0

2
0

文字

分享

0
2
0

「真」最佳拍檔與他們的來電發明:史上第一顆電晶體的誕生——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》

親子天下_96
・2022/07/15 ・4158字 ・閱讀時間約 8 分鐘

謎團的新進展:「我知道為什麼了!」

1946 年 3 月 19 日這天下午,巴丁走到布拉頓座位前,布拉頓抬起頭來,看見平時總是氣定神閒的巴丁一反常態, 難掩興奮的對他說:「我知道為什麼了!」

當下,布拉頓明白巴丁說的是什麼,只是不敢置信,這半年來大家束手無策的謎團終於有了進展! 

去年 10 月巴丁一來貝爾實驗室上班,布拉頓便迫不及待的說明蕭克利的構想,以及自己做了哪些實驗,想知道他能否看出到底哪裡有問題?主管蕭克利在誠摯歡迎巴丁就任後,也毫無架子的請教他的看法。 

蕭克利三人除了在辦公室討論,就連在蕭克利家中作客時,也無視於身旁的妻子,熱烈談論實驗結果。然而他們再三確認過布拉頓的實際做法,甚至回頭從量子力學的基本學理逐步探討,結果就是想不出為什麼行不通。

-----廣告,請繼續往下閱讀-----

直到這一天, 巴丁才恍然大悟。 

巴丁帶著布拉頓到黑板前,用粉筆畫出一個個排列整齊的矽原子與周圍的電子,然後指著最上面那一列矽原子說: 「有看出來這一排矽原子和下面的矽原子哪裡不一樣嗎?」 

布拉頓滿臉疑惑:「不都一樣嘛?」

「你再仔細看看。」

-----廣告,請繼續往下閱讀-----

布拉頓看了一會兒,終於看出差別:「喔,你是指它們少了一顆價電子啊?但這不就是局部示意圖嗎?你只是沒畫出更上層相鄰的矽原子而已。」 

巴丁露出莫測的微笑:「那如果這已經是最表面的那層原子呢?它們上方可沒有其他矽原子提供共用的電子了。 這就是我們的盲點,沒注意到表層矽原子的價電子是不足的!」 

布拉頓一時愣住,巴丁不等他想通,拿起紅色粉筆在最上層的矽原子畫了幾個電子,接著說:「你看,表層這些矽原子只要再一個價電子就能填滿最外殼層,形成穩定狀態。所以當電子被電場吸引到矽原子的表面,便無法掙脫。多了這些堆積不動的電子,矽晶體表層變成帶負電,與上方帶正電的金屬板形成封閉的電場,其他電子無法再被吸引上來, 當然不會導電。」 

「難怪我試了各種方法,別說放大訊號了,連電流都測不到!」布拉頓恍然大悟,接著趕忙問:「所以我們該怎麼做?」 

-----廣告,請繼續往下閱讀-----

「只能想辦法打破這『表面態』,不過……我也還沒有具體辦法。」 

「沒關係,至少現在不再是瞎子摸象,知道該往什麼方向努力了。」布拉頓渾身充滿幹勁,已經迫不及待要進行實驗。

巴丁發現蕭克利所設計的場效應電晶體,因為 p 型矽的表面矽原子
最外層被填滿電子,導致無法導電。 圖/親子天下

最開心的當然是蕭克利本人,這代表他的構想有機會起死回生。他相信巴丁一定可以找出解決方法,加上自己也還有許多事要忙,索性放手讓他們去研究,只有偶而關心一下進度。

學者型的巴丁自然樂得不受干涉;而對布拉頓來說,巴丁的學術素養不下於蕭克利,又隨時都可以當面討論,反而更棒。他們兩人不只是工作上的夥伴,私下也成為往來密切的好友,假日還常相約去打高爾夫球;凱利當初所期待的 「大腦」與「雙手」的密切合作,如今反而在巴丁和布拉頓兩人身上實現。

-----廣告,請繼續往下閱讀-----

最佳拍檔「大腦」與「雙手」的解謎之旅

不過即便這個新最佳拍檔找出了關鍵問題的答案,但是之後的難關卻是毫不留情的一層層湧上,讓這兩人倍感吃力;事情是這樣子……。

  • 蕭克利模型
圖/親子天下

巴丁和布拉頓兩人發現矽晶體表面態的障礙比想像中的還難打破,即使把電壓提高到 1 千伏特、以及縮減金屬板離矽晶體表面的距離至 0.1 公分,仍然看不見電流變化。

巴丁甚至用液態氮冷卻矽晶體,看在超低溫下效果如何,結果導電性只增加了 10%。

  • 導線直接接觸模型
圖/親子天下

布拉頓想起歐偉用光線照射矽晶體的實驗。兩人用光線照射的結果,發現不需 n 型矽,直接以金屬線接觸 p 型矽就會有光伏效應。於是直接全用 p 型矽做實驗,同時施加電場和照射光線,果然就有電流產生,但卻沒什麼放大效果。

  • 矽晶體浸水模型
圖/親子天下

布拉頓意外發現矽晶體浸到水時,竟然測到些微的放大效果。巴丁推測水分子正極那端與表層矽原子接觸,中和了負電而降低表面態效應。

-----廣告,請繼續往下閱讀-----

布拉頓把提供電場的金屬板改為很小的金環,放進矽晶體表面的水滴裡,再將絕緣包覆的鎢絲穿過小金環,接觸矽晶體。結果成功在室溫下得到放大效果,雖然只有一點點,卻是一年多來的首度突破。

缺點:水分子會妨礙電波的震盪,所產生的頻率不到 10 Hz,根本無法傳遞聲音訊號,況且水滴容易蒸發,也不是長遠之計。

  • 雙管齊下模型
圖/親子天下

巴丁先將 p 型矽改為 n 型鍺;鍺和矽一樣是 IV 族元素,但價電子在更外層,比較能掙脫表面態。同時改以有正負離子的固態介電質取代水滴,裡面直接植入小金環,果然得到更高的放大效果,只不過電流的頻率仍無法超過 10 Hz。

  • 氧化層模型
圖/親子天下

布拉頓在幾次實驗後,發現鍺晶體表面因為電解作用生成二氧化鍺。由於二氧化鍺是絕緣體,代表介電質已經沒有發揮中和作用,而是靠氧化層降低表面態。

-----廣告,請繼續往下閱讀-----

於是改用事先經過陽極處理、表面已經氧化的鍺,直接將小金環置放在氧化層上,讓鎢絲刺穿氧化層,直抵 n 型鍺。他們原本希望去除介電質之後,就能產生更高的頻率,卻意外發現電流的走向與原先預期的不一樣。

  • 無氧化層模型
圖/親子天下

布拉頓試著改變電極正負方向的不同組合時,有次鎢絲還沒插上去,就不小心先觸碰到小金環,這瞬間電表竟然有反應。照理說小金環下方是絕緣的氧化層,應該不會導電才對,他仔細檢查後才發現原來氧化層不知何時被洗掉了,也就是小金環是與鍺晶體直接接觸的!

這可不得了,代表小金環已經沒有扮演提供感應電場的角色,而是將電流轉入鍺晶體而已。這代表並不需要絕緣的氧化層,小金環也形同虛設。

布拉頓還發現小金環改接正極時,雖然電流沒有放大,但電壓放大兩倍,而且頻率高達 10 KHz,終於有希望取代真空管;而這一切根本沒用到蕭克利所構想的「場效應」。

-----廣告,請繼續往下閱讀-----
  • 反轉層模型
圖/親子天下

巴丁重新思考並且得出結論:鍺晶體的表層從射極獲得電洞而變成 p 型鍺,與下方的n 型鍺形成 p-n 接面,就如同歐偉那顆矽石的結構。

如果射極與集極在鍺晶體表面的接觸點彼此夠接近,來自射極的電洞有些便會跑到集極,與集極上的電子結合,帶動負極輸出更多電子,這些電子大部分會直抵基極,沿著電路循環回來,形成比射極那端還大的電流。

巴丁算出間隔最好小於 0.005 公分,才有明顯的放大作用,但這相當於一張紙的一半厚度,而當時最細的金屬線至少也有這三倍粗。巴丁原以為這很難做到,沒想到布拉頓很快就想出了巧妙的辦法。

經過反覆實驗, 布拉頓與巴丁終於摸索出最佳設計,接下來就是驗證奇蹟的時刻。

史上第一顆電晶體誕生

1947 年 12 月 16 日,布拉頓切了一塊三角形的塑膠塊,再將一片金箔貼在三角形的兩側,然後用刮鬍刀片將三角形尖端處的金箔輕劃一刀,分成兩段:一邊作為射極、一邊作為集極,兩者相距只有刀鋒那麼近。接著他把一根迴紋針拉長充當彈簧,一端固定在塑膠塊未貼金箔那側,另一端連接到懸臂上的螺絲旋鈕,讓塑膠塊懸空掛在鍺晶體上方。

裝置到了下午終於一切就緒,布拉頓輕輕轉動螺絲,讓塑膠塊緩緩下降,直到尖端剛好觸碰到鍺晶體表面。布拉頓示意就緒後,巴丁打開電源開關,果然出現前所未見的效果,電壓與電流都有放大,整體功率放大了一百倍。

就這樣,這個就地取材的克難裝置,成為史上第一顆電晶體。

布拉頓與巴丁的設計(左圖)以及最終完成的成品(右圖,照片為複製品),成為 史上第一顆電晶體。 圖/親子天下

布拉頓興奮的擁抱巴丁,巴丁內心也激動不已,沒想到埋首兩年沒有進展,卻在最後一個月中,接連出現戲劇性的變化。

在回家的途中,布拉頓忍不住告訴共乘的同事自己剛完成這輩子最重要的實驗。回家從不談論公事的巴丁也難得向太太透露,雖然只是輕描淡寫的一句:「我們今天有重要的發現。」

當晚布拉頓又打電話給巴丁,再次確認實驗沒有任何漏洞,突然才想到還沒通知蕭克利。

第二天,蕭克利過來實驗室看他們演示一遍,確認他們成功做出了電晶體後,告訴他們在申請專利前要先保密(布拉頓趕緊要那位共乘的同事發誓不說出去),接著他著手安排給貝爾實驗室高層的成果展示會。

12 月 23 日,這些高階主管到場後,只見麥克風與耳機接在一個簡陋的裝置上。當他們輪流戴上耳機,聽見清晰的說話聲音後,原有的疑慮一掃而空,紛紛向蕭克利、布拉頓與巴丁恭喜完成這革命性的發明。

隔天就要開始耶誕假期,這發明猶如意外的耶誕禮物,為原本就已輕鬆愉快的氣氛增添歡樂氣息。在一片和樂融融的笑談聲中,沒人注意到蕭克利卸下僵硬的笑容時,臉上浮現的陰鬱表情……。

——本文摘自《掀起晶片革命的天才怪咖:蕭克利與八叛徒》,2022 年 7 月,親子天下,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。

0

1
0

文字

分享

0
1
0
臺灣的水真的沒辦法生飲嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/13 ・6474字 ・閱讀時間約 13 分鐘

本文由 Amway 委託,泛科學企劃執行。 

根據衛福部建議,我國成人每天應該飲用約1500至2000 c.c. 的水,但在日本與歐美許多國家,只要一打開水龍頭,就能馬上擁有一杯能喝下肚的水。臺灣自詡為科技大國,為什麼卻無法擁有讓人安心的 Tap water?

冤有頭債有主,造成我們不敢生飲水的最大原因,其實不在自來水廠。從自來水廠出來的自來水,早已去除水源中的化學有機污染物、有害重金屬及致病性微生物,完全符合「飲用水水質標準」。在非常嚴密的檢驗和監控下,照理來說,你我都能夠非常安心的直接飲用這些自來水。然而,就連對水質信心滿滿的自來水廠,也大力呼籲民眾「不要直接飲用自來水」,這是怎麼一回事?

圖片來源:shutterstock

從水廠到家裡的自來水會經過哪些污染源?

首先,是管線老舊。不只是老舊管線內壁會積聚沉澱物和生物膜,管線本身若有生鏽、腐蝕的情形,還會在水中增加的鐵鏽和金屬離子。

-----廣告,請繼續往下閱讀-----

臺灣管線老舊的程度到底有多嚴重呢?根據台水公司108年的資料顯示,我國自來水管線長度超過6萬3千公里,其中超過48%的管線已經超過使用年限。再加上施工、地震、車輛超載等原因,使得管線容易破裂、漏水,進而影響水質。

除了管線品質外,蓄水池與水塔的清潔和維護也是影響自來水品質的重要因素。根據環境部指出,有高達7成以上的自來水污染事件,都是因為住戶疏忽清洗水塔的重要性,導致細菌和泥沙在儲水設施中繁衍和沉積。然而,超過45%的台灣民眾沒有定期清洗蓄水池和水塔的習慣。

這邊也要特別提醒,管線破損與蓄水池的污染,不只會讓飲用水再次受到重金屬與細菌的污染,更讓我們需要當心「新興污染物」的威脅。

什麼是「新興污染物」?

所謂新興污染物,指的是那些對環境有潛在威脅,但還沒有受到國家或國際法律廣泛監管的化學物質總稱。他們來自各種日常化工用品,並且透過城市、工業、家庭廢水進入河川與水體中。

-----廣告,請繼續往下閱讀-----

根據聯合國環境署的說明,「符合新興污染物資格的化合物清單很長,而且越來越長」。這些污染物其實離我們並不遠,是我們周遭常見的物質,例如抗生素、止痛藥、消炎藥、類固醇和荷爾蒙等藥物類,驅蟲劑、微塑膠、防腐劑、殺蟲劑、除草劑等環境荷爾蒙類,還有工業化學類的界面活性劑、火焰阻燃劑、工業添加劑、汽油添加劑、PFAS、鐵氟龍等等。

其中的全氟及多氟烷基物質PFAS,因為耐腐蝕、抗高溫,在自然環境中幾乎無法分解,又被稱為「永久性化學物質」。容易在環境及人體內累積,具有生物累積和生物放大性。而且PFAS衍伸的化合物超過一萬種,在防水、防油的紙袋、紡織品、化妝品中都很常看到。

PFAS成員全氟辛酸PFOA在2023年,被聯合國的國際癌症研究機構IARC,從2B級「可能對人類致癌」提升為一級「充分證據顯示對人類致癌」。另一個成員全氟辛烷磺酸PFOS則列為2B級致癌物。而環境部也在2024年,更針對PFOA、PFOS訂定飲用水濃度指引值。

PFOA 已被列入 IARC 第1類致癌物質,圖:Wikipedia

麻煩的是,這些新興污染物在都市中大多還未納入常規監測項目,我們對於他們對環境與人體的影響也還未全盤了解。甚至很多污染物,可能是十年前都還沒出現的。我們也不知道十年後,新興污染物的名單上,還會增加哪些名字。我們能做的事,就是盡量避免再避免。而徹底解決管線破損,與城市污水滲入蓄水池的可能性,我們才能避免這些新興污染物,進入到我們的飲用水中。

-----廣告,請繼續往下閱讀-----

使用淨水器過濾,會是淨化水質更好的方法嗎?

淨水器比起單純加熱煮沸,裡面包含了許多科技結晶,確實可以一口氣解決所有問題。但相對的,材料的選用與設計,就會更直接影響水質的好壞。

例如今天要介紹的eSpring益之源淨水器Pro,裡面用的濾材,是很常聽見的「活性碳」。

活性碳的作用是「過濾」,就像麵粉通過篩網,可以篩掉較大的顆粒。活性碳的製備,很多來自木材、椰子殼等高碳含量的原料。在經過高溫碳化,並通過活化劑或化學藥劑處理之後,會形成多孔結構,這些不規則的微小孔隙可以有效過濾水中的污染物。然而,活性碳的作用遠不止如此!其實,活性碳的過濾原理是「吸附」雜質。

活性碳是常見的濾材,圖:Wikipedia

有研究透過光譜和密度泛函理論(DFT)分析顯示,活性碳表面的含氧官能團,如羧基(carboxyl groups)和酚基(phenol groups),能夠與鉛離子(Pb(II))形成穩定的化合物,達到淨水的效果。這意味著活性碳能有效吸附和去除水中的重金屬,如鉛、銅、汞等重金屬,從而保證飲用水的安全性。

-----廣告,請繼續往下閱讀-----

也就是說,活性碳不僅通過物理吸附去除水中的懸浮物和大分子,還可以通過化學吸附來處理更複雜的污染物。除了重金屬以外,眾多的有機物、臭味分子甚至是餘氯,也都在活性碳的守備範圍內。一篇發表在《Reviews in Chemical Engineering》的論文也指出,面對日益增加的新興污染物,活性碳也正是一種具有前景的選擇之一,尤其農藥、個人保健與衛生藥(PPCPs)以及內分泌干擾物質(EDC)與活性碳有很強的吸附性,能有效的過濾這些新興污染物。

更進一步,科學家們正在研究各種農業廢棄物和不同的活化方式。他們發現,透過不同的原料和活化方式,活性碳表面官能基和結構的差異可以提高對不同污染物的吸附能力。例如,當使用鷹嘴豆、甜菜甘蔗渣或咖啡渣作為前驅物時,這些活性碳材料展現出對銅離子、鉻離子、染料及其他重金屬和有機污染物的優異吸附能力。

接下來,如果你的淨水器功能只有過濾,能確保的只有有機物與重金屬的去除,細菌可能還是存在。

當我們談論淨水器的功能時,許多人誤以為只要經過過濾就能確保水質的安全。實際上,這樣的理解並不全面。如果淨水器的功能僅限於過濾,它能確保的只有去除水中的有機物質和重金屬,然而,過濾並不能消除所有細菌,因此水中的微生物仍然可能殘留。這就是為什麼,即便過濾器

-----廣告,請繼續往下閱讀-----

之外,還需要強效殺菌來進一步保證水質。

紫外線是我們日常生活中常見且高效的殺菌工具,從居家用的烘碗機到手術室、圖書館的空氣或表面消毒,紫外線技術的應用無所不在。在淨水系統中,特別是UV-C 紫外線(波長範圍100-280nm)被證明能夠有效殺滅水中的微生物。許多先進的淨水器配備 UV-C LED ,這種燈能夠針對細菌、病毒進行消毒。

圖片來源:Amway

怎樣算是一個合格的淨水器?

美國國家衛生基金會(NSF)制定了一系列針對淨水器的性能、安全性和耐用性的標準,稱為NSF/ANSI標準。

針對台灣飲用水可能遇到的問題:細菌、重金屬、新興污染物、餘氯,各有專門的訂定標準。

-----廣告,請繼續往下閱讀-----
NSF/ANSI 標準指的是美國國家科學基金會下美國國家標準協會的所訂定的標準,

eSpring益之源淨水器Pro通過的第一跟二項標準是NSF/ANSI 53和401標準,53項針對的是健康相關的污染物,包含重金屬如鉛、銅、汞等有害金屬離子,還包括一些有機污染物如揮發性有機化合物(VOCs)。401項則是針對來自農藥、藥物等新興的有機污染物,因為在傳統的水處理過程中難以去除,因此特別訂定。

第三項,則是針對UV-C LED紫外線滅菌艙殺菌效果的NSF/ANSI 55標準。這個標準不僅規定了紫外線強度,還包括了水流量和微生物減少效果的測試與持久性,確保淨水器具有足夠的殺菌消毒能力。根據實驗數據,UV-C  LED紫外線能夠有效消滅高達99.9999% 的細菌,99.99% 的病毒,以及99.9% 的囊胞菌,為飲用水提供極高的安全保障。

最後一項標準是NSF/ANSI 42,他針對的餘氯和其他會影響味道與氣味的雜質。也就是像eSpring益之源淨水器Pro有通過第42項標準的,在確保飲用安全的標準之上,還能讓你的水更好喝哦。

這邊也要補充,除了第42、53、以及401項規定的標準,eSpring益之源淨水器Pro還請NSF做了標準之外的各項過濾性能檢測,總共有超過170種污染物的過濾符合標準,包含各種化學物質、重金屬、生物性、農藥、藥物、甚至是近年大家關注的石綿、氡氣與塑膠微粒,都在可被有效過濾的列表之中。這真的很重要,如同一開始我們講的,隨著工業文明的發展,新興污染物的名單只會越來越長而不會減少,多做幾項檢測,絕對是更安心的。如果你的淨水器已經用了很久,但擔心新興污染物沒有在獵捕名單內,可以考慮換成有通過更高標準的淨水器哦。

-----廣告,請繼續往下閱讀-----

另外,一些品牌雖然也有NSF認證,但很多都只有零件認證。eSpring益之源淨水器Pro不只針對濾心,還通過「全機認證」,確保從淨水器流出來的每一滴水都符合標準。

進一步了解商品: eSpring益之源淨水器Pro

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
206 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
206 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
0

文字

分享

0
4
0
從真空管到晶片:科技革命的關鍵里程碑
數感實驗室_96
・2024/05/25 ・670字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

奇幻故事中常見的魔法石可以輸出源源不絕的能量,其實在現實生活中的 20 世紀末期,人類真的發明了魔法石!

想像一下,手機開啟視訊,可以看到遠方的景色和親友,這不就像遙視、千里眼嗎?或者問 AI 上網查資料,就像內建大賢者。連開手電筒都像是探索地底迷宮的照明法術一樣!這些譬喻讓我們意識到,許多看似理所當然的科技實際上就像魔法一樣神奇。

晶片的原理

晶片進行的是邏輯運算,就像我們做的數學計算一樣。它裡面有許多微小的電子元件,類似於樂高積木一樣,用來進行各種運算。過去的電子元件是大型真空管,後來發明了電晶體,但仍需大量使用。直到有人提出了積體電路的概念,將許多電晶體整合在一起,這才開啟了晶片時代。

-----廣告,請繼續往下閱讀-----

從真空管到奈米晶片,科技的進步無所不在。現代的魔法石就是這些晶片,它代表著工程師的智慧和創造力。科技或許是一種新型的魔法,由無數工程師代代相傳,用理性和創意塑造出來。所以,現代的魔法並非來自大自然或神秘的力量,而是來自人類的智慧和努力。

喜歡這系列將影片或有其它想法,歡迎留言分享喔!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/