Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

諾伊斯誕辰|科學史上的今天:12/12

張瑞棋_96
・2015/12/12 ・1005字 ・閱讀時間約 2 分鐘 ・SR值 518 ・六年級

-----廣告,請繼續往下閱讀-----

2000年的諾貝爾獎典禮上,因為發明積體電路而獲頒物理獎的基爾比(Jack Kilby)在致詞時,特別提到當年的競爭敵手諾伊斯也獨立發明了不同製造方式的積體電路。基爾比會如此公開推崇曾與他對簿公堂的對手,足見諾伊斯的貢獻不容忽視;事實上,現今積體電路的生產方式正是來自諾伊斯的方案。

羅伯特·諾伊斯。圖片來源:wikimedia

諾伊斯自小就能文能武,一直是學校的風雲人物。大學時的物理教授剛好與發明電晶體的巴丁(John Bardeen)是同學,因此當時就能拿一般人都還聞所未聞的電晶體來做實驗。或許因為如此,諾伊斯1953年拿到博士學位後竟放棄IBM、貝爾實驗室等工作機會,選擇一家剛成立半導體部門的小公司。三年後他獲得也是電晶體發明人蕭克利(William Shockley)的邀請,加入他剛創立的半導體公司。蕭克利眼光精準,除了諾伊斯,還找了許多都是頂尖的一流人才,包括後來提出「摩爾定律」的摩爾(Gordon Moore)。經驗豐富又具領導天賦的諾伊斯就成了他們的頭兒。

不過蕭克利管理上卻是剛愎自用、蠻橫霸道,又不信任下屬,因此不到兩年,以諾伊斯為首的八個年輕人就集體辭職,自立門戶,成立快捷半導體(Fairchild Semiconductor)公司。1959年,諾伊斯發明了積體電路,雖然較基爾比晚了半年,但諾伊斯採用的矽晶片較基爾比的鍺晶片更便宜實用,將不同元件集合連結在一起的工藝也技高一籌,因此法院最後判決並未構成侵權,諾伊斯的發明為日後IC晶片的設計與生產奠定了基礎。

然而,當時晶片的市場仍相當有限,大股東決定削減研發經費,當初的八人幫紛紛離職,只剩諾伊斯與摩爾二人,但他們最後也在1968年離開,創立新公司Intel(代表Integrated Electronics)。從微處理器到CPU,Intel成為電腦革命的重要推手,更一路伴隨著個人電腦產業一起成長茁壯至今。

-----廣告,請繼續往下閱讀-----

無論是當初一起創立快捷半導體的夥伴,或是後來從Intel離開的員工,大多就在附近創業,開枝散葉形成矽谷聚落;他們也都承襲了諾伊斯尊重員工、開放平等的管理精神。形同矽谷精神領袖──實際上也是祖師爺──的諾伊斯因而也被暱稱為「矽谷市長」。但他的影響豈止於矽谷;矽谷帶動美國的科技創新,他發明的積體電路更造就了各種電子產品,改變了現代生活。只可惜他因心臟病發作僅享年64歲,來不及獲得諾貝爾獎的肯定。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1028 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
1

文字

分享

0
5
1
一顆科技巨星的隕落(上)—英特爾的興起
賴昭正_96
・2025/02/22 ・5335字 ・閱讀時間約 11 分鐘

我當時負責管理一條用於生產記憶體晶片的裝配線。我認為微處理器是個非常大的麻煩。
-Andrew Grove(英特爾首席執行官)

蕭克利(William Shockley Jr.)1910 年 2 月 13 日出生於英國倫敦,父母是美國人,1913 年返回美國,在加州帕洛阿爾托(Palo Alto)接受教育,1932 年加州理工學院畢業,1936 年取得麻省理工學院物理學博士學位後,到貝爾電話實驗室工作。第二次世界大戰爆發後,研究中斷,1942 年 5 月離職,擔任哥倫比亞大學雷達研究、反潛戰作戰小組的研究主任。

1945 年戰爭結束後不久,回到貝爾電話實驗室與化學家摩根(Stanley Morgan)領導新成立的固態物理小組; 1956 年與同事巴丁(John Bardeen)和布拉頓(Walter Brattain)因「在半導體和電晶體效應方面的工作」而榮獲諾貝爾物理學獎。1954 年蕭克利離開貝爾實驗室,到加州理工學院任國防部武器系統評估小組副主任兼研究主任。因想嘗試將新型電晶體設計商業化,於 1956 年回到故鄉附近的山景城(Mountain View),在 Beckman Instruments, Inc. 的資助下,建立了自己的公司「蕭克利半導體實驗室」(Shockley Semiconductor Laboratory),專注於開發矽基半導體裝置。

蕭克利半導體實驗室原址紀念牌。圖/wikimedia

「蕭克利半導體實驗室」為現在被稱為「矽谷」(Silicon Valley)的第一家致力於開發半導體裝置的高科技公司。蕭克利跑遍全美國招募了許多優秀員工,但因其傲慢;粗魯、專制、不穩定的管理、和研究方向不同而造成許多人才不久便紛紛離開,在附近創立新公司,將原本主要產業為種植李子、到處都是杏樹和櫻桃樹果園的舊金山灣區南部發展成為今天全世界科技中心的「矽谷」。在後來被稱為「叛徒八人」(traitorous eight)於 1957 年辭職後,「蕭克利半導體公司」就再也沒有從中恢復過來;在幾次轉賣後,終於在 1969 年壽終正寢。幾經曲折,當初引發半導體革命的建築物現在已經完全消失,為新建築及一些紀念蕭克利對矽谷開端所做之貢獻的噴泉、雕塑和幾塊牌匾等取代。

蕭克利雖然被《時代》雜誌評為「本世紀最重要的科學家之一」,但創業的目的完全失敗,只能眼睜睜地看著財富和權力落入他人手中。1963-1974 年蕭克利擔任史丹佛大學電機工程教授;在生命的最後二十年裡,他力倡種族主義和優生學,毀了其名譽;除了忠實的第二任妻子之外,他與大多數朋友和家人都疏遠了,非常孤獨。蕭克利於 1989 年 8 月 12 日死於攝護腺癌,享年 79 歲。

-----廣告,請繼續往下閱讀-----

誰是那被蕭克利稱為「背叛」(betrayal)的八位頂尖科學家呢?因為編幅的關係,我們在這裡只提將要出現在本文的四位:諾伊斯(Robert Noyce)、摩爾(Gordon Moore)、赫爾尼(Jean Hoerni)、與拉斯特(Jay Last)。

仙童半導體公司

諾伊斯 1953 年獲得麻省理工學院物理學博士學位,於 1956 年加入蕭克利半導體實驗室團隊。一年後,諾伊斯因對蕭克利的管理風格產生疑問與其他七人一起離開。諾伊斯說服了商人和投資家費爾柴爾德 ( Sherman Fairchild ),八人共同創立了仙童半導體公司(Fairchild Semiconductor)。新成立的仙童半導體很快就成長為半導體產業的領導者及「矽谷」的孵化器,直接或間接地促成了包括英特爾(Intel)和超微半導體公司(Advanced Micro Devices, Inc.,簡稱 AMD)在內的數十家「仙童小孩」(Fairchildren)公司的創建。

50 年代前,電路都是用手將許多離散零件(電阻器、電晶體、和電容器等)用電線連接在一起來控制內部電流的。1959 年德州儀器(Texas Instruments)的基爾比(Jack Kilby,註一)和諾伊斯分別同時發展出將所有零件放在矽(鍺)晶片上,再用銅線將它們連接起來。同年,赫爾尼開發出透過二氧化矽層保護的平坦表面來製造電晶體的平面製程(planar process),隨後諾伊斯提出在晶圓頂部沉積鋁「線」來互連晶圓上的電晶體;拉斯特的團隊於 1960 年製造出第一塊平面「積體電路」(integrated circuit,簡稱 IC )。這種製程不但使得電路更穩定,還可以完全避開緩慢手工接線的需求,使得大規模生產電路成為可能,催生了現代電腦晶片(chip)產業,開創了前所未有的電子設備小型化,徹底改變了我們的日常生活範式

1968 年,諾伊斯因未能晉升到公司的領導職位,及想尋求更多的自主權和建立具有新願景的新公司,與摩爾離開仙童半導體公司,共同創立英特爾;不久開發助理總監格羅夫(Andrew Grove)也離開仙童半導體公司,於英特爾成立之日加入,成為第三號員工。

-----廣告,請繼續往下閱讀-----
格羅夫、諾伊絲、摩爾三人合照(1978)。

英特爾成立

英特爾成立的初衷是做半導體記憶體。1970 年 10 月英特爾開發和製造第一款商用動態隨機存取記憶體 ( DRAM ) 積體電路;相對於當時廣泛使用的磁芯記憶體,因其較小的物理尺寸和較低的價格,它在許多應用中取代了後者,為 1981 年前英特爾的主要業務。

1971 年 10 月 13 日英特爾首次公開募股,為首批在當時新成立的全國證券交易商協會自動報價(納斯達克,NASDAQ)證券交易所上市的公司之一。

雖然英特爾解決了不少內部基本技術問題,但他們認為也應該進行一些根據客戶的特定規格製造晶片的客製化工作。因此於 1969 年 4 月與一家日本計算器公簽訂了一份晶片製造合約,為其一系列不同的計算器型號構建不同的顯示器、印表機、內存量等等的晶片。沒想到這決定竟然使英特爾能即時在日本以品質更優越、成本更低的記憶體晶片侵食其主要產品市場時,脫胎換骨成為今天我們所知道的英特爾,不再是記憶體的大供應商。  

霍夫 ( Ted Hoff ) 於 1962 年獲得是史丹佛大學電機博士,在史丹佛大學工作一段時間後,於1968年9月被諾伊斯挖角成為英特爾第 12 號員工。當他在塔希提島(Tahiti)裸露上身的海灘上時,不知道看到什麼(美女?),突然悟出了一種解決日本計算器製造商專案的革命性方法:類似於諾伊斯和基爾比的想法,將處理器的所有基本元件組合到一個小晶片上。在當時,處理器是由一個實際處理資料的核心晶片、一些準備資料供核心晶片使用的邏輯晶片、及一些記憶體等不同元件組成的,因此體積很大,為大型主機中的巨大部件。當時唯一存在的微型處理器是計算器內部的處理器,它們僅針對一些數學函數而設計,無法重新編程來處理文字、圖形或其它事物。

-----廣告,請繼續往下閱讀-----

1971 年 11 月 15 日英特爾推出首款霍夫的微處理器(microprocessor, 註二)4004。半年後發表第一款8位元微處理器 8008。1974 年 4 月,英特爾推出具有 4,500 個電晶體的第一款通用 8080 微處理器,啟動了個人電腦(PC)的開發。1978 年 6 月英特爾推出成為個人電腦業界標準(x86 指令集)的 16 位元微處理器 8086。

綽號「矽谷市長」的諾伊斯被認為是英特爾早期願景及其大部分企業文化的製定者,而摩爾則是一位技術奇才,以 1975 年預測未來 10 年積體電路上的電晶體數將每年翻倍的「摩爾定律」(Moore’s law)聞名;在他和格羅夫的領導下,英特爾在矽存儲器及微處理器領域取得早期領先地位,並成功地將公司從 80 年代中期的記憶體轉型到微處理器。英特爾雖然開創了電腦記憶體、積體電路、和微處理器設計的新技術,但它真正成為一顆科技巨星則是運氣加上豪賭的結果━且聽筆者道來。

IBM 的個人電腦

早在蘋果公司的小鬼們在車庫裡建造個人電腦之前數年,雄霸商用電腦、目中無人的 IBM(國際商業機器公司)就已看出了個人電腦的發展前途與機會。但十幾年過去了,卻只聞樓梯響,不見人下來;因此在 1980 美國國慶的前一個禮拜,舉行了最高階全權管理委員會會議。會中董事長卡里(Frank Cary)生氣地問:「我的蘋果電腦在哪裡?」當通用產品部負責人羅傑斯(John Rogers)回答說他的部門手頭緊,無法資助個人電腦研發時,卡里立刻說:「好,不用操心,我來資助它。」他轉問曾做過有關開發個人電腦演示的羅傑斯下屬洛比爾(Bill Lowe):「你是否有任何場外土地可以放置一個與他人隔離的開發團隊?」洛比爾回說:「有,佛羅裡達州的博卡拉頓(Boca Raton)。」卡里: 「你帶四十個人到那裡,然後挑選一位直接向我匯報的菁英來管理。我給你一個月的時間去組織起來向我匯報。」

事實上不是金錢,而是 IBM 的官僚及各部門之明爭暗鬥扼殺了其個人電腦的發展。因此洛比爾挑選了一位謙虛、穿牛仔靴、完全不符合 IBM 形象、幾乎被 IBM 踢出大門的 43 歲中階管理「菁英」伊斯基(Philip Donald Estridge)。既然有太上皇令箭,伊斯基就大膽地、毫無顧忌地違反所有 IBM 的規則去推進洛比爾的項目。基於過去失敗的經驗,為了避免內部不停的干擾,及像他人在個人電腦市場上花費兩三年的時間,伊斯基決定選擇開放式架構和現成元件,在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件。當 IBM 個人電腦於 1981 年問世,1982 年和 1983 年真正開始流行時,IBM的收入開始起飛:從 1981 年的 290 億美元增加到 1984 年的 460 億美元;股票市值在 1984 年底達到約 720 億美元,為當時全球最值錢及最賺錢的公司。在《財星》雜誌的美國企業年度調查中,IBM 成為最受敬佩的公司。

-----廣告,請繼續往下閱讀-----
IBM 個人電腦。

當初領導一個只有 14 人的「臭鼬工廠」團隊,竟然開發出了 IBM PC 產業,伊斯基「瞬間」成為個人電腦界名人,被稱為「IBM PC 之父」,出現在各主流雜誌和報紙上,好像他就是 IBM;儘管外界不停地挖角,他都以「在 IBM 工作」為榮拒絕(註三)。但在 IBM 內部,伊斯基則成為高階主管既羨慕、又嫉妒、又恨的對象,於 1985 年年初表面上將他「提升」為製造副總,負責監督全球所有製造業務,但實際上是沒大權責的貶職;伊斯基私下向親友表示不懂為什麼會被打下來,也因此曾經想離開 IBM(註四)。正方興未艾的個人電腦事業則不再獨立、被歸入稱為「入門級系統」的公司部門編制,由伊斯基以前的老闆、IBM 官僚體系內的洛比爾接管。

英特爾興起

相信大部分讀者都已經知道,伊斯基決定在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件的最大幸運受惠者是:前者是微軟公司(Microsoft Corp.),後者就是本文的主角英特爾。但如果僅此,英特爾可能將永遠只是活在 IBM 陰影下的零件供應商而已。

改變IBM主導個人電腦市場的英特爾 80286 微處理器。圖/英特爾歷史網站

話說 IBM 的大佬們都想控制小型系統團隊,因此將伊斯基提升為公司製造副總,將他所帶領的獨立團隊併入母公司體系,依照官僚體制製定了一項基於英特爾 1982 年 2 月推出之 80286 微處理器的「個人系統二號」(PS/2)十年計劃。1985 年 10 月,英特爾推出一款可更快地同時運行多個軟體程式的 32 位元 80386 微處理器晶片時,IBM 還是圍繞著 80286 開會又開會、討論又討論、…。英特爾不能眼看這項先進技術擱置在哪裡等待別人來追趕,因此決定進行一豪賭:尋找新客戶。英特爾很清楚這項決定可能會摧毀它,因為 IBM不但是銷售最多個人電腦的大客戶,還擁有世界一流的製造處理器技術,惹惱了可以隨時推出更強大的英特爾晶片變體來取代 80386。

英特爾公司總部。圖/wikimedia

最後決定還是賭了:英特爾轉向1982年成立的康柏電腦公司(Compaq Computer Corp.)。1986 年 9 月,康柏電腦非常成功地在紐約市展示一系列首次能與 IBM 個人電腦相容、採用英特爾 80386 微處理器的個人電腦。這是 IBM 個人電腦主要元件由非 IBM 公司進行更新之首例:從 80286 處理器升級到 80386。《紐約時報》謂 Deskpro 386 的發布確立了康柏作為個人電腦行業領導者的地位,「在聲譽和金錢方面,沒有任何一家公司比 IBM 受到更大的傷害」。《資訊世界》(InfoWorld)在其 1986 年 9 月 15 日刊的封面上刊登了標題:「康柏推出 386PC,挑戰 IBM 與之匹敵」。IBM 終於在 1987 年 7 月發布了他們的第一台基於 386 的個人電腦 PS/2  Model 80,但為時已晚,IBM 標誌已經開始失去其商標價值,個人電腦的未來已經改由英特爾和微軟主導了!微軟創辦人蓋茨(Bill Gates)謂:

-----廣告,請繼續往下閱讀-----

個人電腦產業歷史上的一個重要里程碑是 IBM 的員工不信任 386。因此我們鼓勵康柏繼續生產 386 機器。那是人們第一次意識到不僅僅是 IBM 在製定標準,這個行業(已)有自己的生命力,而像康柏和英特爾這樣的公司正在做新的事情,人們應該關注。

英特爾這場賭博得到了回報:康柏的成功加速客戶轉向新的英特爾80386晶片後,英特爾在某些年份的獲利超過了 IBM,其股票市值在 90 年代初期也超過了 IBM,於 1999 年成為代表美國 30 主要工業的道瓊指數之一。

備註

  • (註一)基爾比獲 2000 年諾貝爾物理學獎;在他的「諾貝爾演講」中,三次提到了已經過世(1990年)的諾伊斯對積體電路的貢獻。
  • (註二)英特爾的微處理器事實上是一「中央處理器」(Central Processor Unit,CPU)。微處理器和 CPU 的相似之處多於不同之處。事實上,所有 CPU 都是微處理器,但並非所有微處理器都是 CPU。兩者之間的主要區別在於它們在電腦系統中的功能和用途。CPU 是一種具有多種角色的處理器;而微處理器通常僅負責一項特定任務,能夠非常出色地完成該任務。CPU 向微處理器發出指令,微處理器依令將資料傳送到 CPU 或 CPU 指定的其它元件。微處理器的任務是執行特定且可重複的操作,而 CPU 的任務則是執行廣泛且多樣化的任務。如果將 CPU 比喻成電腦中的大腦,那麼身體的腿和手將成為微處理器的區域。
  • (註三)蘋果電腦創辦人賈伯斯(Steve Jobs)曾提供一份身價數百萬美元的蘋果電腦總裁職引誘。
  • (註四)1985 年 8 月攜妻度假,飛機失事雙亡。

延伸閱讀 :日常生活範式的轉變:從紙筆到 AI

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

-----廣告,請繼續往下閱讀-----

討論功能關閉中。