛科學;「 對稱與化學」,《我愛科學》,第 193 頁。
  • [8]:在物理及天文學家發現「微中子擺盪」(neutrino oscillation)之現像後,不少物理學家已認為微中子應該具有些微質量。詳見「微中子的故事」,《科學月刊》,1982 年 3 月號;《我愛科學》,第 105 頁。
  • [9]:日本物理學家湯川秀樹 1935 年所提出的理論。湯川秀樹 26 歲就當了大阪大學的助理教授,29 歲時提出了這被忽略達兩年之久──但對以後基本粒子及其作用力研究影響非常大──的理論,獲 1949 年諾貝爾物理獎。原子核內的作用力事實上因多體(至少 6 夸克)、自旋、及角動量等關係,比這裡所形容的複雜得多。
  • [10]:除了 W+ 是 W-反粒子外,其它玻色子沒有反粒子(反粒子就是粒子本身)。

參考資料:

  1. 《量子的故事》,新竹市凡異出版社(1982 年;2005 年第二版)。
  2. 《我愛科學》,台北市華騰文化有限公司出版(2017 年 12 月)。本書收集了筆者自 1970 年元月到 2017 年八月間在科學月刊及其他雜誌發表過的科普文章。
文章難易度
賴昭正_96
34 篇文章 ・ 34 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
準備出國啦!Surfshark VPN 快趁黑五買起來,上網購物最安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/01 ・2113字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 Surfshark VPN 贊助。

兩、三年以來的防疫生活,終於迎來全面 0+7 的這一天啦!返國之後不再需要隔離的一天來了,冰友們,你是不是已經收拾好心情、收拾好行李,在進行機+酒的比價了呢?除了規劃好出國行程、找好景點與美食店家,想要讓自己不可或缺的網路生活也更加安全,一定要趁即將到來了感恩節黑五期間,把超優惠的 Surfshark VPN 服務買起來,為自己的網路生活加買最平安的保險!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

在疫情下,網購成為了更多人的日常。不僅各樣的在地購物節為網友帶來眾多優惠,全球化的購物活動,台灣當然也不會缺席!美國感恩節(Thanksgiving)都是 11 月第四個星期四,但是感恩節後的週五,便是聖誕節前的購物佳期啟動日,這一天通常都會業績超標(在收支表上呈現正向收入(顯示為黑色字體,而非赤字的紅色字體),各家的瘋狂優惠都會在黑五祭出!相信許多精打細算的朋友,對黑五購物節絕對不陌生(很可能還搶過很多優惠!!)

網購怎能漏掉「亞馬遜」!

雅虎奇摩之於台灣,就像是亞馬遜(Amazon.com)之於美國那麼的有名!絕對也是什麼都賣、什麼都不奇怪的最佳代表。

如果你平常就很喜愛一些美國品牌,趁著黑五的日子到亞馬遜清空購物車,覺對優惠不會讓你失望。這時候,透過 Surfshark 連線到亞馬遜美國站,絕對會顯示的價格絕對讓你眼睛為之一亮,這時候最新搭載 M2 晶片的 iPad Pro,獨家支援動態島顯示的 iPhone 14 Pro,絕對是最好入手的時機。除此之外,亞馬遜平台經典的 Kindle 閱讀器,也是超合適的禮物,送禮自用兩相宜啊!另外要特別留意,購買時可以確認商品有沒有幫忙送到台灣,如果還沒有,可以先跟美國的朋友確認一下,邀請他們回國時幫你一起帶回來!

跨國追劇最爽快

對於喜愛追劇的朋友,品味可能相當豐富且多元,畢竟欣賞優秀影視作品,不現語言,更是不限地區啊!只不過,若是你訂閱 Netflix 等跨國 OTT 服務,都會有各地不同的上架影視作品,可能會讓你無法在第一時間就能夠立即「追」到劇,讓你等得心癢癢!還好這一切只要連上 Surfshark VPN 都能解決,Surfshark 支援超過 100 國的 VPN 連線,無論你想看韓國、日本還是哪一國的最新戲劇,通通讓你一秒追到最新進度!

Surfshark 黑五限時 18 折折扣,額外加送兩個月

專屬連結:https://lihi2.cc/8XwRN

出差大陸翻牆超方便

在過往出國、返國都需要隔離的階段,肯定讓不少工作上需要經常往返多國之間的朋友,感到生活驟變。所幸,在防疫政策解封之後,一切都可逐漸恢復正常。對於經常有需要到中國大陸出差的朋友,肯定都會感受到網路斷聯的不方便,因為無論是 LINE、Facebook Messenger、YouTube、Gmail 等你可很能天天都在使用的網路服務,大陸都無法使用。這還不打緊,連跟家人、朋友報平安也很不便。這時候 Surfshark 連上,就可以幫助你輕鬆「翻牆」,跟台灣親人網路無距離!

 

上網不留痕跡,不被追蹤最自由

對於一個人來說,最私密的資料之一,除了你的個資,就屬我們每天耗費大量時間逗留的網路。我們所在網路上留下的痕跡,絕對是超真實的自己,當然你不會期待這樣的自己被「搜尋引擎」、「網路廣告」公司了解得太透徹,好像你在網路上的一言一行,都被監視著。

..0000000\0;也可隱藏IP位置,避免被廣告商追蹤;更可以為你我阻擋惡意程式、釣魚軟體等,讓你防止被攻擊,以及被網路充斥的廣告打擾,好處多又多!

如果對於 Surfshark 還覺得不夠熟悉的話,不得不告訴大家,今年 Surfshark 榮獲第六屆 CyberSecurity Breakthrough 頒發的「VPN 年度最佳解決方案」(VPN Solution of the Year),也就是成為今年最推薦的 VPN 方案。CyberSecurity Breakthrough 是全球領先的獨立市場情報組織,致力於表揚當今全球資訊安全市場上的頂尖企業、技術和產品。有了他們「掛保證」,代表 Surfshark 絕對是品質、信譽都讓你安心的VPN 服務。

講了這麼多,是不是讓你感到很心動了。如果你原本就是網路重度使用者,用來上網的設備是樣樣都有,Surfshark 一個帳號就能支援所有設備,CP 值超高!趁著年度超狂黑五購物節的到來,送給你自己兩年安心無虞的網路生活,肯定是送自己的最好禮物!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

11
7

文字

分享

2
11
7
宇宙到底從哪來?從量子力學和相對論來看「宇宙起源」,解釋完全不一樣!——《宇宙大哉問》
天下文化_96
・2022/09/25 ・2200字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

宇宙從何而來?

每當仰望滿天星斗絢爛壯麗的夜空,或驚嘆微觀世界錯綜複雜的美景時,你不禁會問:「這一切從何而來?宇宙為什麼存在?是什麼東西或是誰負責這一切?」

長期以來,人們一直不斷臆測,讓人驚嘆不已的宇宙真實起源。當然,這比起我們擁有物理學或漫畫的時間要長得多。瞭解宇宙起源很重要,因為有可能會解釋我們存在的來龍去脈。我們想知道我們是怎麼來的,因為這問題的答案可能揭露:我們為什麼在這裡,以及我們應該如何度過時間。如果你知道宇宙從何而來,你的生活方式可能會改變。

因此,在所有問題中最大的問題是,物理學究竟可以告訴我們什麼?

在一開始的時候

在我們問宇宙從何而來或它是如何形成之前,我們需要先退一步想想。我們首先要問的應該是「宇宙是誕生出來的,還是本來就一直存在?」

你可能會驚訝的發現,物理學對這個問題有很多論述。可惜的是,很多論述內容並不是很一致。事實上,量子力學和相對論這兩個偉大的理論,在宇宙主題上指出了兩個截然不同的方向。

量子宇宙

量子力學表明宇宙遵循著我們不熟悉的規則。根據量子力學,粒子和能量以奇怪和不確定的方式表現。這可能令人非常困惑,但幸運的是,這跟我們手上的問題並不相關。因為量子力學對宇宙的過去和未來實際上是一清二楚的。

量子力學用量子態來描述事物。量子態告訴你,與量子對象交互作用時,事情可能發生的概率。例如,它可能會告訴你粒子位置的機率。你可能不知道粒子現在在哪裡,但你可以知道它可能在哪裡。

量子態很有趣,因為如果你知道今天量子物體的狀態,你可以用它來預測明天、兩週後,或者十億年後的狀態。量子力學中最著名的方程式是薛丁格方程式,跟貓和盒子無關。薛丁格方程式告訴你:如何利用你對宇宙的瞭解並將宇宙向未來投射。它也可以反推,可以利用你對現在的瞭解,告訴你宇宙在過去是什麼樣子。

根據量子力學,這種預測能力沒有時間限制。它的基本原則是:量子資訊不會消失,只是轉變為新的量子態。也就是說,如果你知道宇宙今天的量子態,就可以計算出它在任何時間點的量子態。量子力學告訴我們,宇宙在時間上永遠向後和向前推展。

這代表一個非常簡單的事實:宇宙一直存在,並將永遠存在。如果我們對量子力學的理解是正確的,那麼宇宙就沒有起始點。

相對論宇宙

然而,愛因斯坦相對論卻告訴我們一個截然不同的故事。量子力學有個問題,它通常假設空間是靜態的,就像一個固定的背景,你可以在那裡懸掛粒子和場。但是相對論告訴我們,這觀念大錯特錯。

根據相對論,空間是動態的,它可以彎曲、伸展和壓縮。我們可以看到空間在黑洞或太陽之類的重物體附近彎曲。愛因斯坦的理論還描述了整個空間如何膨脹。空間不僅僅是平坦的空虛;它被重物局部扭曲,並且愈來愈大。

這個瘋狂的想法最初來自於相對論中的數學,但現在我們有實驗能加以證明。透過望遠鏡,我們可以看到星系每年愈來愈快的遠離我們。宇宙中的一切似乎都變得愈來愈分散和愈來愈冷,就像氣體在膨脹時冷卻一樣。

對宇宙的起源來說,這代表什麼含義呢?呃……如果把時鐘倒轉,我們的觀察預測出宇宙曾經更熾熱、更密集。如果回溯足夠遠的時間,宇宙就會到達一個特殊的點:奇異點。

此時,宇宙的密度實在是太大了,甚至讓相對論的計算結果顯得有點荒謬。相對論預測宇宙變得非常緊密,空間又異常彎曲,最終達到了一個無限密度點。

按照相對論的觀點,宇宙在某種程度上確實有個開端,或者說至少有個「特殊時刻」。我們所看到的一切,包括所有空間,都來自奇異點。可惜的是,相對論不能告訴我們那一刻發生了什麼,但我們知道它與之後的任何時空點都不一樣。它就像一堵無法跨越的牆,無法用相對論解釋。

孰是孰非?

現代物理學的兩大支柱以大相逕庭的觀點來解釋可能的宇宙起源。一方面,量子力學告訴我們宇宙是永恆的,一直存在。另一方面,相對論告訴我們宇宙來自一個發生在一百四十億年前的無限密度點。

我們知道量子力學不可能完全正確,因為它沒有辦法描述關於宇宙的某些事。例如,量子力學沒有辦法描述重力或空間彎曲。但同時,我們也知道相對論並不完全正確,因為它在奇異點處崩潰,並且忽略了宇宙的量子性質。

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

所有討論 2
天下文化_96
112 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

9
2

文字

分享

0
9
2
除了發現量子力學,普朗克還有第二個重大發現是什麼?
賴昭正_96
・2022/07/16 ・4593字 ・閱讀時間約 9 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

(瓦特斯頓)論文的歷史說明了:… 價值不確定的文章,高度投機性的研究⎯⎯尤其是不知名的作者⎯⎯最好(先)通過科學界以外的其它渠道呈現給世界。

-瑞利爵士(Lord Rayleigh)1904年諾貝爾物理獎得主

在「抱歉了愛因斯坦,但我真的沒辦法頒獎給那個酷理論—為何相對論與諾貝爾獎擦身而過?」裡,筆者提到了 19 世紀末的物理學家曾經非常自滿地認為物理學上的基本問題都已經解決了,剩下的只是細節問題。例如 1874 年,量子師祖普朗克(Max Planck)的指導教授久利(Philipp von Jolly)就告訴他說:「在這個(物理)領域,幾乎所有的東西都已經被發現了,剩下的就是填補一些不重要的漏洞。」普朗克回答說他不想發現新的東西,只想「了解」這個領域的已知基礎。

現在我們當然知道事與願違,19 世紀末的物理不但未靜如止水,反而是刮起大風大浪的預兆。例如誰想到就在那個世紀結束前的 12 月,普朗克為「了解」靠猜測所提出來的黑體輻射公式,被「迫」提出能量量化的觀念,成了發現量子力學的第一大功臣(參見「黑體輻射光譜與量子革命」),改變了整個物理學家對客觀世界的看法。

普朗克為「了解」靠猜測所提出來的黑體輻射公式,被「迫」提出能量量化的觀念。圖/Wikipedia

而後在 20 世紀才開始不久的 1905 年,瑞士專利局最低等級的審查員愛因斯坦(Albert Einstein)更不知道從何處突然冒出一篇題爲「關於運動物體的電動力學(On the Electrodynamics of Moving Bodies)」論文,吹起了 20 世紀的第一個物理革命號角,徹底改變了統領物理界 300 多年的牛頓時空觀念。可是良馬⎯愛因斯坦這一篇論文—如果沒有遇到伯樂,它會是一匹良駒嗎?如果不會,那誰是那一篇論文的伯樂呢?

誰會是愛因斯坦的伯樂?

這篇題為「關於運動物體的電動力學」的論文事實上是很奇怪。這標題通常應是討論磁性或介電物質在電磁場中的運動特性,但愛因斯坦根本沒有分析這個主題,而是花了很多篇幅在前半部分討論:許多物理學家都認為理所當然之某些基本物理概念的性質。而論文中唯一明確討論之法拉第的電磁感應實驗,則是用當時的理論就可以充分解釋、大多數物理學家認為已不甚重要性的題目;最後建議丟棄一些廣泛使用的概念(例如「同時」及以太等)。更不尋常的是:作者是一位名不見經傳、任職於專利局的小職員,其撰寫的風格和格式都非正統,沒有引用任何當時的文獻!

愛因斯坦曾希望他當年在《物理年鑑》這傑出期刊上的大量論文能夠讓他擺脫默默無聞的三流專利審查員,獲得一些學術認可,甚至找到一份學術工作;因此在論文出版後,他妹妹後來回憶說:

「(愛因斯坦)曾努力翻閱《物理年鑑》,希望能找到對他理論的回應。……但他非常失望,出版之後(的反應)是冰冷的沉默。」

愛因斯坦寫出「關於運動物體的電動力學」受到普朗克的讚賞,圖為 1929 年愛因斯坦獲得普郎克獎(Planck medal)時,與普朗克的合影。圖/AIP

在無奈的失望中,愛因斯坦突然於 1906 年 3 月收到了第一個物理學家的反應;令他驚奇的是:這位物理學家竟然不是別人,而是當時歐洲受人尊敬的理論物理學大師普朗克!普朗克給愛因斯坦寫了一封充滿熱情洋溢的信,謂其相對論論文「立即引起了我的熱烈關注」,並將到專利局所在地伯爾尼(Bern)拜訪他!愛因斯坦當然很興奮,立即寫信告訴他以前的家教學生、合創「奧林匹亞學院(Olympia Academy)」、剛剛搬離伯爾尼的好友索洛文(Maurice Solovine):

「我的論文倍受讚賞,並引起了進一步的研究。普朗克教授最近寫信告知我此事。」

普朗克是如何成為愛因斯坦的伯樂

普朗克當時擔任《物理年鑑》編輯,在接觸到愛因斯坦那篇關於空間、時間、和光速的想法前,他事實上已經相當明白:當涉及到由不同觀察者測量的光速時,古典物理學存在一個令人討厭的問題,即測不出地球在絕對靜止之以太中的速度,迫使當時一些名物理學家到處貼補漏洞。因此當愛因斯坦大喊(開玩笑的,當時他還是一位無名小卒,怎麼敢大喊):不要再費心了,讓我們假設(在任何慣性參考系中測量的)光速為一定值,來取代「標尺和時鐘不會永遠誤導我們」之錯誤概念時,普朗克立舉雙手贊成。在其 1949 年的自傳裡,普朗克謂:

「光速之於相對論就像基本的作用量子之於量子論:光速是相對論的絕對核心。」

在該論文出版後,普朗克立即在柏林大學講授相對論!由於他的影響,這個理論很快在德國被廣泛接受,因此德國在許多方面對愛因斯坦之相對論的反應是獨一無二的;例如 1905-1911 年期間有關相對論的論文,沒有其它國家在數量上能夠與德國相媲美。在法國、英國和美國的回應中,雖然也有熱情的支持,但只有在德國才有人說「我理解愛因斯坦的研究」。但當時的「不敢苟同」聲事實上也不少;例如德國物理學家索末菲 (Arnold Sommerfeld)一大早就認為愛因斯坦的理論方法有某種猶太色彩(後來被利用成為反猶太主義者的工具),對秩序和絕對的概念缺乏應有的尊重,而且似乎沒有堅實的基礎。1902 年諾貝爾物理獎得主、荷蘭理論物理大師洛倫茲(Hendrik Lorentz)在 1907 年更寫道:

「愛因斯坦的論文雖然出色,但在我看來,這種難以理解和無法形象化的教條裡仍然存在一些幾乎不健康的東西。一位英國人幾乎不會給我們這種理論。」

普朗克顯然是第一位認識到愛因斯坦在相對論方面開創性工作的主要人物,也是愛因斯坦在科學界最忠誠的擁護者。兩人在個性上雖然非常不相似(前者非常保守,後者不理傳統),但也成為最親密的朋友。普朗克於 1906 年公開為愛因斯坦理論辯護,反對一波又一波的懷疑論者,寫信給愛因斯坦說「(我們)必須團結一致」。他將愛因斯坦的理論描述為洛倫茲理論的「延伸」(generalization),並將「洛倫茲-愛因斯坦理論」命名為現在大家所接受的「相對論」。儘管如此,普朗克還是不接受狹義相對論之無可避免的「不需要以太」結論。

普朗克不接受狹義相對論之無可避免的「不需要以太」結論。圖/wikipedia

普朗克是第一位以愛因斯坦理論為基礎來發展的物理學家。他在 1906 年春天發表的一篇文章中,證明愛因斯坦的相對論符合物理學基礎之「最小作用原理」(least action principle):任何物體(包括光)在兩點之間的移動都應該遵循最簡單的路徑,開展了如何在這個新的彈性時空中正確處理物體的動力學。

 普朗克並未履約到伯爾尼拜訪愛因斯坦,只派比他更先獲得諾貝爾獎(1914 年)的助手勞鴻(Max von Laue)於 1906 年夏天去拜訪本以為應在伯爾尼大學任教的愛因斯坦。勞鴻與愛因斯坦兩人相談甚歡,不但成為終生好友,前者在此後四年內還寫了八篇相對論論文,包括嚴格地證明了 E=mc2。愛因斯坦謂勞鴻 1911 年所寫的第一本相對論教科書「是一個小傑作,其中的一些內容是他的知識產權」,並從中學習到了一些他後來創建廣義相對論所需的張量(tensor)數學。

瓦特斯頓發展的氣體動力學

瓦特斯頓(John Waterston,1811-1883)是蘇格蘭物理學家,在印度工作期間發展了氣體動力學理論,謂氣體分子與容器表面的碰撞導致我們感受到氣體壓力,正確地推導出理想氣體定律。他於 1845 年投稿到英國皇家學會,但審稿人認為那論文「不過是胡說八道」而被拒絕出版;現在的物理學家都認為馬克斯威(James Maxwell)為氣體動力學(kinetic theory of gases)的創始者。

John James Waterston。圖/Wikipedia

瓦特斯頓去世幾年後,瑞利爵士(Lord Rayleigh,1904 年諾貝爾獎得主,當時的皇家學會秘書)從皇家學會的檔案中挖掘出那篇論文,將它重新發表於1892年的《皇家學會哲學彙刊》上。瑞利爵士警告說:。

(瓦特斯頓)論文的歷史說明了:因為科學界不願在其印刷品中記錄價值不確定的文章,高度投機性的研究⎯⎯尤其是不知名的作者⎯⎯最好(先)通過科學界以外的其它渠道呈現給世界。也許有人可能會更進一步(建議)說,一位相信自己有能力做大事的年輕作家,應該在開始更高的飛行之前,先通過範圍有限、且價值容易判斷的工作來獲得科學界的良好認可。

相信這類事件在物理學上是時常發生的。在「思考別人沒有想到的東西—誰發現量子力學?」一文裡,筆者就提到了 1924 年 6 月 4 日,一位任教於東巴基斯坦的講師波思(Satyendra Bose)將一篇被英國名《哲學雜誌》(The Philosophical Magazine)退稿的論文,轉寄給愛因斯坦,並附函謂「……如果你認為它值得發表,可否請您將它譯出(成德文),投稿到《物理學雜誌》(Zeitschrift für Physik)… 」。波思毫無疑問地是一位「不知名的作者」,那篇文章也毫無疑問地是「價值不確定,高度的投機性」!還好愛因斯坦眼光獨特,否則不但波思可能淪為另一個瓦特斯頓,量子統計力學是否會那麼早就出現就不得而知了。

結論

有歷史學家說普朗克在近代物理上有兩大貢獻,其一是發現量子力學,另外一個則是發現愛因斯坦!愛因斯坦發表那篇「價值不確定」之狹義相對論論文時也是一位「不知名的作者」,因此如果沒有普朗克慧眼識英雄,幫他推銷與辯護,愛因斯坦或許也可能淪為另一個瓦特斯頓,那篇論文可能於 1908 年在閔可夫斯基(Hermann Minkowski)的時空(spacetime)中消失[註]

有了理論物理界權威普朗克教授做後盾,愛因斯坦平步青雲、離開專利局、進入學府、及成名應只是遲早的事情。說來有趣,在「思考別人沒有想到的東西—誰發現量子力學?」一文裡,筆者談到了如果沒有愛因斯坦興風作浪,普朗克是否會成為創建近代物理的第一革命先鋒(量子力學);而在這裡我們卻在懷疑如果沒有普朗克拔刀相助,愛因斯坦是否會成為創建近代物理的第二革命先鋒(相對論)。

至於愛因斯坦是否真是首位發現狹義相對論的物理學家,則請待下回分解。

註解

事實上普朗克及愛因斯坦本人完全低估了該篇論文的創見性,認為它只是洛倫茲理論的「延伸」而已。愛因斯坦的數學老師閔可夫斯基於1908年將時間和空間組合成一個現在稱為「閔可夫斯基時空(Minkowski space或spacetime)」的嶄新觀念,奠定了相對論的數學基礎,成為現在物理學家學習、了解、與討論愛因斯坦相對論主要(唯一)工具。

延伸閱讀

賴昭正_96
34 篇文章 ・ 34 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。