Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

別讓 X-ray 檢測成為元件早衰的隱形殺手!寄生輻射風險一次破解

宜特科技_96
・2025/06/29 ・3926字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

為了精確找出 IC 內部缺陷,非破壞性的 3D X-ray 驗證已成為半導體業界的關鍵手段。然而,經過高劑量輻射處理的 IC,在後續可靠度測試中卻可能提前失效!隨著半導體逐漸應用於 AI、車用、航太與醫療設備等需要超高可靠度的領域,如何有效量測並控制這些寄生輻射對 IC 的影響,已是工程師不得不面對的重大挑戰。

本文轉載自宜特小學堂〈別讓 X-ray 檢測成為元件早衰的隱形殺手!寄生輻射風險一次破解〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

圖 / 宜特科技

X-ray 屬於物理性非破壞檢測,是一項即時且便利的分析實驗,可在故障分析(FA)或產品製程改善過程中快速找出問題;僅在極少數特定製程或產品條件下,才可能影響元件的電氣特性。

如同人體若長期暴露在輻射環境中,可能導致細胞突變、DNA 受損,甚至增加癌症風險。對於 IC 而言,情況其實類似——當元件在 X-ray 等非破壞性驗證分析中持續累積過高的輻射劑量(TID, Total Ionizing Dose),其內部電晶體特性可能發生變化,造成閘極漏電流上升、閘極氧化層劣化,最終導致IC提前失效。 

隨著 AI 人工智慧、車規與航太電子標準趨嚴,IC 的長期可靠性要求日益提升,這項過往經常被忽略的潛在風險,如今已不得不正視。因此,JEDEC 於 2023 年 11 月發布 JESD22-B121 標準,明確定義如何評估 IC 在製造、驗證和表面黏著技術 (Surface Mount Technology,簡稱SMT) 等製程中,暴露於輻射照射後的電性變化,並確立其 TID 限制值 (可稱為故障極限值或供應商極限值),以降低潛在失效風險。

-----廣告,請繼續往下閱讀-----

本篇宜特小學堂文章將探討X-ray對電子元件造成的電氣故障模式、關鍵測試變數,以及X-ray輻射總電離劑量(TID)測試最終報告內容,跟各位分享如何透過宜特的「寄生輻射劑量沉積驗證平台」,有效預防潛在故障風險。

輻射劑量對 IC 的電氣影響與故障模式

為了評估關鍵參數的變化,必須充分理解電子元件在電離輻射環境下,因介電電荷積聚(Trapped Charge)所產生的故障機制。當元件暴露於累積效應明顯的 X-ray 時,其內部的關鍵電性參數可能發生變化,導致潛在的失效風險。因此,輻射評估是確保半導體元件可靠性的重要環節,能幫助工程師判斷其抗輻射能力與安全範圍。

不同材料的輻射吸收速率不同,因此對電子元件的影響程度也會有所差異。當 IC 暴露在 X-ray 環境下,吸收的能量會沉積形成寄生輻射劑量(TID),而這種累積效應可能會導致不可逆的電氣故障(表1)。

表一:主要 IC 元器件/單元類型其大部分預期的故障模式。圖表來源 / JESD22-B121

X-ray 系統設定和變數

X-ray 成像技術廣泛應用於 IC 和元件的封裝驗證,特別適用於內部結構缺陷的發現,與可觀察表面缺陷的光學驗證技術相輔相成。X-ray 成像技術可在 IC 運輸過程的影像掃描、焊點檢測、材料分析等應用中發揮關鍵作用。然而,這些驗測過程亦會讓 IC 曝露於 X-ray 輻射,累積一定的總電離劑量 (TID),可能影響其電性特性。圖 1 顯示了 X-ray 系統的基本架構。

-----廣告,請繼續往下閱讀-----
圖一:X-ray 系統簡化示意圖。圖 / JESD22-B121

當高速電子束或離子束撞擊金屬靶材 (如鎢) 時,會產生 X-ray 光子。這些光子來自於:

  1. 軔致輻射 (Bremsstrahlung Radiation):入射電子因受原子核電場影響而減速,發射出連續光譜的 X-ray。
  2. 特徵輻射 (Characteristic Radiation):入射電子與靶材內層電子(殼)層發生碰撞,產生離散特徵能量的X- ray。

當 X-ray 穿透並圍繞樣品時,偵測器會接收來自不同材料的吸收與散射訊號,形成陰影影像 (Radiographic Image)。影像的明暗對比取決於材料的 X-ray 吸收率,吸收率低的區域顯示較亮,吸收率高的區域則較暗。不同的 X-ray系統參數亦會影響影像品質與 IC 所承受的輻射劑量,以 2D X-ray3D X-ray 兩種分析為例,前者為單一角度成像,劑量較低,但可能受多層結構遮蔽影響;後者透過多角度掃描重建 3D 影像,可減少結構遮蔽效應,提高驗證準確性,但也因此增加輻射劑量。

針對功能性 IC 的輻射影響分析,表 2 定義了不同設定下的臨界最大劑量 (Critical Maximum Dose)。為確保 IC 在 X-ray 檢測過程中不會超過 TID 極限值,透過適當調整 X-ray 系統參數 (如降低電壓、縮短曝光時間、選擇合適的掃描方式),皆可有效降低輻射劑量,並減少 IC 因驗證而導致的電性劣化風險。

表二:X-ray 的關鍵參數與其對輻射劑量的影響 。圖表來源 / JESD22-B121

X-ray 輻射劑量的測量

X-ray 劑量儀這麼多種,我們該如何選擇呢?為達成精準測量 X-ray 劑量的目的,需要 X-ray 檢測系統來產生穩定的輻射,以及X-ray劑量儀來精確測量劑量率。應選擇符合關鍵參數的 X-ray 系統來模擬典型的 X-ray 檢測條件。表 3 顯示劑量儀的類型。

-----廣告,請繼續往下閱讀-----

表三:劑量儀的類型。圖表來源 / JESD22-B121

游離腔和基於半導體的劑量儀為主動設備,可測量輻射引起的電流,因此能即時讀取劑量。而基於發光的劑量儀則是被動設備,會將劑量儲存於設備中,需要經過溫度或光的後處理才能測量劑量,且照射後無法立即讀取資料。因此,使用以發光為基礎的劑量儀時,建議在常溫和正常自然條件下儲存,保護其免受高溫和紫外線影響,並減少儲存與運輸時間,因為這些因素皆會影響劑量的準確度。若已知環境條件會影響劑量儀反應,則應對測量結果進行校正。額外的參考劑量計可用來監測由於不必要或雜散效應所產生的劑量,並將其從 X-ray 校準所用劑量計的讀數中扣除。同時,應考慮能量範圍內的讀取器校準。ISO/ASTM 51956 標準,例如:《練習輻射加工使用熱釋光劑量測定系統 (TLD系統)》,可作為指導方針。

總電離劑量 (TID) 特徵測試程序

圖 4 為 X-ray 總電離劑量 (TID) 測試流程示意圖。可以執行兩種特徵分析模式,並記錄在摘要報告中。第一個是超出供應商極限值的特徵,第二個是故障極限值的特徵。

  1. 供應商極限值:

這是供應商設立的一個輻射劑量的最大限度,指的是元件在接受 X-ray 輻射的過程中能夠承受的最大劑量。在這一過程中,測試會根據預期的最嚴重輻射情況來設定測試參數。如果在測試中需要返工或進行進一步檢查,這段時間的曝露時間也必須計算在內,不能超過設定的供應商極限。

  1. 故障極限值:

這是指在經受輻射後,元件可能會出現故障的最大輻射劑量。透過對元件的測試,根據「第一個故障參數」來判定,這有助於確定元件在最大輻射劑量下是否仍能正常運作。

-----廣告,請繼續往下閱讀-----
圖二:總電離劑量特徵流程圖 圖 / JESD22-B121

X-ray 輻射總電離劑量 (TID) 測試最終報告有哪些內容呢?

X-ray 輻射總電離劑量 (TID) 測試的最終報告必須從典型批次的樣品中隨機選擇若干樣品,並包含未遭受輻射的對照樣品。最終報告應包含以下內容:

  1. X-ray 系統描述,包括:
    • 設備、供應商、型號、X-ray靶材類型
    • X-ray的設定和劑量率
    • 如果使用濾光片,濾光片的材料與厚度
    • X-ray燈管與測試元器件之間的距離
    • 相對於X-ray源的方向
  2. X-ray劑量儀的描述:包括供應商、型號、劑量率測量範圍,以及精度範圍的對應公差。
  3. 元器件的描述:包括製程節點 (電子元器件之特徵)、產品名稱、批號、日期代碼等。
  4. 封裝類型和熱界面材料類型 (如果有):如果為非封裝單元(裸晶片或晶圓級)或無蓋/封裝已開蓋(解封裝),則應註明。
  5. 已測試的元器件總數:包括對照 (未遭受輻射) 的元器件數量。
  6. 電氣測試所使用的環境溫度。
  7. 在描述時間效應的影響的情況下,曝露與讀出之間的時間間隔與退火條件。
  8. 每個測試元器件遭受輻射的X-ray總劑量:
    • 空氣中的劑量。
    • 材料中的劑量 (如適用)。
    • 從空氣到材料的劑量轉換因子 (如適用)。
    • 特徵模式:故障極限值或供應商極限值。
  9. 電氣測試的結果。

小結

針對金屬氧化物半導體(MOS)、雙極性元件(Bipolar)、非揮發性記憶體(NVM)、快閃記憶體(Flash Memory)/電子抹除式可複寫唯讀記憶體(EEPROM),以及動態隨機存取記憶體(DRAM)等元件,若您擔心在進行 2D/3D X-ray 檢測時可能因寄生輻射導致提早失效,可透過「寄生輻射劑量沉積驗證平台」進行事前驗證。宜特作為 JESD22-B121 標準的 JC 14.1 技術委員會成員,採用高靈敏度 TID 劑量量測技術,依據標準流程精確量化 X-ray 特定條件下的輻射影響,並協助工程師判斷是否超出 IC 設計容許範圍,作為是否進行後續檢測與分析的重要參考。

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

宜特科技_96
15 篇文章 ・ 5 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
侖琴誕辰 │ 科學史上的今天:3/27
張瑞棋_96
・2015/03/27 ・1044字 ・閱讀時間約 2 分鐘 ・SR值 527 ・七年級

已經半百的德國物理學家侖琴仍然興致勃勃的也想研究神秘的陰極射線。圖/wikimedia

1895 年 11 月,已經半百的德國物理學家侖琴仍然興致勃勃的也想研究神秘的陰極射線。打從 1869 年希托夫 (Johann Hittorf) 用陰極射線管發現它後,至今二、三十年以來,大家仍不清楚陰極射線究竟是什麼,就連它是粒子還是波都還爭論不休。侖琴打算重做前輩們的各種實驗,看看能否瞧出甚麼端倪。

他先試萊納德 (Philipp Lenard) 的實驗。萊納德在陰極射線管之陽極那端的玻璃開了個小窗,再用鋁箔封住,如此就可以在維持管內於真空狀態下。然後萊納德用一張塗了氰亞鉑酸鋇 (barium platinocyanide) 的紙板靠近鋁箔窗,發現紙板會發出螢光,證明了陰極射線可以穿過鋁箔,因而支持赫茲的主張:陰極射線是波,不是粒子。侖琴如法炮製,證實萊納德所言不虛,接著進行下個實驗。

他將紙板放在一旁,改用希托夫最初的陰極射線管。他接上電,關了燈,卻赫然發現黑暗之中,不只管內的玻璃發出綠色螢光,一、二公尺外也有一小片螢光!他開了燈才發現原來就是他剛剛放在一旁的那塊塗了氰亞鉑酸鋇的紙板。這怎麼可能?!希托夫管是完全密封的,從沒有人在管外測到陰極射線,而萊納德之前也已經證明陰極射線在空氣中頂多行進幾十公分。侖琴索性將希托夫管用黑布整個包住,但紙板仍會發光,這絕對不是陰極射線造成的。

-----廣告,請繼續往下閱讀-----

接下來六個星期,侖琴鎮日窩在實驗室中做各種測試。他用紙板、木頭、金屬、⋯⋯等等不同材料來阻隔,發現這神秘的射線仍能穿透,只是在紙板上留下深淺不一的陰影,似乎只有鉛能完全隔絕。最令他震撼的,莫過於當他拿著一小片鉛塊時,紙板上竟出現他的手骨的影像!他在年底對外公布他所發現的 X 射線,並附上他的妻子戴著戒指的左手的 X 光照片,立即震驚全世界。

法國物理學家貝克勒(Henri Becquerel)就是大受震撼之下企圖研究 X 射線,而在兩個月後就無意發現了放射性,同時為居禮夫婦開啟了研究方向。愛迪生在第二年就做出 X 光機賣給醫院使用,居禮夫人也在一次大戰期間打造了 X 光巡迴車,幫忙診斷戰場上受傷的士兵。歷史上沒有其他科學新發現像 X 射線這樣,如此迅速地產生重大影響並且馬上付諸實際應用,也因此 1901 年,侖琴理所當然的成為第一屆諾貝爾物理獎的得主。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
張瑞棋_96
423 篇文章 ・ 1031 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。