其實暗能量的「暗」,指的是我們看不到也摸不到,用上各種波段的電磁波都察覺不到,甚至現今沒有任何儀器能偵測到它的存在。因為我們無法感受到它、不知道他們的型態,所以稱為暗能量。也就是說,如果暗影大人或是哪個最終 BOSS 的絕招是「暗能量波動」,當巨大的能量朝你襲來,不用擔心,站在原地就好,因為它只會穿過你的身體,打不中你的。同樣的,你可能聽過的「暗物質」,指的也是我們無法探知的未知物質。也就是說,暗物質並不是指某種特定物質叫做暗物質,任何我們現在還無法探測到的,都可能是暗物質的其中一種。題外話,近年某些暗物質面紗底下的容貌,已經逐漸能被我們窺見,例如微中子。這部分,之後我們介紹暗物質的節目中,再來好好討論,今天先來和大家聊聊佔了宇宙質能 7 成的暗能量。
科學家主要透過三種方法,分別用來觀測晚期、中期、到早期的宇宙。第一種方法是觀測 Ia 型超新星爆炸,它指的是當一顆緻密白矮星到了生命末期,吸收大量鄰近伴星的氣體,使得內部重力超過某個極限,引發失控的核融合而形成的超新星爆炸。這個爆炸會在瞬間釋放出許多能量,亮度甚至可以媲美整個星系,因此即使是很遙遠的超新星也可以被地球觀測到。最受天文學家關注的是,因為每個 Ia 型超新星爆炸時產生的尖峰光度都相同,可以直接作為觀測或是亮度的比對參考點,又稱為標準燭光。當它離我們愈遠亮度就愈小,只要觀測亮度就可以得知它離我們的距離。
在標準模型裡,只有特定幾種粒子能與希格斯場發生交互作用。這些粒子包括夸克、帶電輕子(e–, μ–,τ–)以及 W 和 Z 玻色子。這些粒子因為與真空中的希格斯場發生交互作用,從而獲得質量。對於這些粒子,它們與希格斯場的耦合強度與它們自身的質量成正比。所謂的希格斯玻色子,其實就是希格斯場在其真空值背景上的激發。
我們對希格斯玻色子的認識源自大型強子對撞機(LHC)的實驗數據。在 LHC 中,兩束質子互相對撞,質子裡的夸克或膠子會發生散射,有可能從中產生希格斯玻色子。由於希格斯坡色子的壽命很短,只有约 10 -22 s 秒,被產生的希格斯玻色子在到達粒子探測器前已衰變成較穩定的粒子。
-----廣告,請繼續往下閱讀-----
圖五 a:LHC 中產生希格斯玻色子的典型過程費曼圖 (本圖出自參考文獻1)
圖五 a 顯示了一個 LHC 中產生希格斯玻色子的典型過程的費曼圖。該過程的初態是兩顆來自質子的膠子(gluon),這兩顆膠子互相碰撞,產生了一對正反頂夸克,而由於頂夸克質量很大,從而與希格斯玻色子的耦合也很大,因而很有可能產生一顆希格斯玻色子,而該顆希格斯玻色子稍後衰變成兩顆 Z 玻色子,而這兩顆 Z 玻色子又各自衰變成一對正反帶電輕子(e+e– 或 μ+μ–),粒子探測器會探測到終態的四顆帶電輕子。
圖五 b:實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。(本圖出自參考文獻1)
圖五 b 顯示了實驗中探測到的四顆帶電輕子的質心系總能量 m4l 分佈。藍色的部分顯示了非希格斯玻色子產生過程的供獻,而紅色部分即為產生希格斯玻色子所致,其峰位於希格斯玻色子的質量(125 GeV)。
當然,在 LHC 中,希格斯玻色子的產生和衰變不是只有如圖五 a 的過程,所有可能的產生和衰變過程的費曼圖如圖六。
圖六:希格斯玻色子在LHC實驗中的產生和衰變過程。 (本圖出自參考文獻 3)
在圖六中,(a)至(f)是產生一顆希格斯玻色子的過程,(g)至(j)是希格斯玻色子的衰變模式,(k)至 (o)是產生兩顆希格斯玻色子的過程。在這些圖中,粒子的記號如圖一,而 q 代表夸克,V 代表 W 或 Z,f 則代表質量非零的費米子,粒子 X 與希格斯玻色子的歸一化耦合強度記為 κX【註 5】(標準模型對應 κ=1)。值得注意的是,希格斯玻色子可以透過因量子漲落而產生的粒子迴圈與質量為零的膠子和光子發生間接交互作用(見圖六(a)、(i)和 (j))。產生過程(a)至(d)以及衰變過程(g)至(j)都已被實驗證實。我們可以從這些眾多的過程所獲得的數據推斷出粒子與希格斯玻色子的歸一化耦合強度 κ。
-----廣告,請繼續往下閱讀-----
圖七 a:從實驗數據中得到的 κ 值,紅色直線代表標準模型的預測值。(本圖出自參考文獻2)
圖七 a 中的點顯示了從實驗數據中抽取出來的 κ 的值,紅色直線則表示了標準模型的預測。從圖可見,對於 W 玻色子、Z 玻色子、頂夸克(t)、底夸克 (b)和濤子(τ–),它們與希格斯玻色子的耦合強度已被精確量度,並且其值與標準模型預測一致。
希格斯場能具有非零真空期望值,關鍵在於它的自旋為零,從而非零真空期望值不會與勞侖茲不變性抵觸。希格斯場取非零真空期望值,是一種自發規範對稱破缺,這使得 W 和 Z 既是傳遞交互作用的粒子,又帶有質量。這種賦予規範玻色子質量的機制稱為希格斯機制(Higgs mechanism),是弱電理論能成為一自恰理論的關鍵。
無論如何,大家利用電腦程式來把可塑的模型、與不易動搖的微擾理論整合在一起,而且絕大部分的工作都已經完成了;這種程式就是蒙地卡羅事件產生器(Monte Carlo event generator)。程式不但能編譯大部分我們擁有的粒子對撞現象的相關知識,同時也是個珍貴的工具,能協助物理學家設計新的實驗,並釐清既有的實驗對不同模擬數據會如何反應與解讀。「蒙地卡羅」這個名字有其典故*,因為就和俄羅斯輪盤賭注一樣,這種事件產生器用上了很多隨機的數字。