Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

矽谷的起源:蕭克利誕辰|科學史上的今天:2/13

張瑞棋_96
・2015/02/13 ・1025字 ・閱讀時間約 2 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

無可否認地,形塑現今這個數位時代的種種發明幾乎都是源自於矽谷,一直以來主宰著科技產業走向的也是矽谷的企業,令人不禁好奇這一切究竟是怎麼開始的?

威廉.蕭克利。圖/Stanford Library

如果我們像回溯人類起源那樣追溯矽谷的源頭,會發現在演化樹的最底部是一家名為「蕭克利半導體實驗室 (Shockley Semiconductor Laboratory)」的機構,其創辦人正是物理博士蕭克利。

蕭克利 26 歲在麻省理工學院取得博士學位後,即加入貝爾實驗室,他的老闆正是發現電子繞射現象的戴維森 (Clinton Davisson)。在他的指導之下,蕭克利發表了多篇固態物理的論文,並在二次大戰後成為新成立的固態物理研究小組的組長,率領巴丁 (John Bardeen)、布萊頓 (Walter Brattain) 等人研發可以取代真空管的半導體;他們三人因為發明電晶體而共同獲頒 1956 年的諾貝爾物理獎。

獲獎前一年,蕭克利就因為看好電晶體的前景,已經回家鄉加州創業。他在大學好友的資助下,於 1956 年成立蕭克利半導體實驗室,地點則選在聖塔克拉拉 (Santa Clara) 郡的山景市 (Mountain View) 與帕洛阿托 (Palo Alto) 接壤處。此處原本就是真空管的誕生地,離他年邁的母親住家也近,而且離史丹佛大學不到十公里,可以就近吸收天資聰穎的人才。

-----廣告,請繼續往下閱讀-----

蕭克利的確有識人之明,他挖來諾伊斯 (Robert N. Noyce)、摩爾 (Gordon Moore) 與其他許多一時之選的青年才俊。然而蕭克利剛愎自用,對屬下不假辭色,得了諾貝爾獎後更目空一切,聽不進任何建言,還對全體員工用測謊機測謊,導致以諾伊斯為首的八名重要技術幹部認清蕭克利空有高深理論,卻不懂公司營運,遂於 1957 年集體辭職,成立「快捷半導體 (Fairchild Semiconductor)」公司。

蕭克利氣憤地稱他們是「八叛徒」,但自己不但未反省改進,反而變本加厲,處處懷疑員工。隨著人才逐漸流失與快捷半導體迅速茁壯,蕭克利的公司每況愈下,蕭克利本人在 1963 年就回史丹佛大學教書,而公司在歷經兩次易主後,終於在 1968 年關門大吉。

「八叛徒」後來又分道揚鑣。諾伊斯與摩爾成立 Intel,另外幾人也自立門戶,其他快捷半導體培養出來的人也繼續開枝散葉。二十年內大約有七十家公司因此創立,而他們都座落於附近,形成了後來所謂的「矽谷」。這一切都起源於蕭克利當年在此成立蕭克利半導體實驗室;人去樓空後,原址只剩一個紀念牌寫著:「矽谷第一家研發製造矽產品的公司。此處的研究開啟了矽谷的發展。1956」

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----

 

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1023 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
0

文字

分享

0
3
0
一顆科技巨星的隕落(上)━英特爾的興起
賴昭正_96
・2025/02/20 ・5335字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

我當時負責管理一條用於生產記憶體晶片的裝配線。我認為微處理器是個非常大的麻煩。
-Andrew Grove(英特爾首席執行官)

蕭克利(William Shockley Jr.)1910 年 2 月 13 日出生於英國倫敦,父母是美國人,1913 年返回美國,在加州帕洛阿爾托(Palo Alto)接受教育,1932 年加州理工學院畢業,1936 年取得麻省理工學院物理學博士學位後,到貝爾電話實驗室工作。第二次世界大戰爆發後,研究中斷,1942 年 5 月離職,擔任哥倫比亞大學雷達研究、反潛戰作戰小組的研究主任。

1945 年戰爭結束後不久,回到貝爾電話實驗室與化學家摩根(Stanley Morgan)領導新成立的固態物理小組; 1956 年與同事巴丁(John Bardeen)和布拉頓(Walter Brattain)因「在半導體和電晶體效應方面的工作」而榮獲諾貝爾物理學獎。1954 年蕭克利離開貝爾實驗室,到加州理工學院任國防部武器系統評估小組副主任兼研究主任。因想嘗試將新型電晶體設計商業化,於 1956 年回到故鄉附近的山景城(Mountain View),在 Beckman Instruments, Inc. 的資助下,建立了自己的公司「蕭克利半導體實驗室」(Shockley Semiconductor Laboratory),專注於開發矽基半導體裝置。

蕭克利半導體實驗室原址紀念牌。圖/wikimedia

「蕭克利半導體實驗室」為現在被稱為「矽谷」(Silicon Valley)的第一家致力於開發半導體裝置的高科技公司。蕭克利跑遍全美國招募了許多優秀員工,但因其傲慢;粗魯、專制、不穩定的管理、和研究方向不同而造成許多人才不久便紛紛離開,在附近創立新公司,將原本主要產業為種植李子、到處都是杏樹和櫻桃樹果園的舊金山灣區南部發展成為今天全世界科技中心的「矽谷」。在後來被稱為「叛徒八人」(traitorous eight)於 1957 年辭職後,「蕭克利半導體公司」就再也沒有從中恢復過來;在幾次轉賣後,終於在 1969 年壽終正寢。幾經曲折,當初引發半導體革命的建築物現在已經完全消失,為新建築及一些紀念蕭克利對矽谷開端所做之貢獻的噴泉、雕塑和幾塊牌匾等取代。

蕭克利雖然被《時代》雜誌評為「本世紀最重要的科學家之一」,但創業的目的完全失敗,只能眼睜睜地看著財富和權力落入他人手中。1963-1974 年蕭克利擔任史丹佛大學電機工程教授;在生命的最後二十年裡,他力倡種族主義和優生學,毀了其名譽;除了忠實的第二任妻子之外,他與大多數朋友和家人都疏遠了,非常孤獨。蕭克利於 1989 年 8 月 12 日死於攝護腺癌,享年 79 歲。

-----廣告,請繼續往下閱讀-----

誰是那被蕭克利稱為「背叛」(betrayal)的八位頂尖科學家呢?因為編幅的關係,我們在這裡只提將要出現在本文的四位:諾伊斯(Robert Noyce)、摩爾(Gordon Moore)、赫爾尼(Jean Hoerni)、與拉斯特(Jay Last)。

仙童半導體公司

諾伊斯 1953 年獲得麻省理工學院物理學博士學位,於 1956 年加入蕭克利半導體實驗室團隊。一年後,諾伊斯因對蕭克利的管理風格產生疑問與其他七人一起離開。諾伊斯說服了商人和投資家費爾柴爾德 ( Sherman Fairchild ),八人共同創立了仙童半導體公司(Fairchild Semiconductor)。新成立的仙童半導體很快就成長為半導體產業的領導者及「矽谷」的孵化器,直接或間接地促成了包括英特爾(Intel)和超微半導體公司(Advanced Micro Devices, Inc.,簡稱 AMD)在內的數十家「仙童小孩」(Fairchildren)公司的創建。

50 年代前,電路都是用手將許多離散零件(電阻器、電晶體、和電容器等)用電線連接在一起來控制內部電流的。1959 年德州儀器(Texas Instruments)的基爾比(Jack Kilby,註一)和諾伊斯分別同時發展出將所有零件放在矽(鍺)晶片上,再用銅線將它們連接起來。同年,赫爾尼開發出透過二氧化矽層保護的平坦表面來製造電晶體的平面製程(planar process),隨後諾伊斯提出在晶圓頂部沉積鋁「線」來互連晶圓上的電晶體;拉斯特的團隊於 1960 年製造出第一塊平面「積體電路」(integrated circuit,簡稱 IC )。這種製程不但使得電路更穩定,還可以完全避開緩慢手工接線的需求,使得大規模生產電路成為可能,催生了現代電腦晶片(chip)產業,開創了前所未有的電子設備小型化,徹底改變了我們的日常生活範式

1968 年,諾伊斯因未能晉升到公司的領導職位,及想尋求更多的自主權和建立具有新願景的新公司,與摩爾離開仙童半導體公司,共同創立英特爾;不久開發助理總監格羅夫(Andrew Grove)也離開仙童半導體公司,於英特爾成立之日加入,成為第三號員工。

-----廣告,請繼續往下閱讀-----
格羅夫、諾伊絲、摩爾三人合照(1978)。

英特爾成立

英特爾成立的初衷是做半導體記憶體。1970 年 10 月英特爾開發和製造第一款商用動態隨機存取記憶體 ( DRAM ) 積體電路;相對於當時廣泛使用的磁芯記憶體,因其較小的物理尺寸和較低的價格,它在許多應用中取代了後者,為 1981 年前英特爾的主要業務。

1971 年 10 月 13 日英特爾首次公開募股,為首批在當時新成立的全國證券交易商協會自動報價(納斯達克,NASDAQ)證券交易所上市的公司之一。

雖然英特爾解決了不少內部基本技術問題,但他們認為也應該進行一些根據客戶的特定規格製造晶片的客製化工作。因此於 1969 年 4 月與一家日本計算器公簽訂了一份晶片製造合約,為其一系列不同的計算器型號構建不同的顯示器、印表機、內存量等等的晶片。沒想到這決定竟然使英特爾能即時在日本以品質更優越、成本更低的記憶體晶片侵食其主要產品市場時,脫胎換骨成為今天我們所知道的英特爾,不再是記憶體的大供應商。  

霍夫 ( Ted Hoff ) 於 1962 年獲得是史丹佛大學電機博士,在史丹佛大學工作一段時間後,於1968年9月被諾伊斯挖角成為英特爾第 12 號員工。當他在塔希提島(Tahiti)裸露上身的海灘上時,不知道看到什麼(美女?),突然悟出了一種解決日本計算器製造商專案的革命性方法:類似於諾伊斯和基爾比的想法,將處理器的所有基本元件組合到一個小晶片上。在當時,處理器是由一個實際處理資料的核心晶片、一些準備資料供核心晶片使用的邏輯晶片、及一些記憶體等不同元件組成的,因此體積很大,為大型主機中的巨大部件。當時唯一存在的微型處理器是計算器內部的處理器,它們僅針對一些數學函數而設計,無法重新編程來處理文字、圖形或其它事物。

-----廣告,請繼續往下閱讀-----

1971 年 11 月 15 日英特爾推出首款霍夫的微處理器(microprocessor, 註二)4004。半年後發表第一款8位元微處理器 8008。1974 年 4 月,英特爾推出具有 4,500 個電晶體的第一款通用 8080 微處理器,啟動了個人電腦(PC)的開發。1978 年 6 月英特爾推出成為個人電腦業界標準(x86 指令集)的 16 位元微處理器 8086。

綽號「矽谷市長」的諾伊斯被認為是英特爾早期願景及其大部分企業文化的製定者,而摩爾則是一位技術奇才,以 1975 年預測未來 10 年積體電路上的電晶體數將每年翻倍的「摩爾定律」(Moore’s law)聞名;在他和格羅夫的領導下,英特爾在矽存儲器及微處理器領域取得早期領先地位,並成功地將公司從 80 年代中期的記憶體轉型到微處理器。英特爾雖然開創了電腦記憶體、積體電路、和微處理器設計的新技術,但它真正成為一顆科技巨星則是運氣加上豪賭的結果━且聽筆者道來。

IBM 的個人電腦

早在蘋果公司的小鬼們在車庫裡建造個人電腦之前數年,雄霸商用電腦、目中無人的 IBM(國際商業機器公司)就已看出了個人電腦的發展前途與機會。但十幾年過去了,卻只聞樓梯響,不見人下來;因此在 1980 美國國慶的前一個禮拜,舉行了最高階全權管理委員會會議。會中董事長卡里(Frank Cary)生氣地問:「我的蘋果電腦在哪裡?」當通用產品部負責人羅傑斯(John Rogers)回答說他的部門手頭緊,無法資助個人電腦研發時,卡里立刻說:「好,不用操心,我來資助它。」他轉問曾做過有關開發個人電腦演示的羅傑斯下屬洛比爾(Bill Lowe):「你是否有任何場外土地可以放置一個與他人隔離的開發團隊?」洛比爾回說:「有,佛羅裡達州的博卡拉頓(Boca Raton)。」卡里: 「你帶四十個人到那裡,然後挑選一位直接向我匯報的菁英來管理。我給你一個月的時間去組織起來向我匯報。」

事實上不是金錢,而是 IBM 的官僚及各部門之明爭暗鬥扼殺了其個人電腦的發展。因此洛比爾挑選了一位謙虛、穿牛仔靴、完全不符合 IBM 形象、幾乎被 IBM 踢出大門的 43 歲中階管理「菁英」伊斯基(Philip Donald Estridge)。既然有太上皇令箭,伊斯基就大膽地、毫無顧忌地違反所有 IBM 的規則去推進洛比爾的項目。基於過去失敗的經驗,為了避免內部不停的干擾,及像他人在個人電腦市場上花費兩三年的時間,伊斯基決定選擇開放式架構和現成元件,在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件。當 IBM 個人電腦於 1981 年問世,1982 年和 1983 年真正開始流行時,IBM的收入開始起飛:從 1981 年的 290 億美元增加到 1984 年的 460 億美元;股票市值在 1984 年底達到約 720 億美元,為當時全球最值錢及最賺錢的公司。在《財星》雜誌的美國企業年度調查中,IBM 成為最受敬佩的公司。

-----廣告,請繼續往下閱讀-----
IBM 個人電腦。

當初領導一個只有 14 人的「臭鼬工廠」團隊,竟然開發出了 IBM PC 產業,伊斯基「瞬間」成為個人電腦界名人,被稱為「IBM PC 之父」,出現在各主流雜誌和報紙上,好像他就是 IBM;儘管外界不停地挖角,他都以「在 IBM 工作」為榮拒絕(註三)。但在 IBM 內部,伊斯基則成為高階主管既羨慕、又嫉妒、又恨的對象,於 1985 年年初表面上將他「提升」為製造副總,負責監督全球所有製造業務,但實際上是沒大權責的貶職;伊斯基私下向親友表示不懂為什麼會被打下來,也因此曾經想離開 IBM(註四)。正方興未艾的個人電腦事業則不再獨立、被歸入稱為「入門級系統」的公司部門編制,由伊斯基以前的老闆、IBM 官僚體系內的洛比爾接管。

英特爾興起

相信大部分讀者都已經知道,伊斯基決定在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件的最大幸運受惠者是:前者是微軟公司(Microsoft Corp.),後者就是本文的主角英特爾。但如果僅此,英特爾可能將永遠只是活在 IBM 陰影下的零件供應商而已。

改變IBM主導個人電腦市場的英特爾 80286 微處理器。圖/英特爾歷史網站

話說 IBM 的大佬們都想控制小型系統團隊,因此將伊斯基提升為公司製造副總,將他所帶領的獨立團隊併入母公司體系,依照官僚體制製定了一項基於英特爾 1982 年 2 月推出之 80286 微處理器的「個人系統二號」(PS/2)十年計劃。1985 年 10 月,英特爾推出一款可更快地同時運行多個軟體程式的 32 位元 80386 微處理器晶片時,IBM 還是圍繞著 80286 開會又開會、討論又討論、…。英特爾不能眼看這項先進技術擱置在哪裡等待別人來追趕,因此決定進行一豪賭:尋找新客戶。英特爾很清楚這項決定可能會摧毀它,因為 IBM不但是銷售最多個人電腦的大客戶,還擁有世界一流的製造處理器技術,惹惱了可以隨時推出更強大的英特爾晶片變體來取代 80386。

英特爾公司總部。圖/wikimedia

最後決定還是賭了:英特爾轉向1982年成立的康柏電腦公司(Compaq Computer Corp.)。1986 年 9 月,康柏電腦非常成功地在紐約市展示一系列首次能與 IBM 個人電腦相容、採用英特爾 80386 微處理器的個人電腦。這是 IBM 個人電腦主要元件由非 IBM 公司進行更新之首例:從 80286 處理器升級到 80386。《紐約時報》謂 Deskpro 386 的發布確立了康柏作為個人電腦行業領導者的地位,「在聲譽和金錢方面,沒有任何一家公司比 IBM 受到更大的傷害」。《資訊世界》(InfoWorld)在其 1986 年 9 月 15 日刊的封面上刊登了標題:「康柏推出 386PC,挑戰 IBM 與之匹敵」。IBM 終於在 1987 年 7 月發布了他們的第一台基於 386 的個人電腦 PS/2  Model 80,但為時已晚,IBM 標誌已經開始失去其商標價值,個人電腦的未來已經改由英特爾和微軟主導了!微軟創辦人蓋茨(Bill Gates)謂:

-----廣告,請繼續往下閱讀-----

個人電腦產業歷史上的一個重要里程碑是 IBM 的員工不信任 386。因此我們鼓勵康柏繼續生產 386 機器。那是人們第一次意識到不僅僅是 IBM 在製定標準,這個行業(已)有自己的生命力,而像康柏和英特爾這樣的公司正在做新的事情,人們應該關注。

英特爾這場賭博得到了回報:康柏的成功加速客戶轉向新的英特爾80386晶片後,英特爾在某些年份的獲利超過了 IBM,其股票市值在 90 年代初期也超過了 IBM,於 1999 年成為代表美國 30 主要工業的道瓊指數之一。

備註

  • (註一)基爾比獲 2000 年諾貝爾物理學獎;在他的「諾貝爾演講」中,三次提到了已經過世(1990年)的諾伊斯對積體電路的貢獻。
  • (註二)英特爾的微處理器事實上是一「中央處理器」(Central Processor Unit,CPU)。微處理器和 CPU 的相似之處多於不同之處。事實上,所有 CPU 都是微處理器,但並非所有微處理器都是 CPU。兩者之間的主要區別在於它們在電腦系統中的功能和用途。CPU 是一種具有多種角色的處理器;而微處理器通常僅負責一項特定任務,能夠非常出色地完成該任務。CPU 向微處理器發出指令,微處理器依令將資料傳送到 CPU 或 CPU 指定的其它元件。微處理器的任務是執行特定且可重複的操作,而 CPU 的任務則是執行廣泛且多樣化的任務。如果將 CPU 比喻成電腦中的大腦,那麼身體的腿和手將成為微處理器的區域。
  • (註三)蘋果電腦創辦人賈伯斯(Steve Jobs)曾提供一份身價數百萬美元的蘋果電腦總裁職引誘。
  • (註四)1985 年 8 月攜妻度假,飛機失事雙亡。

延伸閱讀 :日常生活範式的轉變:從紙筆到 AI

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
45 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
晶片生病要手術 該選哪種開刀方式來做切片?
宜特科技_96
・2025/01/11 ・3131字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

晶片結構內部有問題,想要進行切片觀察,但方式有好幾種,該如何針對樣品的屬性,選擇正確分析手法呢?

本文轉載自宜特小學堂〈 哪種 IC 切片手法 最適合我的樣品〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

點擊圖片收看影片版

IC 設計後,在進行後續的產品功能性測試、可靠度測試(Reliability Test)或故障分析除錯(Failure Analysis & Debug)前,必須對待測試的樣品先做樣品製備(Sample preparation),透過 IC 切片方式,進行斷面/橫截面觀察(Cross-section)。此步驟在確認晶片內的金屬接線、晶片各層之間結構(Structure)、錫球接合(Solder Joint)、封裝打線(Wire Bonding)和元件(Device)異常等各種可疑缺陷(Defect),扮演相當關鍵性重要角色。

然而觀察截面的方式有好多種,有傳統機械研磨(Grinding)方式,透過機械手法拋光(Polish)至所需觀察的該層位置;或是透過離子束(Ion Beam)方式來進行切削(Milling);那麼,每一種分析手法到底有那些優勢呢?又該如何選擇哪一種切片手法,才能符合工程師想要觀察的樣品型態呢?本文將帶來四大分析手法,從針對尺寸極小的目標觀測區(如奈米等級的先進製程缺陷),或是大面積結構觀察(如微米等級的矽穿孔 TSV),幫大家快速找到適合的分析手法,進行斷面/橫截面觀察更得心應手!

傳統機械研磨(Grinding):樣品製備時間長,觀測範圍可達 15cm

 傳統機械研磨最大優勢,是可以達到大面積的觀察範圍(<15cm 皆可),跨越整顆晶粒(Die),甚至是封裝品(Package),當需要檢視全面性結構的堆疊或是尺寸量測等等,就適合使用 Grinding 手法(如下圖)。這個手法可透過機械切割、冷埋、研磨、拋光四步驟置備樣品到所需觀察的位置。

-----廣告,請繼續往下閱讀-----
(左):晶粒(Die)剖面研磨;(中)&(右)銅製程剖面研磨。圖/宜特科技

不過傳統研磨也有兩項弱點,除了有機械應力容易產生結構損壞,如變形、刮痕外,此項操作也非常需要依靠操作人員的執行經驗,經驗不足者,恐導致研磨過頭而誤傷到目標觀測區,影響後續分析。

傳統研磨相當依靠操作人員的執行經驗。圖/宜特科技

離子束 Cross-section Polisher(CP):除了截面分析,需要微蝕刻也可靠它

相較於傳統機械研磨(Grinding),Cross-section Polisher(簡稱 CP)的優點在於,是利用離子束做最後的精細切削(Fine milling),可以減低多餘的人為損傷,避免傳統研磨機械應力產生的結構損壞。除了切片外,CP 還有另一延伸應用,就是針對樣品進行表面微蝕刻,能夠解決研磨後造成的金屬延展或變形問題。因此,若是想觀察金屬堆疊型之結構、介金屬化合物 Intermetallic Compound(IMC),CP 是非常適合的分析手法。

CP 的手法,是先利用研磨(Grinding)將樣品磨至目標區前,再使用氬離子 Ar+,切削至目標觀測區,此做法不僅能有效縮短分析時間,後續再搭配掃描式電子顯微鏡(Scanning Electron Microscope,簡稱 SEM)進行拍攝,將能夠呈現較為清晰的層次邊界。

上圖是兩張 SEM 影像。左圖為研磨後的 IC 結構,層次邊界並不清晰;右圖則為 CP 切削後的 IC 結構,層與層之間界線清晰可見,同時也少了許多研磨後的顆粒與髒汙。圖/宜特科技

案例一CP Cross Section 能力,快又有效率!

案例一的待測樣品為 BGA 封裝形式,目標是針對特定的錫球(Solder bump)進行分析。透過 CP,可在 1 小時內完成 1mm 範圍的面積切片。後續搭配 SEM 分析,即可清楚呈現錫球表面材料的分布情況。

-----廣告,請繼續往下閱讀-----

下圖是案例中的 SEM 影像,圖(a)是 CP 後的樣品截面,可將整顆 bump 完整呈現。圖(b)是用傳統機械研磨(Grinding)完成之 BGA,雖然可以看到 bump 的介金屬化合物(IMC),但因研磨延展無法完整呈現。而圖(c)是用 CP 完成之 BGA,bump 下方的IMC對比清晰,可清楚看到材料對比的差異。

圖/宜特科技

案例二:透過 CP milling 解決銅延展變形的狀況

常見的 PCB 板疊孔結構中,若盲孔(Blind Via Hole,簡稱 BVH)與銅層(Cu layer)之間的結合力較弱時,在製程後期的熱處理過程中,容易導致盲孔與銅層拉扯出裂縫(Crack),造成阻值不穩定等異常情形。一般常見是透過傳統機械研磨(Grinding)來檢測此類問題,但這種處理方式往往會造成銅延展變形而影響判斷。我們可以使用 CP 針對 BVH 結構進行 CP milling,有效解決問題,並且處理範圍可達 10mm 以上之寬度。

左圖為傳統機械研磨(Grinding)後之 PCB via,無法看到裂縫(Crack);右圖為 CP milling 後之 PCB via,清楚呈現裂縫(Crack)。圖/宜特科技

Plasma FIB(簡稱PFIB):不想整顆樣品破壞,就選擇它來做局部分析

在 3D-IC 半導體製程技術中,如果擔心研磨(Grinding)在去層(Delayer or Deprocess)過程傷到目標區,或是擔心樣品研磨時均勻性不佳,會影響到觀察重點,這時就可考慮用電漿聚焦離子束顯微鏡(Plasma FIB,簡稱 PFIB)分析手法!

PFIB 結合了電漿離子蝕刻加工與 SEM 觀察功能,適用於分析範圍在 50-500 µm 的距離內,可進行截面分析與去層觀察,並針對特定區域能邊切邊觀察,有效避免因盲目切削而誤傷到目標區的狀況,確保異常結構或特定觀察結構的完整性。(閱讀更多:先進製程晶片局部去層找 Defect 可用何種工具

-----廣告,請繼續往下閱讀-----
PFIB 切削後之 TSV (Through Silicon Via)結構,除了可以清楚量測金屬鍍層厚度外,因為沒有研磨的應力影響,可明確定義 TSV 蝕刻的 CD(Critical Dimension)。圖/宜特科技

Dual Beam FIB(簡稱DB-FIB):適用數奈米小範圍且局部的切片分析

結合鎵離子束與 SEM 的雙束聚焦離子顯微鏡(Dual Beam FIB,簡稱 DB-FIB),可針對樣品中的微細結構進行奈米尺度的定位及觀察,適用於分析範圍在 50µm 以下的結構或異常區域。同時,DB-FIB 還能進行能量散佈 X-ray 能譜儀(Energy Dispersive X-ray Spectroscopy,簡稱 EDX)分析及電子背向散射(Electron Backscatter Diffraction,簡稱 EBSD),以獲得目標區域的成分與晶體結構相關資訊。

此外,當觀察的異常區域或結構過於微小,用 SEM 無法得到足夠資訊時,DB-FIB 也可以執行穿透式電子顯微鏡(Transmission Electron Microscope,簡稱 TEM)的試片製備,後續可供 TEM 進行更高解析度的分析。

DB-FIB 搭配 SEM 與鎵離子槍,可針對異常及微區結構進行定位與分析。圖/宜特科技

若想更認識各種工具的應用,歡迎來信索取宜特精心製作的四大切片分析工具圖表marketing_tw@istgroup.com,希望透過本文能幫助讀者,對IC截面分析手法有更多了解,例如 CP 設備新增了 Milling 功能,使其用途更加多元;而 PFIB 增加了去層功能,為先進製程的異常分析開啟了全新的可能性!

本文出自 www.istgroup.com

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

宜特科技_96
11 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

2
0

文字

分享

0
2
0
從半導體到量子晶片:台灣成為全球量子科技的核心力量!
PanSci_96
・2024/10/14 ・2209字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

台灣首台量子電腦誕生:量子時代的到來

2024 年 1 月,台灣自主研發的第一台量子電腦正式於中央研究院誕生,儘管僅具備5個量子位元(qubits),卻為台灣在全球量子電腦競技場上佔據一席之地揭開了序幕。這一具有歷史性意義的事件不僅代表台灣科技能力的進步,也喚醒了人們對量子電腦的未來潛力的無限期待。

量子電腦,不再僅是科幻小說中的幻想,而是實實在在的科技新星,逐漸改變人類面對複雜問題的解決方式。台灣,身為全球半導體製造的重要支柱,正在迎接量子電腦進入量產的時代,而這將與材料學、晶片製程技術緊密相關。當量子技術進一步發展,台灣的製程技術無疑能為這場科技革命提供關鍵助力。

但在我們深入了解量子電腦的潛力之前,必須先理解它的基本運作原理。畢竟,要瞭解該投資哪些量子概念股,或者選擇哪些科系來掌握未來的科技趨勢,我們首先需要清楚量子電腦究竟是如何運作的。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

什麼是量子電腦?從電晶體到量子位元

2019 年,Google 推出了 53 量子位元的量子電腦「梧桐」(Sycamore),並宣告達成「量子霸權」,即其量子電腦在短短 200 秒內完成了傳統超級電腦需要 1 萬年才能處理的計算任務。這標誌著量子計算能力的突破,為計算科學開啟了全新的紀元。

-----廣告,請繼續往下閱讀-----

量子電腦之所以強大,是因為它利用了量子力學的「疊加」與「糾纏」現象。傳統電腦使用二進制的「0」和「1」來進行計算,而量子位元可以同時處於「0」和「1」的狀態,這使得量子電腦能在同一時間進行更多複雜的計算,大大提高了運算效率。

這樣的技術突破意味著,我們不再只依賴電子流過電晶體來實現運算,而是可以直接操控單一電子或其他粒子,讓它們同時攜帶 0 與 1 的信息,從而極大地提升了計算能力。

掌握電子的挑戰:從不確定性到操控技術

量子力學的另一個特性——不確定性原理——使得控制電子變得非常困難。電子極其微小,甚至無法用肉眼觀察。當我們試圖「觀察」一顆電子時,光子的介入會改變電子的狀態,這種不確定性使得同時測量電子的位置和動量幾乎不可能。

這種量子現象的捉摸不定,給科學家們帶來了巨大的挑戰。然而,正是這些現象,讓科學家們探索出了全新的計算方式——量子計算。在這一領域,超導體成為了實現量子位元的關鍵技術。

-----廣告,請繼續往下閱讀-----

超導體與量子電腦的結合:解鎖未來的關鍵

2023 年 7 月,韓國科學家宣布發現了一種名為 LK-99 的高溫超導體,這一發現引起了全球的轟動,因為超導體具備零電阻和磁浮現象,與量子力學有著密切的聯繫。超導體是未來量子電腦的潛在材料,它能夠在極低溫下讓電子以「庫柏對」的形式運動,這些電子對能夠在原子之間暢通無阻,產生零電阻效應。

通過利用「約瑟夫森效應」,兩個超導體之間夾入絕緣體,可以讓電子對穿越絕緣體,形成「超導電流」。這種穿隧效應是量子電腦中量子位元的重要基礎,讓我們能夠構建出穩定且有效的量子系統。

然而,現有的超導量子電腦仍面臨兩個主要挑戰。首先,超導現象只能在接近絕對零度的極低溫環境下出現,這意味著要在家庭或企業中大規模應用量子電腦,仍需克服極端溫控的技術難題。其次,超導量子位元非常容易受到外界干擾而失去量子狀態,這使得量子計算的穩定性成為一個尚未解決的問題。

由美國國家標準技術研究所研發的約瑟夫森接面陣列晶片。圖/wikimedia

量子電腦的多元發展:超導不是唯一的答案

儘管超導體被廣泛應用於當前的量子電腦技術中,但它並不是唯一的發展途徑。其他量子計算技術也在不斷進步,包括基於離子阱技術、光子學量子電腦等。

-----廣告,請繼續往下閱讀-----

離子阱技術利用激光操控單一原子來進行計算,這種技術具有極高的精度和穩定性,但也面臨著技術複雜性和成本的問題。而光子學量子電腦則利用光子來承載和傳輸信息,具有快速且易於擴展的潛力,然而,目前的光子學技術還存在一定的技術障礙,尤其是在量子糾纏狀態的穩定性上。

因此,量子計算的未來發展並不會只依賴一種技術,而是可能出現多元化的方案,根據不同的應用場景,選擇最合適的技術路徑。

台灣的量子未來:機遇與挑戰並存

隨著全球對量子技術的關注不斷提升,台灣有望在這一領域佔據重要地位。台灣的半導體技術、材料科學研究和製造實力,無疑為量子電腦的發展提供了堅實的基礎。從傳統的半導體製程轉換到量子晶片製造,台灣擁有豐富的技術積累與創新潛力。

然而,量子電腦技術的發展速度迅猛,台灣必須在全球競爭中不斷推動自主研發能力。未來,量子電腦的應用範圍將涵蓋人工智能、金融運算、材料科學、新藥開發等領域,這將進一步改變現有的產業結構和科技生態。

-----廣告,請繼續往下閱讀-----

對於投資者和學生來說,理解量子電腦的運作原理與未來趨勢,將是未來掌握科技變革的關鍵。而量子電腦的崛起,也標誌著下一場技術革命的序幕已經開啟。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。