0

2
0

文字

分享

0
2
0

「真」最佳拍檔與他們的來電發明:史上第一顆電晶體的誕生——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》

親子天下_96
・2022/07/15 ・4158字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

謎團的新進展:「我知道為什麼了!」

1946 年 3 月 19 日這天下午,巴丁走到布拉頓座位前,布拉頓抬起頭來,看見平時總是氣定神閒的巴丁一反常態, 難掩興奮的對他說:「我知道為什麼了!」

當下,布拉頓明白巴丁說的是什麼,只是不敢置信,這半年來大家束手無策的謎團終於有了進展! 

去年 10 月巴丁一來貝爾實驗室上班,布拉頓便迫不及待的說明蕭克利的構想,以及自己做了哪些實驗,想知道他能否看出到底哪裡有問題?主管蕭克利在誠摯歡迎巴丁就任後,也毫無架子的請教他的看法。 

蕭克利三人除了在辦公室討論,就連在蕭克利家中作客時,也無視於身旁的妻子,熱烈談論實驗結果。然而他們再三確認過布拉頓的實際做法,甚至回頭從量子力學的基本學理逐步探討,結果就是想不出為什麼行不通。

-----廣告,請繼續往下閱讀-----

直到這一天, 巴丁才恍然大悟。 

巴丁帶著布拉頓到黑板前,用粉筆畫出一個個排列整齊的矽原子與周圍的電子,然後指著最上面那一列矽原子說: 「有看出來這一排矽原子和下面的矽原子哪裡不一樣嗎?」 

布拉頓滿臉疑惑:「不都一樣嘛?」

「你再仔細看看。」

-----廣告,請繼續往下閱讀-----

布拉頓看了一會兒,終於看出差別:「喔,你是指它們少了一顆價電子啊?但這不就是局部示意圖嗎?你只是沒畫出更上層相鄰的矽原子而已。」 

巴丁露出莫測的微笑:「那如果這已經是最表面的那層原子呢?它們上方可沒有其他矽原子提供共用的電子了。 這就是我們的盲點,沒注意到表層矽原子的價電子是不足的!」 

布拉頓一時愣住,巴丁不等他想通,拿起紅色粉筆在最上層的矽原子畫了幾個電子,接著說:「你看,表層這些矽原子只要再一個價電子就能填滿最外殼層,形成穩定狀態。所以當電子被電場吸引到矽原子的表面,便無法掙脫。多了這些堆積不動的電子,矽晶體表層變成帶負電,與上方帶正電的金屬板形成封閉的電場,其他電子無法再被吸引上來, 當然不會導電。」 

「難怪我試了各種方法,別說放大訊號了,連電流都測不到!」布拉頓恍然大悟,接著趕忙問:「所以我們該怎麼做?」 

-----廣告,請繼續往下閱讀-----

「只能想辦法打破這『表面態』,不過……我也還沒有具體辦法。」 

「沒關係,至少現在不再是瞎子摸象,知道該往什麼方向努力了。」布拉頓渾身充滿幹勁,已經迫不及待要進行實驗。

巴丁發現蕭克利所設計的場效應電晶體,因為 p 型矽的表面矽原子
最外層被填滿電子,導致無法導電。 圖/親子天下

最開心的當然是蕭克利本人,這代表他的構想有機會起死回生。他相信巴丁一定可以找出解決方法,加上自己也還有許多事要忙,索性放手讓他們去研究,只有偶而關心一下進度。

學者型的巴丁自然樂得不受干涉;而對布拉頓來說,巴丁的學術素養不下於蕭克利,又隨時都可以當面討論,反而更棒。他們兩人不只是工作上的夥伴,私下也成為往來密切的好友,假日還常相約去打高爾夫球;凱利當初所期待的 「大腦」與「雙手」的密切合作,如今反而在巴丁和布拉頓兩人身上實現。

-----廣告,請繼續往下閱讀-----

最佳拍檔「大腦」與「雙手」的解謎之旅

不過即便這個新最佳拍檔找出了關鍵問題的答案,但是之後的難關卻是毫不留情的一層層湧上,讓這兩人倍感吃力;事情是這樣子……。

  • 蕭克利模型
圖/親子天下

巴丁和布拉頓兩人發現矽晶體表面態的障礙比想像中的還難打破,即使把電壓提高到 1 千伏特、以及縮減金屬板離矽晶體表面的距離至 0.1 公分,仍然看不見電流變化。

巴丁甚至用液態氮冷卻矽晶體,看在超低溫下效果如何,結果導電性只增加了 10%。

  • 導線直接接觸模型
圖/親子天下

布拉頓想起歐偉用光線照射矽晶體的實驗。兩人用光線照射的結果,發現不需 n 型矽,直接以金屬線接觸 p 型矽就會有光伏效應。於是直接全用 p 型矽做實驗,同時施加電場和照射光線,果然就有電流產生,但卻沒什麼放大效果。

  • 矽晶體浸水模型
圖/親子天下

布拉頓意外發現矽晶體浸到水時,竟然測到些微的放大效果。巴丁推測水分子正極那端與表層矽原子接觸,中和了負電而降低表面態效應。

-----廣告,請繼續往下閱讀-----

布拉頓把提供電場的金屬板改為很小的金環,放進矽晶體表面的水滴裡,再將絕緣包覆的鎢絲穿過小金環,接觸矽晶體。結果成功在室溫下得到放大效果,雖然只有一點點,卻是一年多來的首度突破。

缺點:水分子會妨礙電波的震盪,所產生的頻率不到 10 Hz,根本無法傳遞聲音訊號,況且水滴容易蒸發,也不是長遠之計。

  • 雙管齊下模型
圖/親子天下

巴丁先將 p 型矽改為 n 型鍺;鍺和矽一樣是 IV 族元素,但價電子在更外層,比較能掙脫表面態。同時改以有正負離子的固態介電質取代水滴,裡面直接植入小金環,果然得到更高的放大效果,只不過電流的頻率仍無法超過 10 Hz。

  • 氧化層模型
圖/親子天下

布拉頓在幾次實驗後,發現鍺晶體表面因為電解作用生成二氧化鍺。由於二氧化鍺是絕緣體,代表介電質已經沒有發揮中和作用,而是靠氧化層降低表面態。

-----廣告,請繼續往下閱讀-----

於是改用事先經過陽極處理、表面已經氧化的鍺,直接將小金環置放在氧化層上,讓鎢絲刺穿氧化層,直抵 n 型鍺。他們原本希望去除介電質之後,就能產生更高的頻率,卻意外發現電流的走向與原先預期的不一樣。

  • 無氧化層模型
圖/親子天下

布拉頓試著改變電極正負方向的不同組合時,有次鎢絲還沒插上去,就不小心先觸碰到小金環,這瞬間電表竟然有反應。照理說小金環下方是絕緣的氧化層,應該不會導電才對,他仔細檢查後才發現原來氧化層不知何時被洗掉了,也就是小金環是與鍺晶體直接接觸的!

這可不得了,代表小金環已經沒有扮演提供感應電場的角色,而是將電流轉入鍺晶體而已。這代表並不需要絕緣的氧化層,小金環也形同虛設。

布拉頓還發現小金環改接正極時,雖然電流沒有放大,但電壓放大兩倍,而且頻率高達 10 KHz,終於有希望取代真空管;而這一切根本沒用到蕭克利所構想的「場效應」。

-----廣告,請繼續往下閱讀-----
  • 反轉層模型
圖/親子天下

巴丁重新思考並且得出結論:鍺晶體的表層從射極獲得電洞而變成 p 型鍺,與下方的n 型鍺形成 p-n 接面,就如同歐偉那顆矽石的結構。

如果射極與集極在鍺晶體表面的接觸點彼此夠接近,來自射極的電洞有些便會跑到集極,與集極上的電子結合,帶動負極輸出更多電子,這些電子大部分會直抵基極,沿著電路循環回來,形成比射極那端還大的電流。

巴丁算出間隔最好小於 0.005 公分,才有明顯的放大作用,但這相當於一張紙的一半厚度,而當時最細的金屬線至少也有這三倍粗。巴丁原以為這很難做到,沒想到布拉頓很快就想出了巧妙的辦法。

經過反覆實驗, 布拉頓與巴丁終於摸索出最佳設計,接下來就是驗證奇蹟的時刻。

史上第一顆電晶體誕生

1947 年 12 月 16 日,布拉頓切了一塊三角形的塑膠塊,再將一片金箔貼在三角形的兩側,然後用刮鬍刀片將三角形尖端處的金箔輕劃一刀,分成兩段:一邊作為射極、一邊作為集極,兩者相距只有刀鋒那麼近。接著他把一根迴紋針拉長充當彈簧,一端固定在塑膠塊未貼金箔那側,另一端連接到懸臂上的螺絲旋鈕,讓塑膠塊懸空掛在鍺晶體上方。

裝置到了下午終於一切就緒,布拉頓輕輕轉動螺絲,讓塑膠塊緩緩下降,直到尖端剛好觸碰到鍺晶體表面。布拉頓示意就緒後,巴丁打開電源開關,果然出現前所未見的效果,電壓與電流都有放大,整體功率放大了一百倍。

就這樣,這個就地取材的克難裝置,成為史上第一顆電晶體。

布拉頓與巴丁的設計(左圖)以及最終完成的成品(右圖,照片為複製品),成為 史上第一顆電晶體。 圖/親子天下

布拉頓興奮的擁抱巴丁,巴丁內心也激動不已,沒想到埋首兩年沒有進展,卻在最後一個月中,接連出現戲劇性的變化。

在回家的途中,布拉頓忍不住告訴共乘的同事自己剛完成這輩子最重要的實驗。回家從不談論公事的巴丁也難得向太太透露,雖然只是輕描淡寫的一句:「我們今天有重要的發現。」

當晚布拉頓又打電話給巴丁,再次確認實驗沒有任何漏洞,突然才想到還沒通知蕭克利。

第二天,蕭克利過來實驗室看他們演示一遍,確認他們成功做出了電晶體後,告訴他們在申請專利前要先保密(布拉頓趕緊要那位共乘的同事發誓不說出去),接著他著手安排給貝爾實驗室高層的成果展示會。

12 月 23 日,這些高階主管到場後,只見麥克風與耳機接在一個簡陋的裝置上。當他們輪流戴上耳機,聽見清晰的說話聲音後,原有的疑慮一掃而空,紛紛向蕭克利、布拉頓與巴丁恭喜完成這革命性的發明。

隔天就要開始耶誕假期,這發明猶如意外的耶誕禮物,為原本就已輕鬆愉快的氣氛增添歡樂氣息。在一片和樂融融的笑談聲中,沒人注意到蕭克利卸下僵硬的笑容時,臉上浮現的陰鬱表情……。

——本文摘自《掀起晶片革命的天才怪咖:蕭克利與八叛徒》,2022 年 7 月,親子天下,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。

0

1
0

文字

分享

0
1
0
一顆科技巨星的隕落(下)—英特爾的沒落
賴昭正_96
・2025/03/20 ・4190字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

商業上的成功蘊含著自身毀滅的種子:成功會滋生自滿,自滿會導致失敗。只有偏執狂才能生存。
-Andrew Grove(英特爾首席執行官)

話說英特爾於 1986 年冒著丟掉大客戶百年 IBM 的危險,轉向成立僅 3 年多的小電腦公司推銷其最新微處理器的賭博,得到了回報:康柏電腦公司一炮而紅的成功加速客戶對新 80386 晶片的要求。90 年代中後期英特爾更大力投資新的微處理器設計,促進了個人電腦產業的快速成長,成為市場佔有率高達 90% 的微處理器主要供應商,使其自 1992 年以來一直保持半導體銷售額排名第一的地位,於 1999 年將英特爾推上代表美國 30 主要工業的道瓊指數之一成員。

但到了 2000 年代,特別是 2010 年代末期,英特爾面臨日益激烈的競爭,導致其在 PC 市場的主導地位和市場佔有率下降。儘管如此,截至 2024 年第三季度,英特爾仍以 62% 的市佔率遙遙領先 x86 市場、更是筆記型電腦的明顯贏家(72%)。可是為什麼今天英特爾股價竟然倒退了 28 年,回到 1996 年底的價位呢(註一)?為什麼它已經不能再代表美國主要工業,於 2024 年 11 月 8 日被踢出道瓊工業指數,為英偉達(Nvidia,臺灣與香港譯為「輝達」)取代呢?

是什麼原因讓英特爾失去產業龍頭的位置? 圖/pixabay

英特爾的失足

在回答此問題之前,筆者得先指出:個人電腦到了 2000 年初已不再是一高利潤的高科技,而是一種日用商品。當初將英特爾培養壯大的 IBM 於 2004 年年底完全退出了個人電腦的市場;而避免侵權透過逆向工程、製造出第一台 IBM 個人電腦相容機的康柏公司,也在個人電腦市場的價格競爭日益激烈、及想打入主機電腦市場的錯誤政策下,於 2002 年被惠普 ( Hewlett-Packard ) 收購「消失」了。

冰凍三尺,非一日之寒。Google 的人工智慧謂:「英特爾在晶片產業落後的主要原因是多種因素」,包括:
(1)未能洞悉智慧型手機的崛起,在行動晶片市場明顯落後,錯失創新機會給高通(Qualcomm Inc.)等競爭對手;
(2)依賴過時的製造流程,未能像台積電、AMD、和英偉達(註二)一樣採用更靈活晶片設計和外包製造,來應付快速不斷變化的市場需求,導致失去了高效能運算和人工智慧等關鍵領域的市場;
(3)一些分析師認為英特爾在個人電腦市場長期佔據主導地位可能導致高階主管自滿,不願適應不斷變化的產業動態。

-----廣告,請繼續往下閱讀-----

筆者認為前述的(1)及(2)都是果,真正的原因只有(3)一個。80 年代,當英特爾的晶片和微軟的軟體成為快速發展之個人電腦行業的雙引擎時,公司充滿活力,專注於其在個人電腦和資料中心伺服器的特殊領域。英特爾高層曾半開玩笑地將公司描述為「地球上最大的單細胞有機體」:一個孤立的、獨立的世界。像 IBM 一樣,數十年的成功和高利潤也催生了英特爾目中無人及自大之企業文化!這種開會又開會、討論又討論、開不完的會、討不完的論正是公司成熟的標註。

英特爾企業文化

想當初英特爾剛成立時,諾伊斯只聽了幾秒鐘霍夫有關微處理器的激進想法後,就立即說:「做吧」!真是不可同日而語。又如到了 1983 年,其主要記憶體晶片業務受到日本半導體製造商加劇競爭而大大降低獲利能力時,格羅夫立即迅速地不怕「…微處理器是個非常大的麻煩」,脫胎換骨成為微處理器主要供應商━又豈是 90 年代不遺餘力地捍衛其微處理器市場地位而與 AMD 鬥爭的英特爾所能比?

事實上英特爾也曾多次嘗試成為人工智慧晶片領域的領導者,但都以失敗告終(註三):專案被創建、持續多年,然後要麼是因為英特爾領導層失去耐心,要麼是技術不足而突然被關閉。為了保護和擴大公司的賺錢支柱(x86 的數代晶片),英特爾對新型晶片設計的投資總是退居二線。史丹佛大學電機工程教授、英特爾前董事普盧默 ( James Plummer ) 曾謂:「這項技術是英特爾皇冠上的寶石——專有且利潤豐厚——他們會盡一切努力來維持這一點的」。英特爾的領導者有時也承認這個問題,例如英特爾前執行長巴雷特 ( Craig Barrett ) 就曾將 x86 晶片業務比作一種毒害周圍競爭植物的雜酚油灌木叢。

微軟 Copilot AI

英特爾能再放光芒嗎?

在一連串的機會錯失,決策錯誤及執行不力下,英特爾於 2021 年任命曾經主導其發展人工智慧晶片、2009 年離職去擔任 EMC 總裁的基辛格(Patrick Gelsinger)回來當執行長,積極嘗試透過其所謂的「五年、四個節點」進程追趕台積電。這位浪子回頭,被請回來拯救公司的基辛格於去年 4 月 25 日宣稱:即將推出的英特爾 3 奈米製程伺服器晶片的需求很高,可以贏得那些轉找競爭對手的客戶,謂『我們正在重建客戶信任。他們現在看著我們說:「哦,英特爾回來了。」』…但半年後,董事會對他的扭虧為盈計畫完全失去了信心,給了他辭職或被解僱的選擇。基辛格於 12 月 1 日辭職,現由領導英特爾全球財務部門和投資者關係的津斯納 ( David Zinsner ) 擔任臨時聯合執行長,正在務色下一任執行長。

-----廣告,請繼續往下閱讀-----

英特爾現在的處境事實上很像 1993 年的 IBM:在官僚體制、大型電腦利潤下滑,及失去個人電腦的主導權後,其股票從 1987 年 7 月的最高點倒退了 26 年!當總裁兼執行長阿克斯(John Ackers ) 於當年元月宣布首次下調股息 55% 及離職後,遴選委員會竟然找不到任何人願意來收拾這個爛攤子━曾幾何時 IBM 執行長還是眾人夢寐以求的職位呀!最後選委會只好推薦自告奮勇、完全外行(註四)、銷售菸草和食品的 RJR Nabisco 公司的首席執行官郭士納(Louis Gerstner Jr.)!郭士納在自傳中回憶說:重振 IBM 所面臨的最嚴峻挑戰是改變其企業文化。現 IBM 雖然不再像以前在科技界一言九鼎,但其股票已「趕上時代」屢創歷史新高,為道瓊工業指數中歷史最悠久的高科技成員(1979 年起);郭士納也被視為美國商界的偶像,IBM 轉型和重拾技術領導地位的救星。

IBM 和英特爾的股價走勢圖。圖/作者提供

股票名嘴克萊默(Jim Cramer)在年初謂:「我們需要將英特爾視為資產負債表非常糟糕的國寶」,因此有必要幫助英特爾公司渡過難關。美國政府顯然也同意,商務部根據 CHIPS 激勵計劃的商業製造設施資助機會,已經給英特爾公司提供高達 78.65 億美元的直接資助。但如前面所提到的 IBM 如何啟動發展個人電腦,錢真的是萬能嗎?英特爾能重新燃燒發光嗎?

英特爾不像 1993 年的 IBM 具有百年的歷史,各方面人才濟濟:多項技術創新和最多的專利,包括自動櫃員機、動態隨機存取記憶體 、軟碟、硬碟、磁條卡、關聯式資料庫、Fortran 和 SQL 程式語言、UPC 條碼、以及本文所提到之個人電腦等;其研究部是世界上最大的工業研究機構,員工因科學研究和發明而獲得了各種認可,包括六項諾貝爾獎和六項圖靈獎(Turing Award,註五)。因此筆者懷疑英特爾能夠重新奪回業界領先地位;CFRA Research 技術分析師齊諾 ( Angelo Zino ) 表示:「目前來看,它們重返輝煌的可能性非常渺茫。」

以目前來看,英特爾技術劣勢難以逆轉,重返業界領導地位機會渺茫。圖/unsplash

結論

這顆科技巨星真的要隕落了嗎?真的是「一失足成千古恨,再回頭已百年身」嗎?英特爾第三任首席執行官(1987-1998)格羅夫真的不幸言中了嗎:「商業上的成功蘊含著自身毀滅的種子」?當然,像英特爾這麼有成就的公司要徹底消失是不太可能,因此最可能的命運應該是分割拍賣或像仙童半導體公司一樣被其它公司收購(註六)。事實上去年高通公司就曾與英特爾洽談收購事宜,但最終放棄了這個想法。

-----廣告,請繼續往下閱讀-----

最後讓我們在這裡以同時被 IBM 培養狀大、在個人電腦上一起嘯吒風雲的微軟公司,其創辦人蓋茨(Bill Gates)元月 8 日的美聯社訪談來結束本文吧。蓋茨聲稱:如果英特爾沒有在 70 年代初期取得技術突破,創造出能夠驅動個人電腦的微型晶片,他的職業道路可能會有所不同。他接著表示:微軟也像英特爾一樣,在 18 年前錯過了從個人電腦到智慧型手機的轉變,但微軟已經恢復元氣,而英特爾的困境卻惡化到需要尋找新執行長的地步(註七),他說:

他們錯過了人工智慧晶片革命,(因為晶片設計和製造方面落後)其製造能力達不到英偉達和高通等公司認為是簡單的標準。我認為基辛格非常勇敢,他敢說:「不,我要解決設計方面的問題,我要解決晶圓廠方面的問題。」我(曾)希望為了他自己、為了國家,他能夠成功。我希望英特爾能夠復甦,但目前看來它們的處境相當艱難。

今天微軟公司已是全美市值最大的前三名公司之一,而英特爾卻淪落至此,能不讓人感嘆造化弄人嗎?

(2025 年 2 月 3 日補註)本文完稿於元月 15 日;英特爾元月 30 日第四季業績報告謂:營收連續三季下滑,較去年同期下降 7%;本季淨虧損總計 1.26 億美元(即每股 3 美分),而去年同期的淨收入為 26.7 億美元(即每股 63 美分)。今年第一季的業績指引令分析師失望!

備註

  • (註一)同一期間道瓊股指上升了 7 倍多。
  • (註二)這三家公司現在全是中國人在主導。在英特爾全盛時期,這三家全是在後者的陰影下求生存;而現今這三家的市值均遠遠超過英特爾!
  • (註三)2005 年,當英特爾的晶片在大多數個人電腦中充當了大腦時,執行長歐德寧( Paul Otellini)就已經意識到了圖形晶片最終可能會在資料中心承擔重要的工作,向董事會提出了一個令人震驚的想法:以高達 200 億美元收購電腦圖形晶片的矽谷新貴英偉達(英偉達的市值現已超過 3 兆美元)。但因英特爾在吸收公司方面的記錄不佳,董事會拒絕了這個提議,歐德寧退縮了!反觀 AMD 於 2006 年收購英偉達對手 Array Technology Inc. 後,現正挑戰英偉達的圖形晶片市場。
  • (註四)在 1993 年三月宣布將擔任執行長的記者招待會上,被問及用什麼牌子的計算機時,新執行長說他有一台筆記本電腦,但不記得是什麼牌子。
  • (註五)公認為計算機科學領域的最高榮譽,被稱為「計算機界的諾貝爾獎」。
  • (註六)仙童半導體公司於 2016 年 9 月被安森美(ON)半導體收購,品牌已不存在。
  • (註七)英特爾於 2025 年 3 月任命陳立武出任新執行長。

延伸閱讀:圖形處理單元與人工智能

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
1

文字

分享

0
5
1
一顆科技巨星的隕落(上)—英特爾的興起
賴昭正_96
・2025/02/22 ・5335字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

我當時負責管理一條用於生產記憶體晶片的裝配線。我認為微處理器是個非常大的麻煩。
-Andrew Grove(英特爾首席執行官)

蕭克利(William Shockley Jr.)1910 年 2 月 13 日出生於英國倫敦,父母是美國人,1913 年返回美國,在加州帕洛阿爾托(Palo Alto)接受教育,1932 年加州理工學院畢業,1936 年取得麻省理工學院物理學博士學位後,到貝爾電話實驗室工作。第二次世界大戰爆發後,研究中斷,1942 年 5 月離職,擔任哥倫比亞大學雷達研究、反潛戰作戰小組的研究主任。

1945 年戰爭結束後不久,回到貝爾電話實驗室與化學家摩根(Stanley Morgan)領導新成立的固態物理小組; 1956 年與同事巴丁(John Bardeen)和布拉頓(Walter Brattain)因「在半導體和電晶體效應方面的工作」而榮獲諾貝爾物理學獎。1954 年蕭克利離開貝爾實驗室,到加州理工學院任國防部武器系統評估小組副主任兼研究主任。因想嘗試將新型電晶體設計商業化,於 1956 年回到故鄉附近的山景城(Mountain View),在 Beckman Instruments, Inc. 的資助下,建立了自己的公司「蕭克利半導體實驗室」(Shockley Semiconductor Laboratory),專注於開發矽基半導體裝置。

蕭克利半導體實驗室原址紀念牌。圖/wikimedia

「蕭克利半導體實驗室」為現在被稱為「矽谷」(Silicon Valley)的第一家致力於開發半導體裝置的高科技公司。蕭克利跑遍全美國招募了許多優秀員工,但因其傲慢;粗魯、專制、不穩定的管理、和研究方向不同而造成許多人才不久便紛紛離開,在附近創立新公司,將原本主要產業為種植李子、到處都是杏樹和櫻桃樹果園的舊金山灣區南部發展成為今天全世界科技中心的「矽谷」。在後來被稱為「叛徒八人」(traitorous eight)於 1957 年辭職後,「蕭克利半導體公司」就再也沒有從中恢復過來;在幾次轉賣後,終於在 1969 年壽終正寢。幾經曲折,當初引發半導體革命的建築物現在已經完全消失,為新建築及一些紀念蕭克利對矽谷開端所做之貢獻的噴泉、雕塑和幾塊牌匾等取代。

蕭克利雖然被《時代》雜誌評為「本世紀最重要的科學家之一」,但創業的目的完全失敗,只能眼睜睜地看著財富和權力落入他人手中。1963-1974 年蕭克利擔任史丹佛大學電機工程教授;在生命的最後二十年裡,他力倡種族主義和優生學,毀了其名譽;除了忠實的第二任妻子之外,他與大多數朋友和家人都疏遠了,非常孤獨。蕭克利於 1989 年 8 月 12 日死於攝護腺癌,享年 79 歲。

-----廣告,請繼續往下閱讀-----

誰是那被蕭克利稱為「背叛」(betrayal)的八位頂尖科學家呢?因為編幅的關係,我們在這裡只提將要出現在本文的四位:諾伊斯(Robert Noyce)、摩爾(Gordon Moore)、赫爾尼(Jean Hoerni)、與拉斯特(Jay Last)。

仙童半導體公司

諾伊斯 1953 年獲得麻省理工學院物理學博士學位,於 1956 年加入蕭克利半導體實驗室團隊。一年後,諾伊斯因對蕭克利的管理風格產生疑問與其他七人一起離開。諾伊斯說服了商人和投資家費爾柴爾德 ( Sherman Fairchild ),八人共同創立了仙童半導體公司(Fairchild Semiconductor)。新成立的仙童半導體很快就成長為半導體產業的領導者及「矽谷」的孵化器,直接或間接地促成了包括英特爾(Intel)和超微半導體公司(Advanced Micro Devices, Inc.,簡稱 AMD)在內的數十家「仙童小孩」(Fairchildren)公司的創建。

50 年代前,電路都是用手將許多離散零件(電阻器、電晶體、和電容器等)用電線連接在一起來控制內部電流的。1959 年德州儀器(Texas Instruments)的基爾比(Jack Kilby,註一)和諾伊斯分別同時發展出將所有零件放在矽(鍺)晶片上,再用銅線將它們連接起來。同年,赫爾尼開發出透過二氧化矽層保護的平坦表面來製造電晶體的平面製程(planar process),隨後諾伊斯提出在晶圓頂部沉積鋁「線」來互連晶圓上的電晶體;拉斯特的團隊於 1960 年製造出第一塊平面「積體電路」(integrated circuit,簡稱 IC )。這種製程不但使得電路更穩定,還可以完全避開緩慢手工接線的需求,使得大規模生產電路成為可能,催生了現代電腦晶片(chip)產業,開創了前所未有的電子設備小型化,徹底改變了我們的日常生活範式

1968 年,諾伊斯因未能晉升到公司的領導職位,及想尋求更多的自主權和建立具有新願景的新公司,與摩爾離開仙童半導體公司,共同創立英特爾;不久開發助理總監格羅夫(Andrew Grove)也離開仙童半導體公司,於英特爾成立之日加入,成為第三號員工。

-----廣告,請繼續往下閱讀-----
格羅夫、諾伊絲、摩爾三人合照(1978)。

英特爾成立

英特爾成立的初衷是做半導體記憶體。1970 年 10 月英特爾開發和製造第一款商用動態隨機存取記憶體 ( DRAM ) 積體電路;相對於當時廣泛使用的磁芯記憶體,因其較小的物理尺寸和較低的價格,它在許多應用中取代了後者,為 1981 年前英特爾的主要業務。

1971 年 10 月 13 日英特爾首次公開募股,為首批在當時新成立的全國證券交易商協會自動報價(納斯達克,NASDAQ)證券交易所上市的公司之一。

雖然英特爾解決了不少內部基本技術問題,但他們認為也應該進行一些根據客戶的特定規格製造晶片的客製化工作。因此於 1969 年 4 月與一家日本計算器公簽訂了一份晶片製造合約,為其一系列不同的計算器型號構建不同的顯示器、印表機、內存量等等的晶片。沒想到這決定竟然使英特爾能即時在日本以品質更優越、成本更低的記憶體晶片侵食其主要產品市場時,脫胎換骨成為今天我們所知道的英特爾,不再是記憶體的大供應商。  

霍夫 ( Ted Hoff ) 於 1962 年獲得是史丹佛大學電機博士,在史丹佛大學工作一段時間後,於1968年9月被諾伊斯挖角成為英特爾第 12 號員工。當他在塔希提島(Tahiti)裸露上身的海灘上時,不知道看到什麼(美女?),突然悟出了一種解決日本計算器製造商專案的革命性方法:類似於諾伊斯和基爾比的想法,將處理器的所有基本元件組合到一個小晶片上。在當時,處理器是由一個實際處理資料的核心晶片、一些準備資料供核心晶片使用的邏輯晶片、及一些記憶體等不同元件組成的,因此體積很大,為大型主機中的巨大部件。當時唯一存在的微型處理器是計算器內部的處理器,它們僅針對一些數學函數而設計,無法重新編程來處理文字、圖形或其它事物。

-----廣告,請繼續往下閱讀-----

1971 年 11 月 15 日英特爾推出首款霍夫的微處理器(microprocessor, 註二)4004。半年後發表第一款8位元微處理器 8008。1974 年 4 月,英特爾推出具有 4,500 個電晶體的第一款通用 8080 微處理器,啟動了個人電腦(PC)的開發。1978 年 6 月英特爾推出成為個人電腦業界標準(x86 指令集)的 16 位元微處理器 8086。

綽號「矽谷市長」的諾伊斯被認為是英特爾早期願景及其大部分企業文化的製定者,而摩爾則是一位技術奇才,以 1975 年預測未來 10 年積體電路上的電晶體數將每年翻倍的「摩爾定律」(Moore’s law)聞名;在他和格羅夫的領導下,英特爾在矽存儲器及微處理器領域取得早期領先地位,並成功地將公司從 80 年代中期的記憶體轉型到微處理器。英特爾雖然開創了電腦記憶體、積體電路、和微處理器設計的新技術,但它真正成為一顆科技巨星則是運氣加上豪賭的結果━且聽筆者道來。

IBM 的個人電腦

早在蘋果公司的小鬼們在車庫裡建造個人電腦之前數年,雄霸商用電腦、目中無人的 IBM(國際商業機器公司)就已看出了個人電腦的發展前途與機會。但十幾年過去了,卻只聞樓梯響,不見人下來;因此在 1980 美國國慶的前一個禮拜,舉行了最高階全權管理委員會會議。會中董事長卡里(Frank Cary)生氣地問:「我的蘋果電腦在哪裡?」當通用產品部負責人羅傑斯(John Rogers)回答說他的部門手頭緊,無法資助個人電腦研發時,卡里立刻說:「好,不用操心,我來資助它。」他轉問曾做過有關開發個人電腦演示的羅傑斯下屬洛比爾(Bill Lowe):「你是否有任何場外土地可以放置一個與他人隔離的開發團隊?」洛比爾回說:「有,佛羅裡達州的博卡拉頓(Boca Raton)。」卡里: 「你帶四十個人到那裡,然後挑選一位直接向我匯報的菁英來管理。我給你一個月的時間去組織起來向我匯報。」

事實上不是金錢,而是 IBM 的官僚及各部門之明爭暗鬥扼殺了其個人電腦的發展。因此洛比爾挑選了一位謙虛、穿牛仔靴、完全不符合 IBM 形象、幾乎被 IBM 踢出大門的 43 歲中階管理「菁英」伊斯基(Philip Donald Estridge)。既然有太上皇令箭,伊斯基就大膽地、毫無顧忌地違反所有 IBM 的規則去推進洛比爾的項目。基於過去失敗的經驗,為了避免內部不停的干擾,及像他人在個人電腦市場上花費兩三年的時間,伊斯基決定選擇開放式架構和現成元件,在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件。當 IBM 個人電腦於 1981 年問世,1982 年和 1983 年真正開始流行時,IBM的收入開始起飛:從 1981 年的 290 億美元增加到 1984 年的 460 億美元;股票市值在 1984 年底達到約 720 億美元,為當時全球最值錢及最賺錢的公司。在《財星》雜誌的美國企業年度調查中,IBM 成為最受敬佩的公司。

-----廣告,請繼續往下閱讀-----
IBM 個人電腦。

當初領導一個只有 14 人的「臭鼬工廠」團隊,竟然開發出了 IBM PC 產業,伊斯基「瞬間」成為個人電腦界名人,被稱為「IBM PC 之父」,出現在各主流雜誌和報紙上,好像他就是 IBM;儘管外界不停地挖角,他都以「在 IBM 工作」為榮拒絕(註三)。但在 IBM 內部,伊斯基則成為高階主管既羨慕、又嫉妒、又恨的對象,於 1985 年年初表面上將他「提升」為製造副總,負責監督全球所有製造業務,但實際上是沒大權責的貶職;伊斯基私下向親友表示不懂為什麼會被打下來,也因此曾經想離開 IBM(註四)。正方興未艾的個人電腦事業則不再獨立、被歸入稱為「入門級系統」的公司部門編制,由伊斯基以前的老闆、IBM 官僚體系內的洛比爾接管。

英特爾興起

相信大部分讀者都已經知道,伊斯基決定在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件的最大幸運受惠者是:前者是微軟公司(Microsoft Corp.),後者就是本文的主角英特爾。但如果僅此,英特爾可能將永遠只是活在 IBM 陰影下的零件供應商而已。

改變IBM主導個人電腦市場的英特爾 80286 微處理器。圖/英特爾歷史網站

話說 IBM 的大佬們都想控制小型系統團隊,因此將伊斯基提升為公司製造副總,將他所帶領的獨立團隊併入母公司體系,依照官僚體制製定了一項基於英特爾 1982 年 2 月推出之 80286 微處理器的「個人系統二號」(PS/2)十年計劃。1985 年 10 月,英特爾推出一款可更快地同時運行多個軟體程式的 32 位元 80386 微處理器晶片時,IBM 還是圍繞著 80286 開會又開會、討論又討論、…。英特爾不能眼看這項先進技術擱置在哪裡等待別人來追趕,因此決定進行一豪賭:尋找新客戶。英特爾很清楚這項決定可能會摧毀它,因為 IBM不但是銷售最多個人電腦的大客戶,還擁有世界一流的製造處理器技術,惹惱了可以隨時推出更強大的英特爾晶片變體來取代 80386。

英特爾公司總部。圖/wikimedia

最後決定還是賭了:英特爾轉向1982年成立的康柏電腦公司(Compaq Computer Corp.)。1986 年 9 月,康柏電腦非常成功地在紐約市展示一系列首次能與 IBM 個人電腦相容、採用英特爾 80386 微處理器的個人電腦。這是 IBM 個人電腦主要元件由非 IBM 公司進行更新之首例:從 80286 處理器升級到 80386。《紐約時報》謂 Deskpro 386 的發布確立了康柏作為個人電腦行業領導者的地位,「在聲譽和金錢方面,沒有任何一家公司比 IBM 受到更大的傷害」。《資訊世界》(InfoWorld)在其 1986 年 9 月 15 日刊的封面上刊登了標題:「康柏推出 386PC,挑戰 IBM 與之匹敵」。IBM 終於在 1987 年 7 月發布了他們的第一台基於 386 的個人電腦 PS/2  Model 80,但為時已晚,IBM 標誌已經開始失去其商標價值,個人電腦的未來已經改由英特爾和微軟主導了!微軟創辦人蓋茨(Bill Gates)謂:

-----廣告,請繼續往下閱讀-----

個人電腦產業歷史上的一個重要里程碑是 IBM 的員工不信任 386。因此我們鼓勵康柏繼續生產 386 機器。那是人們第一次意識到不僅僅是 IBM 在製定標準,這個行業(已)有自己的生命力,而像康柏和英特爾這樣的公司正在做新的事情,人們應該關注。

英特爾這場賭博得到了回報:康柏的成功加速客戶轉向新的英特爾80386晶片後,英特爾在某些年份的獲利超過了 IBM,其股票市值在 90 年代初期也超過了 IBM,於 1999 年成為代表美國 30 主要工業的道瓊指數之一。

備註

  • (註一)基爾比獲 2000 年諾貝爾物理學獎;在他的「諾貝爾演講」中,三次提到了已經過世(1990年)的諾伊斯對積體電路的貢獻。
  • (註二)英特爾的微處理器事實上是一「中央處理器」(Central Processor Unit,CPU)。微處理器和 CPU 的相似之處多於不同之處。事實上,所有 CPU 都是微處理器,但並非所有微處理器都是 CPU。兩者之間的主要區別在於它們在電腦系統中的功能和用途。CPU 是一種具有多種角色的處理器;而微處理器通常僅負責一項特定任務,能夠非常出色地完成該任務。CPU 向微處理器發出指令,微處理器依令將資料傳送到 CPU 或 CPU 指定的其它元件。微處理器的任務是執行特定且可重複的操作,而 CPU 的任務則是執行廣泛且多樣化的任務。如果將 CPU 比喻成電腦中的大腦,那麼身體的腿和手將成為微處理器的區域。
  • (註三)蘋果電腦創辦人賈伯斯(Steve Jobs)曾提供一份身價數百萬美元的蘋果電腦總裁職引誘。
  • (註四)1985 年 8 月攜妻度假,飛機失事雙亡。

延伸閱讀 :日常生活範式的轉變:從紙筆到 AI

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
晶片生病要手術 該選哪種開刀方式來做切片?
宜特科技_96
・2025/01/11 ・3131字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

晶片結構內部有問題,想要進行切片觀察,但方式有好幾種,該如何針對樣品的屬性,選擇正確分析手法呢?

本文轉載自宜特小學堂〈 哪種 IC 切片手法 最適合我的樣品〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

點擊圖片收看影片版

IC 設計後,在進行後續的產品功能性測試、可靠度測試(Reliability Test)或故障分析除錯(Failure Analysis & Debug)前,必須對待測試的樣品先做樣品製備(Sample preparation),透過 IC 切片方式,進行斷面/橫截面觀察(Cross-section)。此步驟在確認晶片內的金屬接線、晶片各層之間結構(Structure)、錫球接合(Solder Joint)、封裝打線(Wire Bonding)和元件(Device)異常等各種可疑缺陷(Defect),扮演相當關鍵性重要角色。

然而觀察截面的方式有好多種,有傳統機械研磨(Grinding)方式,透過機械手法拋光(Polish)至所需觀察的該層位置;或是透過離子束(Ion Beam)方式來進行切削(Milling);那麼,每一種分析手法到底有那些優勢呢?又該如何選擇哪一種切片手法,才能符合工程師想要觀察的樣品型態呢?本文將帶來四大分析手法,從針對尺寸極小的目標觀測區(如奈米等級的先進製程缺陷),或是大面積結構觀察(如微米等級的矽穿孔 TSV),幫大家快速找到適合的分析手法,進行斷面/橫截面觀察更得心應手!

傳統機械研磨(Grinding):樣品製備時間長,觀測範圍可達 15cm

 傳統機械研磨最大優勢,是可以達到大面積的觀察範圍(<15cm 皆可),跨越整顆晶粒(Die),甚至是封裝品(Package),當需要檢視全面性結構的堆疊或是尺寸量測等等,就適合使用 Grinding 手法(如下圖)。這個手法可透過機械切割、冷埋、研磨、拋光四步驟置備樣品到所需觀察的位置。

-----廣告,請繼續往下閱讀-----
(左):晶粒(Die)剖面研磨;(中)&(右)銅製程剖面研磨。圖/宜特科技

不過傳統研磨也有兩項弱點,除了有機械應力容易產生結構損壞,如變形、刮痕外,此項操作也非常需要依靠操作人員的執行經驗,經驗不足者,恐導致研磨過頭而誤傷到目標觀測區,影響後續分析。

傳統研磨相當依靠操作人員的執行經驗。圖/宜特科技

離子束 Cross-section Polisher(CP):除了截面分析,需要微蝕刻也可靠它

相較於傳統機械研磨(Grinding),Cross-section Polisher(簡稱 CP)的優點在於,是利用離子束做最後的精細切削(Fine milling),可以減低多餘的人為損傷,避免傳統研磨機械應力產生的結構損壞。除了切片外,CP 還有另一延伸應用,就是針對樣品進行表面微蝕刻,能夠解決研磨後造成的金屬延展或變形問題。因此,若是想觀察金屬堆疊型之結構、介金屬化合物 Intermetallic Compound(IMC),CP 是非常適合的分析手法。

CP 的手法,是先利用研磨(Grinding)將樣品磨至目標區前,再使用氬離子 Ar+,切削至目標觀測區,此做法不僅能有效縮短分析時間,後續再搭配掃描式電子顯微鏡(Scanning Electron Microscope,簡稱 SEM)進行拍攝,將能夠呈現較為清晰的層次邊界。

上圖是兩張 SEM 影像。左圖為研磨後的 IC 結構,層次邊界並不清晰;右圖則為 CP 切削後的 IC 結構,層與層之間界線清晰可見,同時也少了許多研磨後的顆粒與髒汙。圖/宜特科技

案例一CP Cross Section 能力,快又有效率!

案例一的待測樣品為 BGA 封裝形式,目標是針對特定的錫球(Solder bump)進行分析。透過 CP,可在 1 小時內完成 1mm 範圍的面積切片。後續搭配 SEM 分析,即可清楚呈現錫球表面材料的分布情況。

-----廣告,請繼續往下閱讀-----

下圖是案例中的 SEM 影像,圖(a)是 CP 後的樣品截面,可將整顆 bump 完整呈現。圖(b)是用傳統機械研磨(Grinding)完成之 BGA,雖然可以看到 bump 的介金屬化合物(IMC),但因研磨延展無法完整呈現。而圖(c)是用 CP 完成之 BGA,bump 下方的IMC對比清晰,可清楚看到材料對比的差異。

圖/宜特科技

案例二:透過 CP milling 解決銅延展變形的狀況

常見的 PCB 板疊孔結構中,若盲孔(Blind Via Hole,簡稱 BVH)與銅層(Cu layer)之間的結合力較弱時,在製程後期的熱處理過程中,容易導致盲孔與銅層拉扯出裂縫(Crack),造成阻值不穩定等異常情形。一般常見是透過傳統機械研磨(Grinding)來檢測此類問題,但這種處理方式往往會造成銅延展變形而影響判斷。我們可以使用 CP 針對 BVH 結構進行 CP milling,有效解決問題,並且處理範圍可達 10mm 以上之寬度。

左圖為傳統機械研磨(Grinding)後之 PCB via,無法看到裂縫(Crack);右圖為 CP milling 後之 PCB via,清楚呈現裂縫(Crack)。圖/宜特科技

Plasma FIB(簡稱PFIB):不想整顆樣品破壞,就選擇它來做局部分析

在 3D-IC 半導體製程技術中,如果擔心研磨(Grinding)在去層(Delayer or Deprocess)過程傷到目標區,或是擔心樣品研磨時均勻性不佳,會影響到觀察重點,這時就可考慮用電漿聚焦離子束顯微鏡(Plasma FIB,簡稱 PFIB)分析手法!

PFIB 結合了電漿離子蝕刻加工與 SEM 觀察功能,適用於分析範圍在 50-500 µm 的距離內,可進行截面分析與去層觀察,並針對特定區域能邊切邊觀察,有效避免因盲目切削而誤傷到目標區的狀況,確保異常結構或特定觀察結構的完整性。(閱讀更多:先進製程晶片局部去層找 Defect 可用何種工具

-----廣告,請繼續往下閱讀-----
PFIB 切削後之 TSV (Through Silicon Via)結構,除了可以清楚量測金屬鍍層厚度外,因為沒有研磨的應力影響,可明確定義 TSV 蝕刻的 CD(Critical Dimension)。圖/宜特科技

Dual Beam FIB(簡稱DB-FIB):適用數奈米小範圍且局部的切片分析

結合鎵離子束與 SEM 的雙束聚焦離子顯微鏡(Dual Beam FIB,簡稱 DB-FIB),可針對樣品中的微細結構進行奈米尺度的定位及觀察,適用於分析範圍在 50µm 以下的結構或異常區域。同時,DB-FIB 還能進行能量散佈 X-ray 能譜儀(Energy Dispersive X-ray Spectroscopy,簡稱 EDX)分析及電子背向散射(Electron Backscatter Diffraction,簡稱 EBSD),以獲得目標區域的成分與晶體結構相關資訊。

此外,當觀察的異常區域或結構過於微小,用 SEM 無法得到足夠資訊時,DB-FIB 也可以執行穿透式電子顯微鏡(Transmission Electron Microscope,簡稱 TEM)的試片製備,後續可供 TEM 進行更高解析度的分析。

DB-FIB 搭配 SEM 與鎵離子槍,可針對異常及微區結構進行定位與分析。圖/宜特科技

若想更認識各種工具的應用,歡迎來信索取宜特精心製作的四大切片分析工具圖表marketing_tw@istgroup.com,希望透過本文能幫助讀者,對IC截面分析手法有更多了解,例如 CP 設備新增了 Milling 功能,使其用途更加多元;而 PFIB 增加了去層功能,為先進製程的異常分析開啟了全新的可能性!

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
12 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室