0

4
1

文字

分享

0
4
1

微擾理論:我們有沒有可能遮蔽了新的物理?——《撞出上帝的粒子》

貓頭鷹出版社_96
・2023/01/27 ・2632字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

對撞機能夠給出什麼答案?

物理學家想用大型強子對撞機來解答的重要問題,可以總結如下:在大型強子對撞機的能量級下,粒子物理的標準模型是否有效?「對撞機能量級」是個大大的躍進,因為其能量大小超越了電弱對稱破缺尺度;在這個尺度之上,兩種基本作用力相互統一,而 W 和 Z 玻色子、甚至所有其他基本粒子的質量,也許都是起源於此。

從空中鳥瞰大型強子對撞機的地理環境。圖/wikipedia

如果標準模型可以成功描述新能量範疇的現象,希格斯粒子應該就會存在,但看來不會有什麼其他的新發現;反之,如果標準模型失效,也許就沒有希格斯粒子了,不過背後一定會藏著稀奇古怪的事物。其實有個不易察覺的問題會左右這件事:我們究竟有多了解標準模型在此能量級下預測的現象?這並不容易回答。

一般而言我們並沒有能耐百分之百準確地解出標準模型。所有人都是用近似法。而絕大多數的近似方法之所以可行,是因為基本作用力的「耦合」,也就是強度,沒有很大。「耦合」就是在物理過程對應的費曼圖中,每個作用頂點帶有的值。(參見【科學解釋 8】)

微擾理論的應用

作用力的強度可以用一個數值來表示。如果說這個數值是 0.1,那麼兩個粒子交互作用的機率就會和 0.1 乘上 0.1,也就是 0.01 成正比。要是有三個粒子,機率就變成 0.1 的三次方,0.001,四個粒子的話就是 0.0001,如此這般。由此可知,如果耦合值很小,你就可以忽略比方說四個粒子以上的粒子交互作用―超過這個臨界值的項對於主要結果都只是極小的微擾罷了,因為前面至少會乘上 0.1 的五次方,也就是 0.00001。

-----廣告,請繼續往下閱讀-----

可見更多粒子的反應項只會些微改變原本的結果而已。這就是「微擾理論」的例子,微擾理論廣泛運用於解決物理界和化學界中許多的問題。只要耦合值很小、也就是作用力很弱,這個理論就十分準確。

然而,這種近似法並不是永遠有效。微擾理論失效的地方大多涉及強核力、也就是量子色動力學。這就是為何大家要把這種作用力稱為強核力。我們不是故意要混淆視聽的,強核力的確和它的名字一樣難以應付。

舉例來說,在我們對撞質子,想一探其內部夸克及膠子的種類分布時,某些方面的資訊其實無法從先前所提的原則計算得到(參見 4.5 節)。除此之外,我們也無法算出夸克和膠子最後是如何結合成新的強子的。雖然大家手上有量子色動力學的限制條件,也有一些基本的能量守恆、及動量守恆定律,以及不少從其他地方得到的數據,卻無法用微擾理論。

由二個上夸克及一個下夸克所構成的質子。圖/wikipedia

原因在於強核力的耦合值非常接近一,不論幾次方都還是一。因此,不管你計算的對象是幾個粒子,得到的結果都不會收斂到某個可信的值。最終我們只好依據自己的經驗來猜測結果、或建立模型。而這樣的結論一直都有調整空間。

-----廣告,請繼續往下閱讀-----

因此我們要嚴肅看待一個問題:大家在調整模型的時候,實際上可能會遮蔽了令人興奮的新物理。要避免這個問題,你得拿自己熟悉、以微擾理論計算的結果,連結上自己還不太明白、有調整空間的模型。我想像出一個比較毛骨悚然的情景來譬喻這件事――一具以精準預測架構的骨架,嵌在以最佳猜想組成的濕軟肉體內。

肉體的形狀可以改變。你可以重搥它的肚子,或捏它的臉頰(相對來說比較不痛);但是它有兩隻手兩隻腳,如果你打斷了某根骨頭,自己一定會知道。

用既有的知識探索未知

無論如何,大家利用電腦程式來把可塑的模型、與不易動搖的微擾理論整合在一起,而且絕大部分的工作都已經完成了;這種程式就是蒙地卡羅事件產生器(Monte Carlo event generator)。程式不但能編譯大部分我們擁有的粒子對撞現象的相關知識,同時也是個珍貴的工具,能協助物理學家設計新的實驗,並釐清既有的實驗對不同模擬數據會如何反應與解讀。「蒙地卡羅」這個名字有其典故,因為就和俄羅斯輪盤賭注一樣,這種事件產生器用上了很多隨機的數字。

這一切其實都牽涉到一點有趣的科學社會學。身為一位理論學家,有時你會因為投入某類蒙地卡羅事件產生器相關的研究而吃虧。你的一篇論文可能已經被引用了數千次,大家還是會說:「不過是電腦軟體罷了。」或是「這只是蒙地卡羅那類的玩意兒。」反之,要是你是發表一篇弦論的論文,又被引用這麼多次的話,你就能像個巨人般橫行全世界了。但說到底,弦論努力想預測的現象距離實證還是很遙遠,蒙地卡羅事件產生器卻可以實際解釋數據。

-----廣告,請繼續往下閱讀-----

蒙地卡羅事件產生器雖然不是唯一的辦法,大致上仍是物理學家在理解標準模型的意義、與儘量試著利用模型精確預測現象時,所付出的一份心血。

粒子物理標準模型。圖/wikipedia

雖然和大型強子對撞機的學界相比,蒙地卡羅事件產生器的研究社群規模較小,但相對來說,這個領域的成員盡的心力甚至不會比大家建造對撞機的付出還要少。美國物理學會也許是考量到了這一點,將 2011 年的櫻井獎(J.J. Sakurai Prize)頒給在這個領域工作的三位理論學家,分別是韋伯(Bryan Webber)、阿塔瑞利(Guido Altarelli)、斯舍斯特蘭(Torbjörn Sjöstrand)。頒獎典禮的引言如下:

因為三位物理學家的洞見,我們得以縝密驗證粒子物理的標準模型,實現高能物理實驗的目標、並從中學習量子色動力學、電弱交互作用、與可能的新物理的確切知識。

我很開心他們獲獎,因為其中兩位是我很親近的朋友,也更是因為三人所寫的計算方法及程式對大型強子對撞機幾乎所有的研究都十分重要,像是確保大家不會在不知情的情況下遮蔽任何新的物理。當前,我們正在嘗試確認希格斯粒子搜尋實驗的不定變數大小,並縮減其數量;人人都在尋找關鍵的三標準差證據、甚至是五標準差的大發現。為了這個目標,許多人夜以繼日持續比對新的數據和蒙地卡羅事件產生器的結果。

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
貓頭鷹出版社_96
62 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

1

11
4

文字

分享

1
11
4
希格斯玻色子發現十週年
PanSci_96
・2023/03/27 ・7603字 ・閱讀時間約 15 分鐘

-----廣告,請繼續往下閱讀-----

作者︱黎偉健

2012 年 7 月 4 日,位於歐洲核子研究中心(CERN)的大型強子對撞機(Large Hadron  Collider(LHC))的 ATLAS 和 CMS 實驗團隊宣佈了希格斯玻色子的發現,轟動了整個物理學界。提出希格斯玻色子的希格斯(P. Higgs)、恩格勒(F. Englert)和布勞特(R. Brout)迅速在翌年獲頒諾貝爾物理學獎。

在粒子物理的標準模型裡,希格斯玻色子關係到基本粒子質量的來源,具有重大意義。此外,由於希格斯玻色子很可能與一些未知的物理有關,以後對該粒子的進一步研究很可能有助解開現今物理學的一些謎團。藉著希格斯玻色子發現十週年,讓我們回顧一下希格斯玻色子的研究在過去十年的進展,並前瞻未來對它的更深入探測與其蘊含的意義。

粒子物理標準模型

現代物理學的一項輝煌成就,是認識到物質皆由基本粒子(elementary particle)組成,而一切已知的物理現象可歸結為基本粒子之間基本交互作用(fundamental interaction)的結果。例如水,它由水分子組成,而水分子由氫原子和氧原子組成;原子則由電子和原子核組成,而原子核由質子和中子組成;質子和中子則由夸克組成。

從此可見,電子和夸克組成了我們日常接觸到的所有物質。它們是「基本」粒子,因為至今物理學家並未發現到它們有內在結構。基於夸克之間存在強交互作用,夸克能組成質子和中子,質子和中子能組成原子核;基於電子和夸克之間存在電磁交互作用,電子和原子核能組成原子,原子能組成分子。

-----廣告,請繼續往下閱讀-----

基本交互作用有四種:重力交互作用(gravitational interaction)、電磁交互作用(electromagnetic  interaction)、強交互作用(strong interaction)和弱交互作用(weak interaction)。重力交互作用即萬有引力,它主宰著如星體的形成及運行等天文尺度的物理現象,由廣義相對論描述【註 1】;電磁交互作用、強交互作用和弱交互作用主宰著微觀世界的物理現象,由粒子物理的標準模型(Standard Model)描述。

圖一:標準模型中的基本粒子。

圖一列出了標準模型中的基本粒子,它們分為三類:費米子(fermion)、規範玻色子(gauge boson)和希格斯玻色子(Higgs boson)。費米子分為兩種:夸克(quark)和輕子(lepton),有三個世代(圖一中左邊的首三列)。第一世代的費米子為最常見,上夸克、下夸克和電子組成了原子,從而組成了我們日常接觸到的物質。規範玻色子是傳遞基本交互作用的粒子,其中光子傳遞電磁交互作用,W Z 玻色子傳遞弱交互作用,膠子傳遞強交互作用。希格斯玻色子是希格斯場(Higgs field)的激發。希格斯場與其他粒子的交互作用使得這些粒子具有質量,而希格斯玻色子會與帶有質量的基本粒子發生直接交互作用。

圖二:基本粒子的交互作用。

圖二顯示了標準模型中基本粒子的直接交互作用情況,其中藍線兩端的粒子會發生直接交互作用。例如光子(γ)和電子(e),它們之間有一藍線連接,即具有直接交互作用。粒子之間的交互作用可以形像地用費曼圖(Feynman diagram)表示。例如電子和電子之間的靜電排斥現象,可看作散射過程 eeee,其費曼圖如圖三,其中縱向代表空間,横向代表時間,時間流逝方向從左到右,左端為初態,右端為終態,實綫代表電子,波浪綫代表光子,而綫的交點(稱為頂點(vertex),圖中有兩個)代表電子和光子之間的直接交互作用。直接交互作用顯示為一頂點,即交互作用發生在某時空點上。

圖三:以費曼圖表示電子之間的靜電排斥現象。

根據圖三的圖像,我們可以把電子和電子之間的遙距靜電排斥現象理解為一顆電子釋放出一顆光子,然後該顆光子被另一顆電子吸收,從中光子把能量和動量從一顆電子攜帶到另一顆電子,因此我們說光子傳遞電磁交互作用;這好比兩個籃球員在傳球,籃球員是電子,籃球是光子,而籃球員在拋球和接球時之所以感受到對籃球施了力,正是因為籃球傳遞了動量。

-----廣告,請繼續往下閱讀-----

從這角度看,世上並沒有遙距的力,一切基本交互作用都發生在某時空點上,即費曼圖中的頂點。這種交互作用的局域性(locality)是現代粒子物理學的特點,它是狹義相對論和量子力學結合——量子場論——的結果。類似地,圖二中的每條藍線都有對應的費曼圖頂點。

希格斯場與希格斯玻色子

根據量子場論,粒子是場的激發。這就是為什麼每顆電子都相同,因為它們都是同一個場——電子場——的激發。在量子場論中,真空被定義為能量最低的態。對於一般的場,它的值在真空中為零。例如,由於電磁場由光子組成,帶正能量,因此電磁場非零的態能量必定比電磁場為零的態高,所以真空中電磁場必為零。希格斯場則不同,它在真空中的值由一個勢能函數取極小值決定,該勢能函數對希格斯場 ϕ 的依賴形式如圖四中的紅線。

圖四:勢能函數 V(ϕ)對希格斯場 ϕ 的依賴形式,黑色粗體的區段是我們目前能觀測到的,紅線為標準模型的預言,藍線是某個其他模型的預言。(本圖出自參考文獻1)

從圖四可見,勢能在希格斯場為一非零值時取最小值,即希格斯場的真空期望值(vacuum expectation value(vev))為非零【註 2】。也就是說,真空中充滿著希格斯場,而任何粒子在任何地方任何時間原則上都有可能與其發生交互作用。

在標準模型裡,只有特定幾種粒子能與希格斯場發生交互作用。這些粒子包括夸克、帶電輕子(e, μ,τ)以及 W Z 玻色子。這些粒子因為與真空中的希格斯場發生交互作用,從而獲得質量。對於這些粒子,它們與希格斯場的耦合強度與它們自身的質量成正比。所謂的希格斯玻色子,其實就是希格斯場在其真空值背景上的激發。

-----廣告,請繼續往下閱讀-----

因此,只有帶質量的粒子才能與希格斯玻色子發生直接交互作用(如圖二中與希格斯玻色子有藍線連結的粒子),而這些粒子與希格斯玻色子的耦合強度也正比於他們自身的質量【註 3】。值得注意的是,希格斯玻色子能與自身發生直接交互作用(見圖二)。

基本粒子的質量直接影響著宇宙中物質存在的形式。例如,我們知道,上夸克比下夸克輕,而質子由兩顆上夸克和一顆下夸克組成,中子則由一顆上夸克和兩顆下夸克組成【註 4】,因此質子比中子輕,從而質子是穩定粒子,這使得氫原子的組成變成可能。如果下夸克比上夸克輕,那麼質子會衰變成中子,即氫原子不穩定,宇宙便不可以如已知的含大量氫。又例如,原子的大小與電子的質量成反比,而原子的能階與電子的質量成正比,因此電子的質量直接影響著物質的化學特性。再例如,太陽中心核反應的其中一環取決於弱交互作用,其發生的機率正比於 1/mw4,其中 mwW 玻色子的質量。可見,希格斯場作為基本粒子質量之源,對物質的存在形式扮演著決定性角色。 

希格斯玻色子於 2012 年在位於歐洲核子研究中心(CERN)的大型強子對撞機(LHC)中被發現,是標準模型中最後一顆被發現的基本粒子。

對希格斯玻色子的最新認識

我們對希格斯玻色子的認識源自大型強子對撞機(LHC)的實驗數據。在 LHC 中,兩束質子互相對撞,質子裡的夸克或膠子會發生散射,有可能從中產生希格斯玻色子。由於希格斯坡色子的壽命很短,只有约 10  -22 s 秒,被產生的希格斯玻色子在到達粒子探測器前已衰變成較穩定的粒子。

-----廣告,請繼續往下閱讀-----
圖五 a:LHC 中產生希格斯玻色子的典型過程費曼圖 (本圖出自參考文獻1)

圖五 a 顯示了一個 LHC 中產生希格斯玻色子的典型過程的費曼圖。該過程的初態是兩顆來自質子的膠子(gluon),這兩顆膠子互相碰撞,產生了一對正反頂夸克,而由於頂夸克質量很大,從而與希格斯玻色子的耦合也很大,因而很有可能產生一顆希格斯玻色子,而該顆希格斯玻色子稍後衰變成兩顆 Z 玻色子,而這兩顆 Z 玻色子又各自衰變成一對正反帶電輕子(e+eμ+μ),粒子探測器會探測到終態的四顆帶電輕子。

圖五 b:實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。(本圖出自參考文獻1)

圖五 b 顯示了實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。藍色的部分顯示了非希格斯玻色子產生過程的供獻,而紅色部分即為產生希格斯玻色子所致,其峰位於希格斯玻色子的質量(125 GeV)。 

當然,在 LHC 中,希格斯玻色子的產生和衰變不是只有如圖五 a 的過程,所有可能的產生和衰變過程的費曼圖如圖六。

圖六:希格斯玻色子在LHC實驗中的產生和衰變過程。 (本圖出自參考文獻 3)

在圖六中,(a)至(f)是產生一顆希格斯玻色子的過程,(g)至(j)是希格斯玻色子的衰變模式,(k)至 (o)是產生兩顆希格斯玻色子的過程。在這些圖中,粒子的記號如圖一,而 q 代表夸克,V 代表 W 或 Z,f 則代表質量非零的費米子,粒子 X 與希格斯玻色子的歸一化耦合強度記為 κX【註 5】(標準模型對應 κ=1)。值得注意的是,希格斯玻色子可以透過因量子漲落而產生的粒子迴圈與質量為零的膠子和光子發生間接交互作用(見圖六(a)、(i)和 (j))。產生過程(a)至(d)以及衰變過程(g)至(j)都已被實驗證實。我們可以從這些眾多的過程所獲得的數據推斷出粒子與希格斯玻色子的歸一化耦合強度 κ

-----廣告,請繼續往下閱讀-----
圖七 a:從實驗數據中得到的 κ 值,紅色直線代表標準模型的預測值。(本圖出自參考文獻2)

圖七 a 中的點顯示了從實驗數據中抽取出來的 κ 的值,紅色直線則表示了標準模型的預測。從圖可見,對於 W 玻色子、Z 玻色子、頂夸克(t)、底夸克 (b)和濤子(τ),它們與希格斯玻色子的耦合強度已被精確量度,並且其值與標準模型預測一致。 

圖七 b:κf和 κV的量度精確度,中間黃色菱形為標準模型的預測值,越靠近黃色菱形表示實驗數據越符合理論值。(本圖出自參考文獻3)

圖七 b 顯示了 κfκV 的量度精確度在過去十年內的改善。紅色的圈表示 2012 年剛發現希格斯玻色子時的數據,藍色表示至 2015 年的數據,而黑色表示至 2018 年的數據。從圖可見,耦合強度的精確度在過往十年被大幅改善,並且其值與標準模型預測(κ=1)一致。 

未來對希格斯玻色子的探測 

圖八:基本粒子與希格斯玻色子的耦合强度量度進度及未來展望。(本圖出自參考文獻1)

圖八總結了至今對不同基本粒子與希格斯玻色子的耦合強度的量度進度以及未來展望。正如以上所述,我們已確定 WZ 玻色子,以及第三世代費米子與希格斯玻色子的耦合強度與標準模型一致。對於第二世代費米子,由於它們比第三世代費米子輕很多,因此與希格斯玻色子的耦合強度也小很多,所需的數據也多很多。

對於緲子,我們預計在未來五至十年間能確定它與希格斯玻色子的耦合強度是否與標準模型一致。在將來 15 至 20 年間,在升級後的高亮度 LHC(HL-LHC)中,圖六中未被觀察到的過程都會被觀察到,如同時兩顆希格斯玻色子的產生。可是,這都不足以測量出希格斯玻色子的自耦合強度。要量度魅夸克與希格斯玻色子的耦合強度,或希格斯玻色子的自耦合強度,我們需要 LHC 以外的新一代對撞機。

-----廣告,請繼續往下閱讀-----

對於奇夸克和第一世代夸克,由於它們非常輕,現時並沒有確切方法探測它們與希格斯玻色子的耦合強度。未來的正反電子對撞機或有機會探測到電子和奇夸克與希格斯玻色子的耦合強度。對於上夸克和下夸克,我們可能需要對撞機以外的方法,如對原子物理的精確量度,但這都只處於討論階段。 

有助解開的物理學謎團

我們對希格斯玻色子的進一步認識很可能有助解開一些現今粒子物理學和宇宙學的謎團,這些未解問題可大概歸為以下五個主要問題:

1. 層級問題

在標準模型裡,弱交互作用比重力交互作用強 1032 倍。為何重力這麼弱?這問題稱為層級問題(hierarchy  problem)【註 6】。基於重力如此弱的事實,可以在理論上證明,如果在弱電尺度(~200 GeV)附近沒有標準模型以外的新物理的話,在未知的終極理論裡的基本參數須被準確微調至 32 個小數位。很多物理學家把這種基本參數的精確微調視為不自然,從而推斷在弱電尺度附近必定有新物理。

因此,林林總總的新物理理論被提出,如一派理論提出希格斯玻色子並非基本粒子,而是由更基本的粒子組成的複合粒子;另一派理論提出在高能量尺度下存在超對稱【註 7】;還有一派理論提出宇宙存在額外維度。希格斯玻色子的發現以及至今對它特性的量度,排除了很大部分這些新物理理論。現今的理論家提出新理論時需要更謹慎,使得新理論與有關於希格斯玻色子的實驗數據吻合。

-----廣告,請繼續往下閱讀-----

2. 正反物質不對稱

在我們身處的宇宙中,物質都由正物質組成。可是,根據量子場論,一切粒子皆有其對應的反粒子【註 8】,而反粒子可組成反物質。那麼,為什麼宇宙中的物質只有正物質,沒有反物質呢?從理論推斷所知,在宇宙初期的高溫情況下,正反物質數量大致相同。現在我們所見到的正物質,是在宇宙因膨脹而冷卻後,正反物質互相湮滅後剩餘的。也就是說,宇宙很早期的時候正反物質數量存在些微不對稱,導致現今宇宙中只有正物質。

正反物質不對稱的大小依賴於宇宙早期弱電相變的細節。相變現象在日常隨處可見,如水蒸氣遇冷時凝結成液態水,或天然磁鐵遇熱時喪失磁性。在宇宙初期,溫度極高,希格斯場得到連續激烈的激發,因而其值不會停留在勢能(圖四)的最低點,而是作大幅度擺動,導致其平均值(即統計期望值)為零。隨著宇宙膨脹,溫度下降,希格斯場的擺動減小,直到某臨界溫度以下時,希格斯場的期望值取勢能的最小值處。希格斯場的期望值從零變為非零,這是一個相變過程,稱為弱電相變(electroweak phase transition)。

在標準模型裡,希格斯勢能導致的弱電相變為一連續相變(即所謂的二階相變),其結果是所造成的正反物質數量不對稱太小,不足以解釋所觀察到的不對稱值。因此,物理學家提出了一些新理論,這些理論涉及到新粒子的引入,而這些新引入的粒子會與希格斯場發生交互作用,從而改變希格斯場的勢能形式(如圖四中的藍線),使弱電相變變得不連續(一階相變),這也順帶的改變了希格斯玻色子的自耦合強度。所以,未來實驗對希格斯玻色子的自耦合強度的量度將有助解開正反物質不對稱之謎。

3. 暗物質

我們從天文觀察中得知,宇宙中存在著大量暗物質,其總質量約為普通物質的五倍。可以肯定,暗物質並非由標準模型粒子組成。因此,很多新的粒子理論被提出,當中引入了新的粒子。一個很自然的問題是,既然希格斯場負責給予標準模型粒子質量,它會不會也負責給予暗物質粒子質量呢?如果真的是這樣,那麼這些新的粒子會以量子迴圈的方式改變希格斯玻色子的壽命和自耦合強度,或者希格斯玻色子會衰變成這些新粒子,而這些都有機會在未來被測量到。

4. 費米子質量問題

在標準模型裡,費米子分為三個世代,三個世代的質量截然不同:第二世代比第一世代重,而第三世代比第二世代重(見圖一)。標準模型並不能對此作解釋。為此,物理學家提出一些新理論,而在這些新理論中希格斯玻色子具有一些標準模型不允許的衰變模式,如 Hμ+τ。如果這些新的希格斯玻色子衰變模式存在的話,有可能在未來被實驗探測到。

此外,在標準模型裡,微中子沒有質量。可是,我們從近年的微中子振蕩實驗中得知,微中子具有微小質量。希格斯場有可能在賦予微中子質量上扮演重要各式。

5. 宇宙暴脹之源

我知道,希格斯場的真空期望值取決於它的勢能形式,這是希格斯場與其他場截然不同的特點。有趣的是,根據現時所知的希格斯玻色子質量,我們可以推斷現今的希格斯場真空期望值只是勢能的局部最小值(又稱為錯真空(false vacuum)),而不是全局最小值(即真真空(true vacuum))。也就是說,我們所處於的真空並非最低能量態,而且不穩定,有機會衰變成更低能的最低能量態。

可是,這個錯真空衰變的機率極小,導致錯真空的壽命遠長於宇宙年齡,即我們所在的真空處於一種亞穩定狀態。我們知道,在宇宙的極早期曾經發生過暴脹,即宇宙以指數式急速膨脹,而這導致了現今宇宙在大尺度下的平均性。我們很自然會問,是甚麼導致暴脹呢?理論上,類似於希格斯場的錯真空衰變現象很可能就是暴脹的原因。究竟希格斯場與宇宙早期的暴脹有關嗎?物理學家對此仍未有答案。

結語

希格斯玻色子的發現為粒子物理學研究展開了新一頁。在希格斯玻色子被發現後的十年裡,透過在對撞機實驗中對它的深入探測,我們對希格斯場和希格斯玻色子有了更豐富的認識。至今,一切有關希格斯玻色子的量度均與標準模型預測一致。我們可以肯定的說,正如標準模型所述,希格斯場的確賦予質量給W、Z玻色子以及第三世代費米子。這證明宇宙中存在第五種基本交互作用——希格斯交互作用。在未來的實驗裡,對希格斯玻色子的進一步探測將有助解開一些未解決的物理學謎團。

註釋

  1. 對於基本粒子,電磁交互作用的強度約為重力交互作用的 1030 至 1043 倍。因此,在粒子物理裡,重力交互作用可以完全被忽略。
  2. 希格斯場能具有非零真空期望值,關鍵在於它的自旋為零,從而非零真空期望值不會與勞侖茲不變性抵觸。希格斯場取非零真空期望值,是一種自發規範對稱破缺,這使得 W Z 既是傳遞交互作用的粒子,又帶有質量。這種賦予規範玻色子質量的機制稱為希格斯機制(Higgs mechanism),是弱電理論能成為一自恰理論的關鍵。
  3. 事實上,我們可以把希格斯玻色子與其他粒子的直接交互作用視為第五種基本交互作用,稱為希格斯交互作用,或湯川交互作用(Yukawa interaction)。
  4. 注意,質子和中子內除了夸克還有大量膠子,而質子和中子的質量絕大部分源於這些膠子的交互作用能,但這部分的貢獻在質子和中子裡是幾乎相等的。
  5. 歸一化耦合強度 κ 定義為耦合強度除以標準模型的耦合強度。因此,對於標準模型,歸一化耦合強度為 1。
  6. 關於層級問題是否一個合理的物理學問題,學術界仍存在爭論。
  7. 超對稱是一種理論上可能存在的時空對稱和內在對稱的混合,至今未被實驗發現。
  8. 反粒子與其對應的正粒子有相同質量和自旋,但帶相反的荷,如電荷。

參考文獻

  1. G. P. Salam, L. T. Wang, and G. Zanderighi, Nature 607 (2022) 7917, 41-47
  2. ATLAS Collaboration, Nature 607 (2022) 7917, 52-59 
  3. CMS Collaboration, Nature 607 (2022) 7917, 60-68
所有討論 1
PanSci_96
1219 篇文章 ・ 2179 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

所有討論 1
PanSci_96
1219 篇文章 ・ 2179 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
強核力與弱核力理論核心:非阿貝爾理論——《撞出上帝的粒子》
貓頭鷹出版社_96
・2023/01/28 ・1733字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

非阿貝爾理論

量子色動力學與弱核力理論有個更為奇特的性質,兩者都是「非阿貝爾理論」 (non-Abeliantheories)。非阿貝爾的意思是強核力與弱核力理論核心(參見【科學解釋 6】)的對稱群代數是不可交換的。簡單來說就是「A 乘 B」不等於「B 乘 A」。

一般人的常識會告訴你,如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣,你用計算機怎麼試答案都不變。一個袋子裝三塊錢、兩個袋子總共是六塊錢;一個袋子裝兩塊錢,三個袋子總共還是六塊錢。

如果隨便拿兩個數字 A 和 B,用 A 乘 B 的結果永遠會和用 B 乘 A 一樣。圖/pixabay

這件事對數字永遠都成立,是千真萬確的事實。然而,我們有個很好的方法能定義出一套數學架構,其中的 AB 不等於 BA。實際上,數學家已經鑽研這個領域很多年了。

條條大路通數學

或許更驚人的是,物理學家竟然也在許多地方應用這套數學,因為某些和物理學相關的事物也是 AB 不等於 BA。矩陣就是我們表示這些東西的一種方式。現在我在倫敦大學學院為新生上的數學方法課就有介紹矩陣力學。以前我的學校制定了一套「新數學」的課綱,所以我在年僅十五歲的時候就多少認識一點矩陣了。

-----廣告,請繼續往下閱讀-----

數學的一個矩陣是一群按照行列排列整齊的數字。把兩個矩陣 A 和 B 相乘,會得到另一個矩陣 C,方法是把對應的列和行上面的數字依序相乘。

這種矩陣聽起來可能不像某部電影裡面那掌控一切、創造虛擬實境的超級電腦一樣迷人,卻有用的多。這部電影的角色身穿黑色皮衣,還有出現著名的慢動作躲子彈鏡頭

慢動作躲子彈鏡頭。圖/giphy

我來舉個例子。

你可以用一個矩陣來描述你移動某個物體的結果。相乘的順序(AB 或 BA)在這個例子有明顯的區別。物體先在原地轉九十度再向前直直走十公尺,和先走十公尺再轉九十度,兩種移動方式最後的終點顯然不會相同。假設矩陣B代表旋轉,矩陣 A 代表直行,那麼合在一起的「旋轉後直行」就是矩陣(C = AB);這和「直行後旋轉」的矩陣(D = BA)必定不會相同。C 不等於 D,所以 AB 不等於 BA。要是 AB 和 BA 永遠相同,我們就沒辦法用矩陣來描述這類的移動過程了。正是因為矩陣的乘法不可交換―非阿貝爾,這個工具才會如此有用。

-----廣告,請繼續往下閱讀-----

數學和真實世界密不可分

在狄拉克試圖要找出能描述高速電子的量子力學方程式時,矩陣被證實是他所需要的工具。實際上,電子有某項特性讓狄拉克不得不使用矩陣來表示它,這項特性與他描述電子自旋的語言同出一轍;所有原子的行為和元素周期表的規律,都與自旋有深刻的關聯。除此之外,這個性質也啟發狄拉克去預測有反物質的存在。

數學和真實世界之間似乎有緊密的關係,這讓我讚嘆不已。優秀的研究要能解決問題、也要能提出好的問題。而問題永遠比解答還要多,為了研究我們要付出許多的時間和金錢,因此大家得做出抉擇。數學是威力極大的工具,能幫助科學家檢查實驗數據、並從結果當中尋找最有趣的新實驗方向。就算有些方法和結論,好比矩陣及反物質,看起來可是相當古怪的。

秉持著這份精神,我要在繼續討論希格斯粒子搜索實驗之前,先繞個路來講微中子,最後這回要介紹的是一個很重要的真實結果。2012 年 3 月 7 日,中國的大亞灣核反應爐微中子實驗(DayaBay Reactor Neutrino Experiment)發表了最新的研究成果。

One of the Daya Bay detectors.圖/wikipedia

他們的實驗結果不但對標準模型影響重大,也會決定粒子物理學未來的研究走向。如果你只想要繼續讀希格斯粒子的故事,大可跳過這一段沒關係,下一節再見。但是微中子的粉絲可千萬別錯過精彩好戲了!

-----廣告,請繼續往下閱讀-----

——本文摘自《撞出上帝的粒子:深入史上最大實驗現場》,2022 年 12 月,貓頭鷹出版,未經同意請勿轉載。

貓頭鷹出版社_96
62 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。