0

2
0

文字

分享

0
2
0

「真」最佳拍檔與他們的來電發明:史上第一顆電晶體的誕生——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》

親子天下_96
・2022/07/15 ・4158字 ・閱讀時間約 8 分鐘

謎團的新進展:「我知道為什麼了!」

1946 年 3 月 19 日這天下午,巴丁走到布拉頓座位前,布拉頓抬起頭來,看見平時總是氣定神閒的巴丁一反常態, 難掩興奮的對他說:「我知道為什麼了!」

當下,布拉頓明白巴丁說的是什麼,只是不敢置信,這半年來大家束手無策的謎團終於有了進展! 

去年 10 月巴丁一來貝爾實驗室上班,布拉頓便迫不及待的說明蕭克利的構想,以及自己做了哪些實驗,想知道他能否看出到底哪裡有問題?主管蕭克利在誠摯歡迎巴丁就任後,也毫無架子的請教他的看法。 

蕭克利三人除了在辦公室討論,就連在蕭克利家中作客時,也無視於身旁的妻子,熱烈談論實驗結果。然而他們再三確認過布拉頓的實際做法,甚至回頭從量子力學的基本學理逐步探討,結果就是想不出為什麼行不通。

-----廣告,請繼續往下閱讀-----

直到這一天, 巴丁才恍然大悟。 

巴丁帶著布拉頓到黑板前,用粉筆畫出一個個排列整齊的矽原子與周圍的電子,然後指著最上面那一列矽原子說: 「有看出來這一排矽原子和下面的矽原子哪裡不一樣嗎?」 

布拉頓滿臉疑惑:「不都一樣嘛?」

「你再仔細看看。」

-----廣告,請繼續往下閱讀-----

布拉頓看了一會兒,終於看出差別:「喔,你是指它們少了一顆價電子啊?但這不就是局部示意圖嗎?你只是沒畫出更上層相鄰的矽原子而已。」 

巴丁露出莫測的微笑:「那如果這已經是最表面的那層原子呢?它們上方可沒有其他矽原子提供共用的電子了。 這就是我們的盲點,沒注意到表層矽原子的價電子是不足的!」 

布拉頓一時愣住,巴丁不等他想通,拿起紅色粉筆在最上層的矽原子畫了幾個電子,接著說:「你看,表層這些矽原子只要再一個價電子就能填滿最外殼層,形成穩定狀態。所以當電子被電場吸引到矽原子的表面,便無法掙脫。多了這些堆積不動的電子,矽晶體表層變成帶負電,與上方帶正電的金屬板形成封閉的電場,其他電子無法再被吸引上來, 當然不會導電。」 

「難怪我試了各種方法,別說放大訊號了,連電流都測不到!」布拉頓恍然大悟,接著趕忙問:「所以我們該怎麼做?」 

-----廣告,請繼續往下閱讀-----

「只能想辦法打破這『表面態』,不過……我也還沒有具體辦法。」 

「沒關係,至少現在不再是瞎子摸象,知道該往什麼方向努力了。」布拉頓渾身充滿幹勁,已經迫不及待要進行實驗。

巴丁發現蕭克利所設計的場效應電晶體,因為 p 型矽的表面矽原子
最外層被填滿電子,導致無法導電。 圖/親子天下

最開心的當然是蕭克利本人,這代表他的構想有機會起死回生。他相信巴丁一定可以找出解決方法,加上自己也還有許多事要忙,索性放手讓他們去研究,只有偶而關心一下進度。

學者型的巴丁自然樂得不受干涉;而對布拉頓來說,巴丁的學術素養不下於蕭克利,又隨時都可以當面討論,反而更棒。他們兩人不只是工作上的夥伴,私下也成為往來密切的好友,假日還常相約去打高爾夫球;凱利當初所期待的 「大腦」與「雙手」的密切合作,如今反而在巴丁和布拉頓兩人身上實現。

-----廣告,請繼續往下閱讀-----

最佳拍檔「大腦」與「雙手」的解謎之旅

不過即便這個新最佳拍檔找出了關鍵問題的答案,但是之後的難關卻是毫不留情的一層層湧上,讓這兩人倍感吃力;事情是這樣子……。

  • 蕭克利模型
圖/親子天下

巴丁和布拉頓兩人發現矽晶體表面態的障礙比想像中的還難打破,即使把電壓提高到 1 千伏特、以及縮減金屬板離矽晶體表面的距離至 0.1 公分,仍然看不見電流變化。

巴丁甚至用液態氮冷卻矽晶體,看在超低溫下效果如何,結果導電性只增加了 10%。

  • 導線直接接觸模型
圖/親子天下

布拉頓想起歐偉用光線照射矽晶體的實驗。兩人用光線照射的結果,發現不需 n 型矽,直接以金屬線接觸 p 型矽就會有光伏效應。於是直接全用 p 型矽做實驗,同時施加電場和照射光線,果然就有電流產生,但卻沒什麼放大效果。

  • 矽晶體浸水模型
圖/親子天下

布拉頓意外發現矽晶體浸到水時,竟然測到些微的放大效果。巴丁推測水分子正極那端與表層矽原子接觸,中和了負電而降低表面態效應。

-----廣告,請繼續往下閱讀-----

布拉頓把提供電場的金屬板改為很小的金環,放進矽晶體表面的水滴裡,再將絕緣包覆的鎢絲穿過小金環,接觸矽晶體。結果成功在室溫下得到放大效果,雖然只有一點點,卻是一年多來的首度突破。

缺點:水分子會妨礙電波的震盪,所產生的頻率不到 10 Hz,根本無法傳遞聲音訊號,況且水滴容易蒸發,也不是長遠之計。

  • 雙管齊下模型
圖/親子天下

巴丁先將 p 型矽改為 n 型鍺;鍺和矽一樣是 IV 族元素,但價電子在更外層,比較能掙脫表面態。同時改以有正負離子的固態介電質取代水滴,裡面直接植入小金環,果然得到更高的放大效果,只不過電流的頻率仍無法超過 10 Hz。

  • 氧化層模型
圖/親子天下

布拉頓在幾次實驗後,發現鍺晶體表面因為電解作用生成二氧化鍺。由於二氧化鍺是絕緣體,代表介電質已經沒有發揮中和作用,而是靠氧化層降低表面態。

-----廣告,請繼續往下閱讀-----

於是改用事先經過陽極處理、表面已經氧化的鍺,直接將小金環置放在氧化層上,讓鎢絲刺穿氧化層,直抵 n 型鍺。他們原本希望去除介電質之後,就能產生更高的頻率,卻意外發現電流的走向與原先預期的不一樣。

  • 無氧化層模型
圖/親子天下

布拉頓試著改變電極正負方向的不同組合時,有次鎢絲還沒插上去,就不小心先觸碰到小金環,這瞬間電表竟然有反應。照理說小金環下方是絕緣的氧化層,應該不會導電才對,他仔細檢查後才發現原來氧化層不知何時被洗掉了,也就是小金環是與鍺晶體直接接觸的!

這可不得了,代表小金環已經沒有扮演提供感應電場的角色,而是將電流轉入鍺晶體而已。這代表並不需要絕緣的氧化層,小金環也形同虛設。

布拉頓還發現小金環改接正極時,雖然電流沒有放大,但電壓放大兩倍,而且頻率高達 10 KHz,終於有希望取代真空管;而這一切根本沒用到蕭克利所構想的「場效應」。

-----廣告,請繼續往下閱讀-----
  • 反轉層模型
圖/親子天下

巴丁重新思考並且得出結論:鍺晶體的表層從射極獲得電洞而變成 p 型鍺,與下方的n 型鍺形成 p-n 接面,就如同歐偉那顆矽石的結構。

如果射極與集極在鍺晶體表面的接觸點彼此夠接近,來自射極的電洞有些便會跑到集極,與集極上的電子結合,帶動負極輸出更多電子,這些電子大部分會直抵基極,沿著電路循環回來,形成比射極那端還大的電流。

巴丁算出間隔最好小於 0.005 公分,才有明顯的放大作用,但這相當於一張紙的一半厚度,而當時最細的金屬線至少也有這三倍粗。巴丁原以為這很難做到,沒想到布拉頓很快就想出了巧妙的辦法。

經過反覆實驗, 布拉頓與巴丁終於摸索出最佳設計,接下來就是驗證奇蹟的時刻。

史上第一顆電晶體誕生

1947 年 12 月 16 日,布拉頓切了一塊三角形的塑膠塊,再將一片金箔貼在三角形的兩側,然後用刮鬍刀片將三角形尖端處的金箔輕劃一刀,分成兩段:一邊作為射極、一邊作為集極,兩者相距只有刀鋒那麼近。接著他把一根迴紋針拉長充當彈簧,一端固定在塑膠塊未貼金箔那側,另一端連接到懸臂上的螺絲旋鈕,讓塑膠塊懸空掛在鍺晶體上方。

裝置到了下午終於一切就緒,布拉頓輕輕轉動螺絲,讓塑膠塊緩緩下降,直到尖端剛好觸碰到鍺晶體表面。布拉頓示意就緒後,巴丁打開電源開關,果然出現前所未見的效果,電壓與電流都有放大,整體功率放大了一百倍。

就這樣,這個就地取材的克難裝置,成為史上第一顆電晶體。

布拉頓與巴丁的設計(左圖)以及最終完成的成品(右圖,照片為複製品),成為 史上第一顆電晶體。 圖/親子天下

布拉頓興奮的擁抱巴丁,巴丁內心也激動不已,沒想到埋首兩年沒有進展,卻在最後一個月中,接連出現戲劇性的變化。

在回家的途中,布拉頓忍不住告訴共乘的同事自己剛完成這輩子最重要的實驗。回家從不談論公事的巴丁也難得向太太透露,雖然只是輕描淡寫的一句:「我們今天有重要的發現。」

當晚布拉頓又打電話給巴丁,再次確認實驗沒有任何漏洞,突然才想到還沒通知蕭克利。

第二天,蕭克利過來實驗室看他們演示一遍,確認他們成功做出了電晶體後,告訴他們在申請專利前要先保密(布拉頓趕緊要那位共乘的同事發誓不說出去),接著他著手安排給貝爾實驗室高層的成果展示會。

12 月 23 日,這些高階主管到場後,只見麥克風與耳機接在一個簡陋的裝置上。當他們輪流戴上耳機,聽見清晰的說話聲音後,原有的疑慮一掃而空,紛紛向蕭克利、布拉頓與巴丁恭喜完成這革命性的發明。

隔天就要開始耶誕假期,這發明猶如意外的耶誕禮物,為原本就已輕鬆愉快的氣氛增添歡樂氣息。在一片和樂融融的笑談聲中,沒人注意到蕭克利卸下僵硬的笑容時,臉上浮現的陰鬱表情……。

——本文摘自《掀起晶片革命的天才怪咖:蕭克利與八叛徒》,2022 年 7 月,親子天下,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
親子天下_96
26 篇文章 ・ 25 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
從半導體到量子晶片:台灣成為全球量子科技的核心力量!
PanSci_96
・2024/10/14 ・2209字 ・閱讀時間約 4 分鐘

台灣首台量子電腦誕生:量子時代的到來

2024 年 1 月,台灣自主研發的第一台量子電腦正式於中央研究院誕生,儘管僅具備5個量子位元(qubits),卻為台灣在全球量子電腦競技場上佔據一席之地揭開了序幕。這一具有歷史性意義的事件不僅代表台灣科技能力的進步,也喚醒了人們對量子電腦的未來潛力的無限期待。

量子電腦,不再僅是科幻小說中的幻想,而是實實在在的科技新星,逐漸改變人類面對複雜問題的解決方式。台灣,身為全球半導體製造的重要支柱,正在迎接量子電腦進入量產的時代,而這將與材料學、晶片製程技術緊密相關。當量子技術進一步發展,台灣的製程技術無疑能為這場科技革命提供關鍵助力。

但在我們深入了解量子電腦的潛力之前,必須先理解它的基本運作原理。畢竟,要瞭解該投資哪些量子概念股,或者選擇哪些科系來掌握未來的科技趨勢,我們首先需要清楚量子電腦究竟是如何運作的。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子電腦?從電晶體到量子位元

2019 年,Google 推出了 53 量子位元的量子電腦「梧桐」(Sycamore),並宣告達成「量子霸權」,即其量子電腦在短短 200 秒內完成了傳統超級電腦需要 1 萬年才能處理的計算任務。這標誌著量子計算能力的突破,為計算科學開啟了全新的紀元。

-----廣告,請繼續往下閱讀-----

量子電腦之所以強大,是因為它利用了量子力學的「疊加」與「糾纏」現象。傳統電腦使用二進制的「0」和「1」來進行計算,而量子位元可以同時處於「0」和「1」的狀態,這使得量子電腦能在同一時間進行更多複雜的計算,大大提高了運算效率。

這樣的技術突破意味著,我們不再只依賴電子流過電晶體來實現運算,而是可以直接操控單一電子或其他粒子,讓它們同時攜帶 0 與 1 的信息,從而極大地提升了計算能力。

掌握電子的挑戰:從不確定性到操控技術

量子力學的另一個特性——不確定性原理——使得控制電子變得非常困難。電子極其微小,甚至無法用肉眼觀察。當我們試圖「觀察」一顆電子時,光子的介入會改變電子的狀態,這種不確定性使得同時測量電子的位置和動量幾乎不可能。

這種量子現象的捉摸不定,給科學家們帶來了巨大的挑戰。然而,正是這些現象,讓科學家們探索出了全新的計算方式——量子計算。在這一領域,超導體成為了實現量子位元的關鍵技術。

-----廣告,請繼續往下閱讀-----

超導體與量子電腦的結合:解鎖未來的關鍵

2023 年 7 月,韓國科學家宣布發現了一種名為 LK-99 的高溫超導體,這一發現引起了全球的轟動,因為超導體具備零電阻和磁浮現象,與量子力學有著密切的聯繫。超導體是未來量子電腦的潛在材料,它能夠在極低溫下讓電子以「庫柏對」的形式運動,這些電子對能夠在原子之間暢通無阻,產生零電阻效應。

通過利用「約瑟夫森效應」,兩個超導體之間夾入絕緣體,可以讓電子對穿越絕緣體,形成「超導電流」。這種穿隧效應是量子電腦中量子位元的重要基礎,讓我們能夠構建出穩定且有效的量子系統。

然而,現有的超導量子電腦仍面臨兩個主要挑戰。首先,超導現象只能在接近絕對零度的極低溫環境下出現,這意味著要在家庭或企業中大規模應用量子電腦,仍需克服極端溫控的技術難題。其次,超導量子位元非常容易受到外界干擾而失去量子狀態,這使得量子計算的穩定性成為一個尚未解決的問題。

由美國國家標準技術研究所研發的約瑟夫森接面陣列晶片。圖/wikimedia

量子電腦的多元發展:超導不是唯一的答案

儘管超導體被廣泛應用於當前的量子電腦技術中,但它並不是唯一的發展途徑。其他量子計算技術也在不斷進步,包括基於離子阱技術、光子學量子電腦等。

-----廣告,請繼續往下閱讀-----

離子阱技術利用激光操控單一原子來進行計算,這種技術具有極高的精度和穩定性,但也面臨著技術複雜性和成本的問題。而光子學量子電腦則利用光子來承載和傳輸信息,具有快速且易於擴展的潛力,然而,目前的光子學技術還存在一定的技術障礙,尤其是在量子糾纏狀態的穩定性上。

因此,量子計算的未來發展並不會只依賴一種技術,而是可能出現多元化的方案,根據不同的應用場景,選擇最合適的技術路徑。

台灣的量子未來:機遇與挑戰並存

隨著全球對量子技術的關注不斷提升,台灣有望在這一領域佔據重要地位。台灣的半導體技術、材料科學研究和製造實力,無疑為量子電腦的發展提供了堅實的基礎。從傳統的半導體製程轉換到量子晶片製造,台灣擁有豐富的技術積累與創新潛力。

然而,量子電腦技術的發展速度迅猛,台灣必須在全球競爭中不斷推動自主研發能力。未來,量子電腦的應用範圍將涵蓋人工智能、金融運算、材料科學、新藥開發等領域,這將進一步改變現有的產業結構和科技生態。

-----廣告,請繼續往下閱讀-----

對於投資者和學生來說,理解量子電腦的運作原理與未來趨勢,將是未來掌握科技變革的關鍵。而量子電腦的崛起,也標誌著下一場技術革命的序幕已經開啟。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

3
1

文字

分享

0
3
1
「光」革新突破半導體極限 矽光子晶片即將上陣
宜特科技_96
・2024/09/22 ・3808字 ・閱讀時間約 7 分鐘

矽光子是近年熱門議題,晶圓大廠計劃將先進封裝整合 CPO 及矽光子技術,預計兩年後完成並投入應用。早在 2020 年,Intel  就指出矽光子將是先進封裝發展的關鍵,如今矽光子已真正成為半導體產業的核心研發方向。面對這次「電」轉「光」的新革命,您準備好了嗎?

本文轉載自宜特小學堂〈光革新突破半導體極限 矽光子晶片即將上陣〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

隨著半導體積體電路技術的不斷發展,我們見證了摩爾定律的演進,元件尺寸的微縮和新材料的應用,都是為了提高單位面積內的元件數量,以加速 IC 的運算速度,同時改善散熱效能和節省能源。然而,隨著尺寸的微縮接近物理極限,製程技術面臨挑戰,良率問題也隨之浮現。

因應這一挑戰,專家開始探索將不同功能的 IC 集合成單一晶片、採用 3D 堆疊封裝技術等新途徑,但這些技術的核心仍然是用金屬線連接各個元件。自從晶片問世以來,「電子」一直是主要的訊號傳輸媒介,它的傳輸速度直接決定了晶片的性能。近年來高效能運算(HPC)、人工智慧(AI)、雲端數據等需求爆炸性成長,如何能突破限制實現更高效能的傳輸呢?於是大家把目光轉向了「光子」,藉由更快速的「光子」引入,是否可以加快元件的運作呢?

什麼是矽光子(Silicon photonics,簡稱 SiPh)?

矽光子(Silicon photonics,簡稱 SiPh) 是一種結合電子與光子的技術,是將光路微縮成一小片晶片,利用光波導在晶片內傳輸光信號。若能將處理光訊號的光波導元件整合到矽晶片上,同時處理電訊號和光訊號,便可達到縮小元件尺寸、減少耗能、降低成本的目標,但目前矽光子仍有許多技術難題需克服。

光通訊運用的「光纖」系統,能於世界各地以每秒數萬億 bit 的速度傳送數據,1968 年貝爾實驗室工程師很早就想到了。到了 21 世紀初發現光子技術不僅能在國與國之間做數據的傳遞,亦可在數據中心甚至是 CPU 之間,乃至於在晶片與晶片之間做數據傳輸。之所以採用「光」是因為玻璃(SiO2)對於光來說是透明的,不會發生干擾的現象,基本上,可以透過在 SiO2 中,結合能夠傳遞電磁波的光波導(Waveguide)通路來高速地傳輸數據。

-----廣告,請繼續往下閱讀-----

而矽(Si)材料的折射率(Refractive index)對比在紅外線的波長下高達 3.5,這也意味著,它比許多其他光學中所用的材料,更能有效地控制光的彎折或減速。一般光學傳輸的波長是 1.3 和 1.55 微米,在這兩個波段下矽材料不會吸收光線,因此光線能夠直接穿透矽材料。這種相容性使矽基設備能夠長距離傳輸大量數據,不會明顯失去訊號。

因此,矽光子技術透過原本 CMOS 矽(Si)的成熟技術,結合光子元件製程,可以使處理器核心之間的資料傳輸速度提高數百倍以上,且耗能更低;CPO(共同封裝光學)則是利用矽光子技術,將光通訊元件和交換器做整合,放在同一個模組內,這樣能縮短傳輸路徑,並在高速傳輸時,降低延遲與功耗。現今各大廠的目標是透過CPO和矽光子,實現更高效的光電封裝整合,大幅提升傳輸性能。

除了前面提到高效運算跟人工智慧需求不斷增加,光學雷達、生醫感測也非常適合使用光子元件,世界前幾大 IC 製造商都相繼發表矽光子是未來 IC 技術的關鍵及趨勢,本文將與大家分享相關文獻,了解矽光子元件組成與決定效能的關鍵。

矽光子元件組成,材料以「鍺」為首選

矽光子元件的基本組成是使用能將「光」轉換成「電」訊號的 p-i-n diode(PIN二極體)光電偵測器,加上傳輸訊號的光波導(Wave guide)與電訊號轉成光子的調變器(Modulator)、耦合器(Coupler)等所組合成的一個單晶片,斷面的結構大致如圖一所示。

-----廣告,請繼續往下閱讀-----
圖一:完整的 CEA LETI 矽光子單晶片平台用於結合被動和主動作用元件的橫剖面示意圖。[1]

其中最關鍵的製造技術即在圖一最右側 PIN 二極體,首選的半導體材料為鍺(Ge),因為鍺具有準直接能隙(Quasi-Direct band gap)且僅有 0.8eV 小於光子能量,能夠有效吸收光並轉換成電訊號,並且對於光的吸收係數很高,更適合用於光電偵測器,是一種非常好的取代材料。

PIN 是由一組高摻雜P (p+)型區和N (n+)型區之間夾著一層本質(Intrinsic)區所組成。在負偏壓下二極體的空乏寬度(Depletion width, Wd)會擴展至整個本質層。如圖二下能帶結構所示,當入射到本質層中的光子被吸收後,於導電和價電帶間產生電子–電洞對的漂移而形成電流。在矽光子元件的研發中最重要的方向,就是在不影響常規 CMOS 元件的特性下透過調整光電偵測器 PIN 的製程,且能使效能與頻寬達到最佳化。

圖二:PIN 二極體與負偏壓下受光效應產生的能帶結構示意圖。[2]

如何辨別 Ge-PIN 的品質?

先以圖三簡單的說明一顆單晶片的設計,Ge-PIN 光電偵測器與 Si -光波導的相對位置,(a)圖為剖面結構示意圖,光波導位於本質層下方,(b)圖為正面 Layout。

圖三:光子元件中 PIN 偵測器與光波導之(a)剖面結構相對位置圖,(b)為正面 Layout。[3]

因為 Ge-PIN 的品質差異會影響到偵測器的光電效能,鍺(Ge)的磊晶製程與 矽(Si)之間會有晶格不匹配與離子植入產生的差排缺陷等影響品質,圖四是Ge-PIN藉由穿透式電子顯微鏡(TEM)的觀察,可以明顯看出在本質層(Intrinsic)與 P 區均呈現亮區,代表沒有明顯缺陷,反觀在右側的 N 區則呈現暗灰色,這應該是源自於離子植入製程所產生的晶格缺陷。(延伸閱讀:破解半導體差排軌跡  TEM 技術找出晶片漏電真因

-----廣告,請繼續往下閱讀-----
圖四:TEM 觀察 Ge-PIN 的斷面結構影像。[4]

此外,藉由 EDS 來分析波導中的矽(Si)是否有朝向 Ge-PIN 擴散的情形。圖五為鍺(Ge)層中沿著波導方向矽(Si)的含量分佈。矽(Si)摩爾百分比從接觸窗(Window)最高約 35%,向輸入側減少至低於 EDS 檢測極限的 2%,約是在 11mm 的位置處,表示發生明顯的擴散現象。

圖五:EDS 分析從接觸窗(0mm)到光電偵測器的輸入端(15mm)矽(Si)的分佈。[5]

如何觀察影響光電偵測器效能空乏區寬度的大小?

矽光子元件主要是採用與矽基產品相同的 CMOS製程,藉由掃描電容顯微鏡(SCM)的分析技術可以量測 PIN 在不同製程條件下,觀察本質層中空乏區寬度(Wd)的變化,圖六說明經由 SCM 二維載子分布圖(Mapping)影像以及從一維載子線分佈(Line Profile),分別能區分 P/N 接面(Junction)的位置與 Wd 的示意圖。

圖六:PIN 的斷面 SCM 2D  載子 mapping  影像與 1D line profile。 [6]

圖七:在圖三(B)中 x3 位置的斷面 SCM (a)2D mapping 影像與(b)1D Line profile。 [7]

在圖三中 X3 與 X4 兩位置區域的剖面 SCM 一維載子分布的結果於圖八中,可以量得 p/n 接面位置偏移了約 215nm (兩條虛線間距)。上述都是透過 SCM,可觀測出空乏區寬度(Wd)的變化,而空乏區的寬度決定電流流過的多寡,將會直接影響到元件品質與性能。

-----廣告,請繼續往下閱讀-----
圖八:SCM 一維載子分布圖顯示 X3 和  X4 兩位置之間的 p/n 接面位置的偏移。[8]

本文中談到離子植入產生的晶格缺陷或是矽波導朝向本質層擴散現象,以及 N/P dopant 擴散速率的差異影響 Wd 寬度等,這些要素皆決定了矽光子元件的品質,都是目前研發單晶片矽光子製程技術,所需面對的課題。

此外,在設計 Waveguide 材料或形狀,以及其他相關製程的研發中,均可藉由奈米材料分析技術如 TEM、EDS 與 SCM 等,宜特科技擁有大量材料分析實戰經驗,可以提供客戶有效的濃度分布的數據分析,並以此依據改善研發製程細節。

事實上,現有相關矽光子產品大多是將數位交換晶片與光收發模組(Transceiver)利用先進封裝包裝在一起,就是使用我們前面所說的 CPO(Co-Packaged Optics)的方式來商品化,但這種產品仍有能耗與體積的問題,未來採用「矽光子單晶片」才能真正達到短小節能的目標,矽光子技術可以提供高速、節能的整合解決方案,從而徹底改變資料中心、人工智慧、電信、感測和成像以及生物醫學應用等行業。

宜特科技長期觀察半導體產業趨勢,我們認為儘管矽光子技術存在整合和設備製造相關的挑戰,相信各家大廠仍會持續加速研發腳步,在全球共同努力下,突破摩爾定律關鍵技術的誕生終將指日可待。

-----廣告,請繼續往下閱讀-----

本文出自 宜特科技

參考文獻

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
8 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室