0

3
1

文字

分享

0
3
1

洗澡時突然浮現:八叛徒的諾貝爾獎級專利,半導體的「平面製程」——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》

親子天下_96
・2022/07/17 ・5127字 ・閱讀時間約 10 分鐘

一場淋浴的時間,革命性想法突然浮現

1959 年 1 月初,赫爾尼早上起床淋浴時,一個在他腦中深藏許久的念頭突然浮現出來,他似乎看到了一線曙光,可以解決令大家束手無策的困境!

赫爾尼早上起床淋浴時,一個在他腦中深藏許久的念頭突然浮現出來。 圖/envato

根據貝爾實驗室的技術手冊,當矽晶圓完成摻雜後,必須用溶劑把表面剩餘的氧化層全部清除乾淨。因為擴散法應該也會把雜質摻入氧化層裡,若沒有全部移除,被汙染的氧化層恐怕會影響電晶體的導電性。不過如此就會讓 p-n 接面裸露在外,所以才必須用金屬外殼加以密封。

赫爾尼當時就懷疑氧化層是否真的會被汙染,就算會,真的會影響電晶體嗎?

他覺得氧化層有隔絕保護作用,保留下來或許利大於弊,但貝爾實驗室與同事都說照著技術手冊做就對了。後來要忙著趕 IBM 的訂單,他就把這想法擱在一旁,未再深入研究,現在他才突然想到如果有氧化層擋著,掉落的金屬碎屑就接觸不到 p-n 接面,也就不會影響電晶體了。

赫爾尼進辦公室後,連忙翻出當初所寫的筆記,重新整理謄寫。而在塗塗寫寫的過程中,腦中又冒出一個革命性的想法。

高臺式電晶體是先用擴散法在集極表面摻雜成基極,再用光刻技術在基極中央蝕刻出窗口,摻雜成射極。但何不一開始就用光刻技術做出基極?這樣底層的集極就不會全部被基極蓋住,集極、基極與射極三者都在同一平面,它們之間的 p-n 接面用同一層二氧化矽保護,只露出接腳的接觸點。由於電極彼此更靠近,效能會更好,而在製造上也更加簡單。

諾貝爾獎級的專利:平面製程

赫爾尼興奮的向諾宜斯與摩爾等人提出這個「平面製程(Planar process)」的構想,大家都半信半疑,違背技術手冊的指示,保留氧化層真的不會有問題嗎?不過目前也沒別的辦法,況且真的成功的話,不僅能解決眼下的問題,還能大幅提升電晶體效能與生產效率,讓快捷半導體的競爭力更上一層樓。他們決定放手一搏,同時趕緊找專利律師申請專利。

赫爾尼的平面製程概念(左圖)與高臺式電晶體(右圖)比較。平面製程的電晶體讓基極、射極和集極都在同一個平面上,並且都受到二氧化矽保護。圖/親子天下

「你們希望這項專利涵蓋哪些範圍?」專利律師開頭就先問這個問題。

諾宜斯等人頓時都愣住了,不就電晶體嗎?律師才進一步解釋:「這平面製程不是一種製造方法嗎?除了電晶體,也可以用來製造其他半導體元件吧?」

摩爾見諾宜斯還在出神中,只好出聲回答:「當然可以。要的話,二極體、電阻、電容這些也都可以用平面製程,但意義不大,這些也不是我們的目標市場。」

「為什麼?」

「因為這些元件構造簡單,沒必要用平面製程,純粹看生產規模,規模越大,成本越低。這是德州儀器、雷神這些大公司的優勢,我們只能攻電晶體,以技術取勝。」

律師點點頭:「那就只針對電晶體申請專利保護囉?」

「等一下!」神遊中的諾宜斯突然插進來,卻又思索了一下才說:「還是把其他半導體元件都納進來好了。別誤會,我沒有要做這些東西,只是剛剛想到——如果用平面製程把它們都放在同一片晶圓上呢?

大家不解的望著諾宜斯,只見他站起來走向黑板,一邊問大家:「你們想想,IBM 拿到我們的電晶體之後,再來呢?」

接著諾宜斯在黑板畫起一個一個小方塊,說:「他們得把電晶體、二極體、電阻、電容這些元件一個個銲接到電路板上。我估計全部至少有幾百顆,甚至上千顆吧,每顆都要接上金屬電路,還得有銲接的空間,結果元件本身所占的空間其實不到一半。」黑板上的圖就像幅地圖,上面坐落著一棟棟平房,空地與道路占了大片土地。

電路板上的各種電子元件就像地圖上的房子,有大半的面積被空地與道路佔據,房子(電子元件)只占一小部分。 圖/Pixabay

「不只如此。」諾宜斯再用紅色粉筆在小方塊中間畫個小圈圈,說:「每個元件真正有用的只有這裡,其餘只是外殼包裝。你們看,如果只有這些小圈圈,讓它們彼此緊鄰在一起,空間就只有原來電路板的 5% 不到吧。」

大家似乎開始明白諾宜斯要說什麼,但貝仍疑惑的問道:「我可能沒你們懂,但怎麼可能沒有外殼,還緊鄰在一起?它們得有保護,彼此也得分開才不會漏電,不是嗎?」

赫爾尼微笑著替諾宜斯回答:「二氧化矽可以提供保護,也能用來區隔元件。我只想到多做一次光刻技術,但既然能做兩次,當然三次、四次、……要幾次都可以,就能把各種元件都做在一起。」

摩爾接著說:「而且蝕刻出的缺口不僅用於摻雜,也可以蝕刻出複雜的溝槽作為電路。既然每個元件的接觸點都在同一平面,便可以像印刷電路板那樣,直接把銅線印在溝槽上,原來在電路板上的電路就都整合在一個晶片裡了。諾宜斯,這真是絕妙的點子!」

「這得感謝赫爾尼先想出平面製程。不過這只是個概念,具體上要怎麼做,摩爾,我們倆再一起研究。」

貝興奮的說:「這只要做出來,再貴我都賣得出去!我告訴你們,空軍的人一直在問我能不能做得更小呢。因為除了轟炸機,還有導彈、火箭也都要裝上電腦,它們的空間更小,電腦越小越好,到時候這些訂單非我們莫屬。」

被捷足先登的專利申請

的確如貝所說,美國政府正在傾全力推動太空計劃,並加強國防科技。因為蘇聯在 1957 年 10 月 4 日,毫無預警的發射第一顆人造衛星史普尼克一號(Sputnik 1),嚇了美國一大跳,發現原來蘇聯的太空科技竟然遙遙領先。萬一蘇聯將太空科技用於戰爭,勢必會取得空中優勢,甚至危及美國本土。

蘇聯第一顆人造衛星史普尼克一號(Sputnik 1)1 : 1等比模型。 圖/wikimedia

因此,美國政府除了要軍方強化飛機、飛彈與各項國防武器的性能,同時在 1958 年 10 月成立「國家航空暨太空總署(NASA)」,整合資源與各界人才,以求在這場太空競賽超越蘇聯。軍方與 NASA 都有龐大預算,為了盡速達成任務,都願意採用最新技術,花起錢來也毫不手軟,對快捷半導體而言正是大好時機。

專利律師先針對平面製程申請專利,積體電路則還要等諾宜斯寫出具體方法,才能提出專利申請。不料,諾宜斯和摩爾尚在研究,3 月時竟然被捷足先登,德州儀器召開記者會,發表史上第一顆積體電路!

原來德州儀器的工程師基爾比(Jack Kilby)去年 6 月就提出積體電路的構想,然後在 9 月以手工做出一個晶片雛形,只有電晶體、電阻和電容三個元件,電路另外用金線銲接而成,雖然粗糙簡單,但確實能正常運作。如果德州儀器祭出專利保護,快捷半導體就無法開發積體電路這極具潛力的產品,嚴重影響公司的未來。

辭職風暴

屋漏偏逢連夜雨,在公司前途未卜之際,總經理鮑德溫竟然要辭職。諾宜斯等人錯愕又憤怒,要他當面說清楚。

貝先開口責問他:「鮑德溫,現在公司遇到問題,你身為主帥不面對處理,反而要先落跑,未免太現實了吧?」

「我如果真的現實,去年 IBM 訂單問題搞不定時老早就走了。人總是有更高的目標要追求,就這麼簡單。」

羅伯特忍不住嗆他:「更高?你已經是總經理,權力、薪水與分紅都比我們幾個創辦人高,還有什麼不滿意?」

鮑德溫平靜的回答:「我很感謝你們的禮遇,但總經理也只是受聘的經理人,再怎樣也和你們幾位大股東沒辦法比。」

諾宜斯真摯的說:「你如果嫌認股權太少,可以提出來啊。」

鮑德溫嘆了一口氣說:「那就說開了吧。有家國防承包商願意出資,讓我成立公司製造電晶體,一些工程師也會跟我走。」

公司前途未卜之際,總經理鮑德溫選擇辭職離開。(示意圖) 圖/envato

「什麼,你也太沒道義了!」「了不起,主帥帶兵投靠敵營。」「你這叛徒!」「你膽敢偷走技術,就等著被告!」憤怒的斥責馬上此起彼落。

「你們有什麼資格說我?你們幾個不也是背叛蕭克利自立門戶?」鮑德溫馬上惱羞成怒,展開反擊:「我不過帶走十幾個人,你們對原公司造成的傷害才大吧。論道義,你們更沒道義!我本想大家好聚好散的,現在也沒什麼好說了。祝你們好運,再見。」說完即頭也不回的走出門外。

會議室裡一片沉寂,大家不約而同想到當年從蕭克利半導體實驗室集體請辭的情景:平時易怒暴躁的蕭克利竟然一句話都沒說,鐵青著臉直接走出辦公室。反倒是貝克曼跑來找他們曉以大義,發現無法挽回後,隨即變臉威脅要控告他們侵權洩密。沒想到如今換他們嚐到這滋味了。

諾宜斯先打破沉默:「我們來討論總經理人選吧。你們有沒有想到誰還不錯的?」

克雷納舉起手說:「我覺得不要再從外面找了,找來難保又跟鮑德溫一樣。就諾宜斯你來當吧,這一年多來,你應該也學到不少經營面的大小事了。」

大家紛紛附議贊同,這次諾宜斯也不再謙讓,決定扛下這重責大任,研發副總一職便交給摩爾。

摩爾趁此時報告積體電路的應對策略:「我們和專利律師討論過了,德州儀器雖然先申請積體電路的專利,但他們的電路仍得用銲接的,而諾宜斯結合了平面製程與印刷電路,這兩項技術都不在他們的設計裡,應該可以認定為新發明。所以我們決定還是申請專利,無論如何,總比棄械投降來得好。」

基爾比與諾宜斯兩人的積體電路設計對比。左圖是基爾比的設計,可以明顯看出電子元件上都有額外拉出的電線。而右圖是諾宜斯的設計就簡潔許多,電線和電子元件都是平整的放置在一個平面上。圖/親子天下

「沒錯,不用管別人,我們就照原先計劃往前走。等送出專利申請、做出樣品後,我們也要舉辦盛大的積體電路發表會,讓所有人知道誰的技術管用。」諾宜斯馬上展現了總經理的氣勢。

積體電路的專利申請於 1959 年 7 月送出,未待審核結果出爐,本身是發明家的費爾柴爾德就以實際行動展現對他們的信心與支持,提前於 10 月執行選擇權,依當初合約所載,用三百萬買下全部股權。

八叛徒當初每人拿出 500 元,如今兩年不到就換回 25 萬元,當然是美夢成真,也讓外界人人稱羨。不過,卻有兩個人看在眼裡頗不是滋味,那就是蕭克利與貝克曼。

將希望壓在四層二極體的蕭克利

諾宜斯等人出走時,蕭克利仍不認為自己有錯,他得到的教訓反而是認為國內這些心高氣傲的年輕人不聽話又沒忠誠度,不如從歐洲招募三、四十歲的博士,他們更加成熟穩定,好用多了。何況八叛徒本來不懂電晶體,都是他一手教出來的,現在換另一批人,他當然也可以在短時間內就讓他們上手。

因此,無論面對貝克曼或是外界的質疑,他都信心滿滿的堅稱集體離職事件不會有任何影響,實驗室仍將正常運作。

然而,就算貝克曼也這麼認為,他對蕭克利半導體實驗室已有不同想法了。1958 年,貝克曼將它從集團的附屬機構獨立出來為「蕭克利電晶體公司」,顯然已不想再燒錢打造另一個貝爾實驗室,而是要它像一般公司那樣盈虧自負。

蕭克利終於在 1959 年成功開發出 p-n-p-n 四層二極體,卻因為品質不穩定,未能如他原先預想的用於AT&T 的電話交換機;而軍方那邊也沒能賣出多少,以致公司繼續虧損。

貝克曼決定不玩了,剛好克里夫蘭一家傳統企業也想跨足半導體,而蕭克利的名聲仍有相當吸引力,便在 1960 年將公司賣給他們。

蕭克利倒不在意換新東家,反正他仍然在原地繼續做原來的事,只要解決四層二極體的品質問題,還是有機會從 AT&T 拿到源源不絕的訂單,到時所有人——尤其是八叛徒,就會知道他才是最後的贏家。

——本文摘自《掀起晶片革命的天才怪咖:蕭克利與八叛徒》,2022 年 7 月,親子天下,未經同意請勿轉載。

文章難易度
親子天下_96
26 篇文章 ・ 24 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。

0

3
2

文字

分享

0
3
2
讓摩爾定律又向前邁進的新技術!3D 先進封裝是什麼?又有哪些優勢和挑戰?
PanSci_96
・2023/07/15 ・3500字 ・閱讀時間約 7 分鐘

今年蘋果 WWDC 大會上發表的 Vision Pro,在市場上引起軒然大波。除此之外,蘋果新推出的 Mac Pro、Mac Studio 也都十分吸睛,他們的共同特點,就是我都買不起。他們的共同的特點,就是裏頭都搭載了 M 系列晶片。從 M2、M2 Max 到 M2 Ultra,除了強大的效能,其輕巧的設計,也讓這些裝置保持輕量。Vision Pro 的重量也可以維持維持在500g,不影響穿戴體驗。要在如此小的晶片中發揮跟電腦一樣效能,除了我們介紹過的 DUV 與 EUV 微縮顯影,一路從 7 奈米、5 奈米、3 奈米向下追尋外。在 M 系列這種系統晶片中,「先進封裝」技術,其實扮演更重要的角色,但到底「封裝」是什麼?它如何幫助 M2 達到高效能、小體積的成果?

晶片又更小了,摩爾定律依舊存在?

M2 晶片的效能已被消費者認可,一顆小小的晶片中,就同時包含了 8 核心 CPU、10 核心 GPU、16 核心的神經網路晶片以及記憶體,麻雀雖小,五臟俱全。這可說又是摩爾定律向前邁進的一步。

在 M2 一顆小小的晶片中,就同時包含了 8 核心 CPU、10 核心 GPU、16 核心的神經網路晶片以及記憶體。圖/Apple

今年 3 月 24 日,Intel 共同創辦人戈登.摩爾,逝世於夏威夷的家中,享耆壽 94 歲。他生前提出的摩爾定律,在引領半導體產業發展近 60 年之後,也逐漸走向極限。摩爾定律預測,積體電路上的電晶體數目,在相同面積下,每隔約 18 個月數量就會增加一倍,晶片效能也會持續提升。

隨著晶片尺寸越來越小,似乎小到無法再小,「摩爾定律已死」的聲音越來越大。然而事實是,業界的領頭羊們如台積電、英特爾和三星等公司,依然認為摩爾定律可以延續下去,並且仍積極投入大量金錢、人力及資源,期盼能夠打贏這場奈米尺度的晶片戰爭。

打贏戰爭的方法,包含研發各式各樣的電晶體,例如鰭式場效電晶體(FinFET)環繞式閘極(GAAFET)電晶體互補式場效電晶體(CFET);或是大手筆引進艾司摩爾開發的極紫外光(EUV)曝光機,在微縮顯影上做突破,這部分可以回去複習我們的這一集;除此之外,從材料下手也同步進行中,新興的半導體材料,像是過渡金屬二硫族化合物奈米碳管。這些持續挑戰物理極限的方式稱為「深度摩爾定律(More Moore)」。

然而這條路可不是康莊大道,而是佈滿了荊棘,或是亂丟的樂高積木,先進製程開發的複雜度和投入資金呈指數型增加,且投資與回報往往不成正比。我們都知道「不要把雞蛋都放在同一個籃子裡」,同理,半導體巨擘們也開始找尋新解方,思索如何躺平,在不用縮小電晶體的情況下,提升晶片整體效能。

先進製程開發的複雜度和投入資金呈指數型增加,且投資與回報往往不成正比。圖/freepik

答案也並不難,既然在平面空間放不下更多電晶體了,那麼就把他們疊起來吧!如此一來,相同面積上的電晶體數量也等效的增加了。這就像是在城市裡,因為人口稠密而土地面積有限,因而公寓大廈林立,房子一棟蓋得比一棟高一樣。像這樣子不是以微縮電晶體,而是透過系統整合的方式,層層堆疊半導體電路以提升晶片效能的方法,屬於「超越摩爾定律(More than Moore)」,而其技術關鍵,就在於「封裝」。

什麼是封裝?

當一片矽晶圓經過了多重製程的加工後,我們會得到這張表面佈滿了成千上萬積體電路。別小看它,光是這一片的價值,可能就高達2萬美元!

一個矽晶圓表面佈滿成千上萬的積體電路。圖/envatoelements

然而這麼大片當然無法放進你的手機裡,還必須經過「封裝(packaging)」的步驟,才會搖身一變成為大家所熟知的半導體晶片。

簡單來說,封裝是一種技術,任務是把積體電路從晶圓上取下,放在載板上,讓積體電路可以與其他電路連接、交換訊號。整個封裝,大致可分為四步驟:切割、黏晶、打線、封膠

首先,矽晶圓會被磨得更薄,並且切割成小塊,此時的積體電路稱為裸晶(die);接著,將裸晶黏貼於載板(substrate)上,並以焊線連接裸晶及載版的金屬接點,積體電路便可跟外界傳遞或接收訊號了;最後,以環氧樹酯灌模成型,就完成我們熟知的晶片(chip),這個步驟主要在於保護裸晶及焊線,同時隔絕濕氣及幫助散熱。

Chiplet、傳統封裝與先進封裝

隨著晶片不斷追求高效能、低成本,還要滿足不同的需求,甚至希望在一個晶片系統中,同時包含多個不同功能的積體電路。這些積體電路規格、大小都不一樣,甚至可能在不同工廠生產、使用不同製程節點或不同半導體基材製作。例如蘋果的 M2 晶片,就是同時包含 CPU、GPU 和記憶體,另外,我們過去介紹過,google 陣營的 Tensor 晶片,也是在單一晶片系統中塞入了大大小小的晶片。這些在一個晶片系統中含有多個晶片的架構,稱為 Chiplet。

要做出 Chiplet,在傳統的封裝方式中,會將初步封裝過的數個晶片再次進行整合,形成一個功能更完整的模組,稱為系統級封裝 Sip(system in package);另一個方法則是將數個裸晶透過單一載板相互連接完成封裝,這樣的作法叫做系統單晶片system on a chip (SoC),然而以這兩種方式製作需佔用較大的面積,更會因為晶片、裸晶間的金屬連線過長,造成資料傳輸延遲,不能達到高階晶片客戶如輝達、超微、蘋果等公司的需求。

為了解決問題,先進封裝就登場了,三維先進封裝以裸晶堆疊的方式,增加空間利用率並改善資料傳輸瓶頸的問題。與傳統封裝之間傳輸速度的差異,就好比是開車由台北至宜蘭,傳統封裝需行經九彎十八拐的台九線,而先進封裝則截彎取直,打通了連接兩地的雪山隧道,使得資料的來往變得更加便利且迅速。

先進封裝解決了什麼問題

先進封裝最大的優勢,就是大幅縮短了不同裸晶間的金屬連導線距離,因此傳輸速度大為提升,也減少了傳輸過程中的功率損耗。舉例來說(下圖),傳統的 2D SoC,若是 A 電路要與 C 電路傳輸資料,則必須跨越整個系統的對角線距離;然而使用三維堆疊則能夠將 C 晶片放置於 A 晶片的上方,透過矽穿孔(through silicon via, TSV)技術貫穿減薄後的矽基板,以超高密度的垂直連導線連接兩個電路,兩者的距離從此由天涯變咫尺。

圖/Pansci

另一方面,三維堆疊也減少了面積的消耗,對於體積的增加則並不明顯,因此我們能夠期待,手機、平板、或是 Vision Pro 等頭顯未來除了功能更多以外,還會變得更加輕巧。

值得一提的是,先進封裝還能夠降低生產成本喔!由於三維堆疊在單位面積上,增加了等效電晶體數量,在晶片設計上可以考慮使用較成熟、成本更低的製程技術節點,並達到與使用單層先進技術節點並駕齊驅的效能。

先進封裝的技術挑戰

雖然,先進封裝提供了許多優勢。但作為新技術,當中依舊有許多仍待克服的問題與挑戰。

首先,先進封裝對於裸晶平整度以及晶片對準的要求很高,若是堆疊時不慎有接點沒有順利連接導通,就會造成良率的損失。再者,積體電路在運算時會產生能量損耗造成溫度升高,先進封裝拉近了裸晶間的距離,熱傳導會交互影響,大家互相取暖,造成散熱更加困難,輕則降低晶片效能,嚴重則能導致產品失效。

散熱問題在先進封裝中,目前還未完全解決,但可以透過熱學模擬、使用高熱導係數材料、或設計導熱結構等方式,做出最佳化的散熱設計。建立良率測試流程也非常重要,試想,如果在堆疊前沒有做好已知合格裸晶測試(known good die testing),因而誤將合格的 A 晶片與失效的 B 晶片接合,那麼不只是做出來的 3D IC 只能拿來當裝飾品,還白白損失了前面製程所花費的人力、物力及金錢!

良率與成本間的權衡,也是須探究的問題,如果想要保證最佳的良率,最好的方式是每道環節都進行測試,然而這麼做的話生產成本以及製造時間也會相應增加,因此要怎麼測試?在什麼時候測試?要做多少測試?就是一門相當深奧的學問了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1188 篇文章 ・ 1738 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
匈奴西側邊疆,女主與她們的手下?
寒波_96
・2023/07/05 ・5509字 ・閱讀時間約 11 分鐘

匈奴帝國是歐亞草原的第一個帝國,主要疆域位於蒙古,世界史上有一席之地。匈奴人缺乏自身的文字記載,後人只能參考旁觀者,主要是漢朝人的歷史紀錄。所幸近來考古學、遺傳學的進展,大幅增進我們對匈奴的認識,也帶來新的啟示。

由遺骸直接取得古代 DNA 分析遺傳訊息,此前得知「匈奴人」的血脈源流相當多元,2023 年問世的一篇論文,調查匈奴帝國西部邊疆的墓葬,發現當地地位最高的都是女生,血緣絕大部分算是「東方」;而地位較低的男生們,遺傳上更加多元。

匈奴帝國全盛時期的疆域。雖然古早遊牧帝國的領土範圍,僅供參考。圖/wiki 百科

匈奴帝國的西部邊疆

匈奴帝國沒有明確的國界,不過當然有個勢力範圍。這項研究調查的地點位於現今的蒙古國西部,地理上算是阿爾泰山的南部,新疆的準噶爾盆地的東北方。這兒在匈奴時期,可謂匈奴勢力的最西端。

兩處大墓葬群距離約 50 公里,各有很多個墓。一些墓中有不少高貴的陪葬品,推測長眠者的地位較高;還有更多墓的派頭普通,墓主生前地位似乎較低。

一處墓葬群 Takhiltyn Khotgor,簡稱 TAK,年代介於公元前 40 年到公元 50 年。有兩小群 THL-82 和 THL-64 被完整挖掘,都以一位女性的華麗墓葬為主,周圍環繞幾個衛星墓葬。另外 THL-25 目前只有挖掘衛星墓葬。這兒以前報告過 1 個,加上這回 7 個,總共 8 個古代基因組。

另一處墓葬群 Shombuuzyn Belchir,簡稱 SBB,年代介於公元前 50 年到公元 210 年,這回貢獻 10 個古代基因組。

遺址地點,這項研究關注的 TAK、SBB 遺址位於匈奴勢力範圍的最西端。圖/參考資料1

身份高貴的女士們

匈奴帝國的年代約為公元前 200 年到公元 100 年,因此這回調查的樣本包括中期到後期,是匈奴已經興起一段時間後的狀況。研究對象們都只有代號,讀者假如有興趣,也能試著替他們取名字,比較有親切感。

完整挖掘的 THL-82 墓群的成年女生「TAK001」,陪葬在該區域最豐富。她長眠於裝飾精美的木製棺材,旁邊擺著六匹馬、中國風格的青銅馬戰車配件、一個青銅壺等陪葬品。

THL-64 墓群另一位狀況類似的女生「TAK002」長眠於木製棺材,旁邊擺著一匹馬、四隻羊,以及代表太陽及月亮的金盤。日、月是匈奴的象徵之一, 匈奴價值充斥。

澎湃的陪葬品以外,考古學家認為,我們想來平凡的木頭棺材,其實最能彰顯她們匈奴精英之尊貴地位。因為附近地區缺乏樹木,墓葬一般採用石材;木製棺材必需長途進口木柴方能製作,或許有數百公里之遙。更不用說,弓箭是匈奴人的命脈,而木頭是生產弓箭的寶貴原料。

由墓葬況狀判斷,這兩位女生當年是該地區身份很高的人,而周圍的附屬墓葬可能是她們的手下。有意思的是,與她們埋在一起的其他人,大家都沒有血親關係。

由於缺乏匈奴女主形象,請來滿都海鎮場面。成吉思汗以後,滿都海是蒙古影響力最大的統治者之一。圖/IMDB《Mandoukhai the Wise 智者滿都海》劇照

寫到這兒不能逃避,有必要解釋一下何謂匈奴的「血緣」,古遺傳學家講的「多元」或東方、西方是什麼意思?

多元血緣之匈奴帝國,哪些DNA融入蒙古?

至今已經累積超過一萬個古代基因組,大部分位於歐洲、中東,不過歐亞大陸北部、中部也有一批,交叉對照可以判斷,歷代蒙古居民的遺傳組成與變化。

匈奴帝國在兩千多年前誕生,比這更早以前,蒙古地區的人口十分有限,可以粗略劃分出三大遺傳族群。

偏東邊的 Slab Grave,以蒙古鐵器時代早期的樣本為代表(也類似所謂的 Ancient Northeast Asian,簡稱 ANA 祖源)。北邊的 Khövsgöl,以貝加爾湖附近青銅時代晚期的樣本為代表。拆解更細的話,Khövsgöl 其實也有源於草原西部的小部分血緣,不過兩者在這項研究都被視為「東方」。

靠西邊的阿爾泰地區,以青銅時代中期、晚期的樣本為代表,這支血脈大部分能追溯到草原西部較早的移民,算是匈奴較早的「西方」成分。這些祖源應該是匈奴帝國興起前,蒙古地區的人群基礎。

蒙古地區,早於匈奴、匈奴帝國形成後的血脈流動狀況。極為簡化,不過能展示大概的架構。圖/參考資料4

匈奴時期,又有更多方向的血脈加入草原大聯盟。東南方向的漢朝人,用此前發表的「Han_2000BP」為代表,無疑算作「東方」。

「西方」有多個源頭。西北方向的 Sagly/Uyuk,以阿爾泰山鐵器時代的 Chandman 樣本為代表(和東方的斯基泰人,例如「巴澤雷克文化」類似,還具備小部分 BMAC 血緣),不過地理上其實沒有太西。

還有西南方向的綠洲地帶「巴克特里亞-馬爾吉阿納(Bactria–Margiana Archaeological Complex,簡稱 BMAC)」,以及再度由草原西部遠道而來,血緣類似薩馬提亞人(Sarmatians)的新移民。

匈奴作為歐亞大陸中心的大帝國,融入各地血脈並不意外。奇妙的是,這項研究只探索一處很小的地區,同屬一個社群的幾個墓葬,竟然涵蓋大部分的血緣變化。

少少幾人,大家血緣都不一樣

陪葬品最華麗的 TAK001 有馬有車,姑且稱呼她為「馬車女士」。她配備約 9.3% 的少量西方血緣,大部分則是 Khövsgöl 東方血緣。葬在她附近的兩位男生「TAK008」和「TAK009」約 86.8% 西方血緣,三人間都沒有血緣關係。

充斥匈奴精神的 TAK002 姑且稱為「日月女士」。她幾乎完全配備東方血緣,卻與馬車女士不同。日月女士有一半為 Slab Grave,另一半則是漢朝血緣。她附近兩位男生「TAK003」的西方成分很高,「TAK004」則是 Slab Grave 東方血緣,三人間都沒有血緣關係。

另一處目前只挖掘衛星墓葬的 THL-25,分析兩人。男生「TAK006」完全為東方血緣,和日月女士一樣是 Slab Grave 加漢朝組合,不過比例不同。

「TAK005」是蘿莉,她是這群墓葬中唯一陪葬寒酸的女性,或許是年紀太小。她完全為 Sagly/Uyuk 西方血緣,另一位成年男生 TAK003 也有 70%。再度提醒讀者,盡管視作西方,此一追溯到阿爾泰地區的血脈,實際上並沒有多西邊,距離這回調查的遺址也不太遠。

總之,TAK 墓葬中人,每個人的血緣組成都不太一樣。男生們的血緣可謂變化多端,什麼都有。地位最高的馬車女士、日月女士皆以東方血緣為主,雖然兩位的「東方」完全不一樣。

TAK 遺址的古代基因組樣本之遺傳組成。Gonur1_BA 出土於中亞,現今的土庫曼 Gonur Tepe 遺址, 作為 BMAC 血緣的代表。圖/參考資料1

高貴女士的姻親網絡

50 公里遠處的 SBB 墓葬群,遺傳主要有 Slab Grave 東方、Sagly/Uyuk 西方兩款祖源,不同人的比例不同。看起來地位最高的墓葬 SBB002、SBB003、SBB007、SBB008 四位都是女生。

男生「SBB010」的陪葬品有鐵製的縫衣針。可見在匈奴文化中,縫衣針並非專屬於女生的陪葬品。

成年女生「SBB007」陪葬算這兒最豪華的,長眠於裝飾精美的木製棺材,擺著騎馬用的裝備、鍍金鐵帶扣、漢朝的彩繪漆杯。顯然匈奴女生不只社會地位高,也會騎馬(她以前因此被判斷為男生)。

為表示尊崇,姑且稱她為「騎馬女士」。她擁有大量 Slab Grave,少量漢朝和 Sagly/Uyuk 血緣。

個人層次上,「SBB005」最有意思。她是一位蘿莉,父母為遺傳上的近親,大概是表兄弟姐妹等級的二度血緣關係(不過取樣分析中沒有直接見到她的父母),也是這回分析中唯一的近親繁殖寶寶。

這位蘿莉和騎馬女士是二度親戚關係,遺傳組成也類似騎馬女士。蘿莉也與「SBB001」是二度親戚關係,但是 SBB001 和騎馬女士兩位並非血緣上的親戚,所以他們可謂騎馬女士為首的同一社群中,埋葬在一塊的姻親。

SBB 遺址的古代基因組樣本之遺傳組成。Gonur1_BA 出土於中亞,現今的土庫曼 Gonur Tepe 遺址, 作為 BMAC 血緣的代表。圖/參考資料1

匈奴大聯盟,眾多女主經營的統治網絡?

這回的分析對象僅管沒幾個人,眾人的血緣卻千變萬化,乍看有些雜亂。從中能得知哪些啟發?論文強調的觀點是:匈奴西部的邊疆地帶,東方血緣的女性扮演重要角色。

匈奴人的血緣非常多元,可謂歐亞大陸的熔爐,沒有所謂的匈奴 DNA;可是掌握權力與資源的,似乎更集中在特定族群。然而,Khövsgöl(匈奴北部)、Slab Grave(匈奴東部)、漢朝(匈奴外頭的東南部)血緣僅管都可以歸類為「東方」,淵源卻明顯有別。

從已知極為有限的樣本看來,配備這些血脈的女生,都有機會在匈奴社會中身居高位。加上其他匈奴邊疆的考古調查,此狀況似乎更為常見。也許這是匈奴的統治集團,在各地建構權力網絡的方式:源自東方的貴族女生,各自經營各地的群體。

由漢朝人的記錄看來,匈奴好像是鬆散的部落聯盟,但是匈奴帝國具體如何運作,我們幾乎沒有概念。這將是有意思的探索方向,也令人興起一些大膽的猜想。

如果對蒙古帝國的女性參政有興趣,傑克.魏澤福的《成吉思汗的女兒們》值得一讀。有些人看到匈奴女主的研究,就想起這本書。

與日月同在的文明帝國

換個角度思考也很有意思。依照漢文記載,匈奴人在荒郊野外居無定所,文化低落,生活原始又暴力;漢朝人假如被野蠻人擄掠,或是隨著和親進入匈奴,簡直就是從天堂淪落到地獄!

可是如今知道,歷來應該也有些漢朝人口用腳投票,自願投奔匈奴,想來匈奴生活並沒有那麼慘。至少我們能肯定, 被編戶齊民鎖在土地上,當韭菜索求無度的那些漢朝人,日子超級淒慘。

這回取樣的地點位於匈奴西部的邊疆,距離漢朝本土頗有距離。不過分析的 18 人中,五位或多或少具有漢朝血緣,三位還是地位崇高的成年女性。

倘若再考慮性別與政治,或許會有更不一樣的想像。住在漢朝的女性出生再好、個人資質再優秀,一輩子都沒機會擔任行政工作職位,但是如果活在匈奴……

有一半漢朝血緣的日月女士(粒線體單倍型為 A11。不確定她是第一代移民的女兒,或父母搭配剛好提供一半),生前是一方疆土的管理者,死後高規格的墓葬,見證她畢生的功績受到認可。伴她長眠,象徵匈奴精神的日、月金盤,對她有什麼特殊意義嗎?

有一位漢朝官員陳湯曾言:「明犯強漢者,雖遠必誅」,可謂反辱華的先驅。但是如今我們也知道這個世界上,不只一種「文明」。

延伸閱讀

參考資料

  1. Lee, J., Miller, B. K., Bayarsaikhan, J., Johannesson, E., Ventresca Miller, A., Warinner, C., & Jeong, C. (2023). Genetic population structure of the Xiongnu Empire at imperial and local scales. Science Advances, 9(15)
  2. Ancient DNA reveals the multiethnic structure of Mongolia’s first nomadic empire
  3. Politically savvy princesses wove together a vast ancient empire
  4. Jeong, C., Wang, K., Wilkin, S., Taylor, W. T. T., Miller, B. K., Bemmann, J. H., … & Warinner, C. (2020). A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell, 183(4), 890-904.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
191 篇文章 ・ 867 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

3
0

文字

分享

0
3
0
雪橇宅急便,白喉終結者:百年名犬的基因組
寒波_96
・2023/06/22 ・3697字 ・閱讀時間約 7 分鐘

公元 2023 年 4 月 28 日 Science 期刊發表專題「Zoonomia 計畫」,包含多篇定序、分析大量哺乳類的論文。其中一篇論文的分析尺度最小,研究對象的知名度卻最高,那就是一百年前名犬「巴圖(Balto)」的古代基因組。

先來緬懷巴圖的事蹟:他在 1925 年 2 月 1 日頂著低於零下 30 度的氣溫,駕駛雪橇 7.5 個小時,穿越 85 公里,與同儕成功將白喉血清送到目的地,拯救許多人命。

巴圖本尊,位於克利夫蘭博物館,毛色比活跳跳時褪色一些。圖/參考資料2

白雪季節,白喉來襲

巴圖的飼主 Leonhard Seppala 於挪威成長,後來搬到阿拉斯加,是駕駛雪橇以及培育雪橇犬的專家。巴圖 1919 年在阿拉斯加出生,從小與眾多同儕一起訓練,成為優秀的雪橇犬。

阿拉斯加西部的小鎮諾姆(Nome)在 1924 年底約三千居民,只有一位醫師 Curtis Welch 和四位護士。1925 年一月中,醫師確認恐懼的事正在發生,白喉已經入侵,人類開始死亡。

幾年前 H1N1 大流感(西班牙流感)襲擊諾姆,在醫療資源有限的當地造成重傷害。如果不及時阻止,白喉恐怕也將導致大災難。那時已經有白喉抗毒素(antitoxin)可以對付白喉桿菌,醫師緊急請求支援,也得到回應。

然而,地點、時節都很尷尬。諾姆離海港較近,可是時值嚴冬,被凍結的港口無法水運。那個年代已經有飛機,評估空運的成功機率卻不高。陸路是有鐵路,但是距離也相當遙遠。

陸海空方案中,陸路機會最高。最終人們下了艱難的決策:交給傳統技藝「雪橇宅急便」。當局緊急招募多位老經驗的雪橇駕駛人,與精銳雪橇犬組隊,一隊接力一隊,將白喉抗毒素血清送往諾姆。

1925 年雪橇宅急便的路線。圖/維基百科「1925 serum run to Nome」

一千公里的雪橇宅急便

任務極為困難,路途遙遠、氣候惡劣以外,血清預計只能維持 6 天。那時兩地郵件寄送預計為一個月,意思是要把本來普通天候下的一個月,縮短為酷寒下的 6 天時程。

最後擬定的計畫相當精密,貨物先由鐵路送到最近的尼納納(Nenana)。接著雪橇隊將從兩端同時出發,一邊從尼納納向前狂奔,送到努拉托(Nulato);另一邊從諾姆出發,各隊依序就位,到努拉托收件,接著往回狂奔。

用台灣類比,像是把東西從台北送往高雄,一邊從台北經由桃園、新竹、苗栗、向台中前進,另一邊從高雄先向台中,沿路在台南、嘉義、彰化就位,再往回走。

從台北到高雄,國道一號的路程約為 350 公里,尼納納到諾姆則超過 1000 公里。大部分隊伍頂著零下 30 到 50 度的氣溫,前進 40 到 80 公里的距離。最後在 20 位雪橇駕駛員及 150 位雪橇犬日夜不停接力下,只花 5 天半就將血清送到諾姆。

開路先鋒 Bill Shannon 的 84 公里過程最凶險,他與 9 狗在零下 40 到 52 度的風雪中趕路,半路 3 狗不敵酷寒,不幸犧牲(三狗名為 Cub、Jack、Jet),人臉也嚴重凍傷,所幸隊伍依然完成任務。

完成任務後,Leonhard Seppala 與他最信任的狗狗們留影,圖哥在最左邊。圖/維基百科「1925 serum run to Nome」

貢獻最大的人是倒數第三棒,也就是巴圖的飼主 Leonhard Seppala。他帶領 20 狗,讓最信任的「圖哥(Togo)」與 Fritz 領隊,先從諾姆向東前進 270 公里就位,收件後又狂飆 146 公里,成為里程最長的隊伍。

圖哥也成為這趟任務中,貢獻最大的狗狗。他生於 1913 年,雪橇宅急便時 12 歲,後來活到 1929 年,16 歲去世。

英雄旅程,以及英雄的餘生

巴圖的飼主不特別看重他,所以沒有帶他同行,而是交給同樣來自挪威,在阿拉斯加工作的 Gunnar Kaasen。巴圖和同儕 Fox 是最後一棒共 13 狗的領隊,他們原本預計是倒數第二棒,負責從 Bluff 到 Safety 的 40 公里。

不過凌晨 2 點多抵達交棒地點時,預計接手的 Ed Rohn 判斷暴風雪會延誤行程,正在睡覺。Gunnar Kaasen 決定自己繼續趕路,最後累積 85 公里,在 2 月 1 日 5 點 30 分抵達諾姆。

及時獲得支援的 Curtis Welch 醫師,與手下成功控制白喉疫情,將傷害減到最輕。Alaskan Lives Matter!

當時雪橇宅急便是全美國關注的新聞,廣大民眾都很緊張是否能成。雪橇犬、駕駛人都被視為英雄,成為焦點話題。巴圖的貢獻應該算第二名,不過最後是他將血清送到目的地,這位 6 歲的狗狗也獲得最大的名聲。

完成任務不久後,巴圖與駕駛猿 Gunnar Kaasen 的留影。圖/參考資料1

熱潮過去後,巴圖被賣到洛杉磯,成為展示動物。1927 年,拳擊手轉職商人的 George Kimble 在洛杉磯見到巴圖,覺得這位英雄的待遇有夠爛,便運作讓巴圖與 6 位同儕搬到他的家鄉克利夫蘭。

巴圖抵達克利夫蘭時,受到遊行熱烈歡迎。他在動物園度過餘生,1933 年 3 月 14 日去世,享年 13 歲。接著化身為標本,成為克利夫蘭博物館的一員陪伴大家,直到 90 年後的現在。

遺傳一極棒,卻已經消逝的狗群

2023 年發表的論文由巴圖的皮膚取得 DNA,平均覆蓋率 40,品質相當好。歷史記載看他是西伯利亞哈士奇(Siberian husky),但是要等到他出生後 11 年, 1930 年這個品系才被美國犬業俱樂部(American Kennel Club)認證。

和現代品系相比,巴圖合計有 68% 血緣與多款北極狗一致。西伯利亞哈士奇只有 39%,格陵蘭雪橇犬 18%。有趣的是還配備 24% 的亞洲狗狗血緣,而且毫無任何狼的成分。

根據 DNA 預測巴圖的外貌特徵,都正確。圖/參考資料1

巴圖所屬的狗群,依照歷史記載源自西伯利亞,由於體型小、速度快、適合雪橇,所以被帶到阿拉斯加培育。和如今所有的品系狗比較,他配備的潛在有害變異較少,DNA 多樣性較高,遺傳上更加健康。

和一百年前的巴圖相比,如今的北極狗近親繁殖更嚴重,有害變異更多。巴圖 6 個月大便已絕育,沒有後代。他所屬遺傳更多元的族群,也已經消逝了。

根據 DNA 變異能預測古狗的形貌,只是以前都不知道準不準。巴圖有照片也有標本,可以精確比較。預測他有雙層狗毛、大部分黑毛加上少量白毛、肩高 55 公分,都符合實況。現今西伯利亞哈士奇的肩高介於 53 到 60 公分,巴圖算是範圍內略矮的。

另外有意思的是澱粉。遺傳上,狼、北極狗消化澱粉的能力最差,其餘狗從好一點到好很多。巴圖看來比其餘北極狗好一點,但是離多數狗差一截,符合他大量北極、少量亞洲血緣的遺傳背景。

狗狗們。圖/參考資料1

他們都是英雄

巴圖的飼主 Leonhard Seppala 沒有將其選進自己的小隊,加上臨時更動計畫,反倒使得巴圖成名。其實知道多一點歷史就會覺得,歷史上最不意外的,就是發生意外。

Leonhard Seppala 事後曾經抱怨,他的難波萬愛犬圖哥應該享有的鋒芒,被巴圖獲得。歷來也不缺少貶抑巴圖的好事之徒,指控他不是隊長等等(巴圖也許不是唯一的隊長,但是反駁他擔任隊長的證據都弱弱的)。

可是稍微想想就知道,比圖哥年輕 6 歲的巴圖,當然不是弱雞。運送血清的漫長過程,只要一次失誤便前功盡棄,能參與的肯定都是精英。而巴圖也不辱使命,證實飼主調教有方。

重要的是,1925 年的雪橇宅急便及白喉保衛戰中,不論每一位有什麼貢獻,所有的狗與人都冒著巨大的風險工作,拯救許多人。他們都是英雄,我們懷念他們。

延伸閱讀

參考資料

  1. Moon, K. L., Huson, H. J., Morrill, K., Wang, M. S., Li, X., Srikanth, K., … & Shapiro, B. (2023). ​ Comparative genomics of Balto, a famous historic dog, captures lost diversity of 1920s sled dogs. Science, 380(6643), eabn5887.
  2. Genome of famed sled dog Balto reveals genetic adaptations of working dogs
  3. Hidden details of world’s most famous sled dog revealed in massive genomics project

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
191 篇文章 ・ 867 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。