Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

想要擁有一台 AI PC,有必要嗎?NPU 是什麼?超詳盡 AI PC 選購指南來啦!

泛科學院_96
・2024/05/18 ・1080字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

2023 年 3 月 intel 跟微軟共同發布了 AI PC 定義。

定義需要用 intel 的 Core Ultra 處理器,要有微軟系統內建 的Copilot AI,鍵盤上還需要有一個實體 copilot 按鍵,才算是一台 AI PC。

這個 AJ 看到後,發現案情並不單純,定義 AI PC 這件事情,遠比你想得還要重要!

所以今天呢,我們就來回答三個問題:

-----廣告,請繼續往下閱讀-----
  1. AI PC 是什麼?
  2. AI PC 強在哪?
  3. 有哪些公司跟 AI PC 有關?

最後再跟大家分享是否要買 AI PC 的建議。

好啦,本集我們整理了整個 AI PC 的脈絡,我把懶人包放在這裡,有需要的可以暫停看一下。

最後來給買 AI PC 的建議吧,如果你主要用桌上型電腦,4090 獨立顯卡直接給他買下去,因為桌上型的處理器至少到目前為止,都還沒看到內建 NPU 的規劃,所以所有的平行運算都還是靠顯示卡 GPU 來處理。

筆記型電腦方面,各家網購平台都已經推出 AI 筆電專區,最低三萬元左右就可以買到最新的 AI PC。

-----廣告,請繼續往下閱讀-----

或許你還沒體驗到 AI 工具帶來的工作流程改變,不過潮流已經出現,據說到 2025 年,將出貨超過一億台AI PC,各家軟硬體廠商在這個全新的賽道上,只會不斷推出各種基於 AI PC 架構的應用與服務,畢竟,你如果不做,你的競爭對手可是不會等你。

有點離題了,在可遇見的未來,我們勢必會發現自己的電腦擁有更多基於 AI 技術的功能,

也許,你可以再等一會,等桌上型電腦也內建 NPU 之後,再來買真正的 AI 「PC」,不過要問我的話,如果是購買筆電的需求,選擇適合 Intel Evo 認證的筆電是值得推薦的選擇。

最後,你覺得 AI PC 會如微軟和 intel 預想的發展下去嗎?

  1. 會,終究要讓自己電腦分擔伺服器工作。
  2. 不會,AI PC 就只是宣傳話術。
  3. 我是果粉我驕傲,AI PC 如浮雲。

如果有其他想看的 AI 工具測試或相關問題,也可以留言發問,如果喜歡這支影片的話,也別忘了按讚、訂閱,加入會員,我們下集再見~掰!

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
文章難易度
泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
1

文字

分享

0
5
1
一顆科技巨星的隕落(上)—英特爾的興起
賴昭正_96
・2025/02/22 ・5335字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

我當時負責管理一條用於生產記憶體晶片的裝配線。我認為微處理器是個非常大的麻煩。
-Andrew Grove(英特爾首席執行官)

蕭克利(William Shockley Jr.)1910 年 2 月 13 日出生於英國倫敦,父母是美國人,1913 年返回美國,在加州帕洛阿爾托(Palo Alto)接受教育,1932 年加州理工學院畢業,1936 年取得麻省理工學院物理學博士學位後,到貝爾電話實驗室工作。第二次世界大戰爆發後,研究中斷,1942 年 5 月離職,擔任哥倫比亞大學雷達研究、反潛戰作戰小組的研究主任。

1945 年戰爭結束後不久,回到貝爾電話實驗室與化學家摩根(Stanley Morgan)領導新成立的固態物理小組; 1956 年與同事巴丁(John Bardeen)和布拉頓(Walter Brattain)因「在半導體和電晶體效應方面的工作」而榮獲諾貝爾物理學獎。1954 年蕭克利離開貝爾實驗室,到加州理工學院任國防部武器系統評估小組副主任兼研究主任。因想嘗試將新型電晶體設計商業化,於 1956 年回到故鄉附近的山景城(Mountain View),在 Beckman Instruments, Inc. 的資助下,建立了自己的公司「蕭克利半導體實驗室」(Shockley Semiconductor Laboratory),專注於開發矽基半導體裝置。

蕭克利半導體實驗室原址紀念牌。圖/wikimedia

「蕭克利半導體實驗室」為現在被稱為「矽谷」(Silicon Valley)的第一家致力於開發半導體裝置的高科技公司。蕭克利跑遍全美國招募了許多優秀員工,但因其傲慢;粗魯、專制、不穩定的管理、和研究方向不同而造成許多人才不久便紛紛離開,在附近創立新公司,將原本主要產業為種植李子、到處都是杏樹和櫻桃樹果園的舊金山灣區南部發展成為今天全世界科技中心的「矽谷」。在後來被稱為「叛徒八人」(traitorous eight)於 1957 年辭職後,「蕭克利半導體公司」就再也沒有從中恢復過來;在幾次轉賣後,終於在 1969 年壽終正寢。幾經曲折,當初引發半導體革命的建築物現在已經完全消失,為新建築及一些紀念蕭克利對矽谷開端所做之貢獻的噴泉、雕塑和幾塊牌匾等取代。

蕭克利雖然被《時代》雜誌評為「本世紀最重要的科學家之一」,但創業的目的完全失敗,只能眼睜睜地看著財富和權力落入他人手中。1963-1974 年蕭克利擔任史丹佛大學電機工程教授;在生命的最後二十年裡,他力倡種族主義和優生學,毀了其名譽;除了忠實的第二任妻子之外,他與大多數朋友和家人都疏遠了,非常孤獨。蕭克利於 1989 年 8 月 12 日死於攝護腺癌,享年 79 歲。

-----廣告,請繼續往下閱讀-----

誰是那被蕭克利稱為「背叛」(betrayal)的八位頂尖科學家呢?因為編幅的關係,我們在這裡只提將要出現在本文的四位:諾伊斯(Robert Noyce)、摩爾(Gordon Moore)、赫爾尼(Jean Hoerni)、與拉斯特(Jay Last)。

仙童半導體公司

諾伊斯 1953 年獲得麻省理工學院物理學博士學位,於 1956 年加入蕭克利半導體實驗室團隊。一年後,諾伊斯因對蕭克利的管理風格產生疑問與其他七人一起離開。諾伊斯說服了商人和投資家費爾柴爾德 ( Sherman Fairchild ),八人共同創立了仙童半導體公司(Fairchild Semiconductor)。新成立的仙童半導體很快就成長為半導體產業的領導者及「矽谷」的孵化器,直接或間接地促成了包括英特爾(Intel)和超微半導體公司(Advanced Micro Devices, Inc.,簡稱 AMD)在內的數十家「仙童小孩」(Fairchildren)公司的創建。

50 年代前,電路都是用手將許多離散零件(電阻器、電晶體、和電容器等)用電線連接在一起來控制內部電流的。1959 年德州儀器(Texas Instruments)的基爾比(Jack Kilby,註一)和諾伊斯分別同時發展出將所有零件放在矽(鍺)晶片上,再用銅線將它們連接起來。同年,赫爾尼開發出透過二氧化矽層保護的平坦表面來製造電晶體的平面製程(planar process),隨後諾伊斯提出在晶圓頂部沉積鋁「線」來互連晶圓上的電晶體;拉斯特的團隊於 1960 年製造出第一塊平面「積體電路」(integrated circuit,簡稱 IC )。這種製程不但使得電路更穩定,還可以完全避開緩慢手工接線的需求,使得大規模生產電路成為可能,催生了現代電腦晶片(chip)產業,開創了前所未有的電子設備小型化,徹底改變了我們的日常生活範式

1968 年,諾伊斯因未能晉升到公司的領導職位,及想尋求更多的自主權和建立具有新願景的新公司,與摩爾離開仙童半導體公司,共同創立英特爾;不久開發助理總監格羅夫(Andrew Grove)也離開仙童半導體公司,於英特爾成立之日加入,成為第三號員工。

-----廣告,請繼續往下閱讀-----
格羅夫、諾伊絲、摩爾三人合照(1978)。

英特爾成立

英特爾成立的初衷是做半導體記憶體。1970 年 10 月英特爾開發和製造第一款商用動態隨機存取記憶體 ( DRAM ) 積體電路;相對於當時廣泛使用的磁芯記憶體,因其較小的物理尺寸和較低的價格,它在許多應用中取代了後者,為 1981 年前英特爾的主要業務。

1971 年 10 月 13 日英特爾首次公開募股,為首批在當時新成立的全國證券交易商協會自動報價(納斯達克,NASDAQ)證券交易所上市的公司之一。

雖然英特爾解決了不少內部基本技術問題,但他們認為也應該進行一些根據客戶的特定規格製造晶片的客製化工作。因此於 1969 年 4 月與一家日本計算器公簽訂了一份晶片製造合約,為其一系列不同的計算器型號構建不同的顯示器、印表機、內存量等等的晶片。沒想到這決定竟然使英特爾能即時在日本以品質更優越、成本更低的記憶體晶片侵食其主要產品市場時,脫胎換骨成為今天我們所知道的英特爾,不再是記憶體的大供應商。  

霍夫 ( Ted Hoff ) 於 1962 年獲得是史丹佛大學電機博士,在史丹佛大學工作一段時間後,於1968年9月被諾伊斯挖角成為英特爾第 12 號員工。當他在塔希提島(Tahiti)裸露上身的海灘上時,不知道看到什麼(美女?),突然悟出了一種解決日本計算器製造商專案的革命性方法:類似於諾伊斯和基爾比的想法,將處理器的所有基本元件組合到一個小晶片上。在當時,處理器是由一個實際處理資料的核心晶片、一些準備資料供核心晶片使用的邏輯晶片、及一些記憶體等不同元件組成的,因此體積很大,為大型主機中的巨大部件。當時唯一存在的微型處理器是計算器內部的處理器,它們僅針對一些數學函數而設計,無法重新編程來處理文字、圖形或其它事物。

-----廣告,請繼續往下閱讀-----

1971 年 11 月 15 日英特爾推出首款霍夫的微處理器(microprocessor, 註二)4004。半年後發表第一款8位元微處理器 8008。1974 年 4 月,英特爾推出具有 4,500 個電晶體的第一款通用 8080 微處理器,啟動了個人電腦(PC)的開發。1978 年 6 月英特爾推出成為個人電腦業界標準(x86 指令集)的 16 位元微處理器 8086。

綽號「矽谷市長」的諾伊斯被認為是英特爾早期願景及其大部分企業文化的製定者,而摩爾則是一位技術奇才,以 1975 年預測未來 10 年積體電路上的電晶體數將每年翻倍的「摩爾定律」(Moore’s law)聞名;在他和格羅夫的領導下,英特爾在矽存儲器及微處理器領域取得早期領先地位,並成功地將公司從 80 年代中期的記憶體轉型到微處理器。英特爾雖然開創了電腦記憶體、積體電路、和微處理器設計的新技術,但它真正成為一顆科技巨星則是運氣加上豪賭的結果━且聽筆者道來。

IBM 的個人電腦

早在蘋果公司的小鬼們在車庫裡建造個人電腦之前數年,雄霸商用電腦、目中無人的 IBM(國際商業機器公司)就已看出了個人電腦的發展前途與機會。但十幾年過去了,卻只聞樓梯響,不見人下來;因此在 1980 美國國慶的前一個禮拜,舉行了最高階全權管理委員會會議。會中董事長卡里(Frank Cary)生氣地問:「我的蘋果電腦在哪裡?」當通用產品部負責人羅傑斯(John Rogers)回答說他的部門手頭緊,無法資助個人電腦研發時,卡里立刻說:「好,不用操心,我來資助它。」他轉問曾做過有關開發個人電腦演示的羅傑斯下屬洛比爾(Bill Lowe):「你是否有任何場外土地可以放置一個與他人隔離的開發團隊?」洛比爾回說:「有,佛羅裡達州的博卡拉頓(Boca Raton)。」卡里: 「你帶四十個人到那裡,然後挑選一位直接向我匯報的菁英來管理。我給你一個月的時間去組織起來向我匯報。」

事實上不是金錢,而是 IBM 的官僚及各部門之明爭暗鬥扼殺了其個人電腦的發展。因此洛比爾挑選了一位謙虛、穿牛仔靴、完全不符合 IBM 形象、幾乎被 IBM 踢出大門的 43 歲中階管理「菁英」伊斯基(Philip Donald Estridge)。既然有太上皇令箭,伊斯基就大膽地、毫無顧忌地違反所有 IBM 的規則去推進洛比爾的項目。基於過去失敗的經驗,為了避免內部不停的干擾,及像他人在個人電腦市場上花費兩三年的時間,伊斯基決定選擇開放式架構和現成元件,在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件。當 IBM 個人電腦於 1981 年問世,1982 年和 1983 年真正開始流行時,IBM的收入開始起飛:從 1981 年的 290 億美元增加到 1984 年的 460 億美元;股票市值在 1984 年底達到約 720 億美元,為當時全球最值錢及最賺錢的公司。在《財星》雜誌的美國企業年度調查中,IBM 成為最受敬佩的公司。

-----廣告,請繼續往下閱讀-----
IBM 個人電腦。

當初領導一個只有 14 人的「臭鼬工廠」團隊,竟然開發出了 IBM PC 產業,伊斯基「瞬間」成為個人電腦界名人,被稱為「IBM PC 之父」,出現在各主流雜誌和報紙上,好像他就是 IBM;儘管外界不停地挖角,他都以「在 IBM 工作」為榮拒絕(註三)。但在 IBM 內部,伊斯基則成為高階主管既羨慕、又嫉妒、又恨的對象,於 1985 年年初表面上將他「提升」為製造副總,負責監督全球所有製造業務,但實際上是沒大權責的貶職;伊斯基私下向親友表示不懂為什麼會被打下來,也因此曾經想離開 IBM(註四)。正方興未艾的個人電腦事業則不再獨立、被歸入稱為「入門級系統」的公司部門編制,由伊斯基以前的老闆、IBM 官僚體系內的洛比爾接管。

英特爾興起

相信大部分讀者都已經知道,伊斯基決定在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件的最大幸運受惠者是:前者是微軟公司(Microsoft Corp.),後者就是本文的主角英特爾。但如果僅此,英特爾可能將永遠只是活在 IBM 陰影下的零件供應商而已。

改變IBM主導個人電腦市場的英特爾 80286 微處理器。圖/英特爾歷史網站

話說 IBM 的大佬們都想控制小型系統團隊,因此將伊斯基提升為公司製造副總,將他所帶領的獨立團隊併入母公司體系,依照官僚體制製定了一項基於英特爾 1982 年 2 月推出之 80286 微處理器的「個人系統二號」(PS/2)十年計劃。1985 年 10 月,英特爾推出一款可更快地同時運行多個軟體程式的 32 位元 80386 微處理器晶片時,IBM 還是圍繞著 80286 開會又開會、討論又討論、…。英特爾不能眼看這項先進技術擱置在哪裡等待別人來追趕,因此決定進行一豪賭:尋找新客戶。英特爾很清楚這項決定可能會摧毀它,因為 IBM不但是銷售最多個人電腦的大客戶,還擁有世界一流的製造處理器技術,惹惱了可以隨時推出更強大的英特爾晶片變體來取代 80386。

英特爾公司總部。圖/wikimedia

最後決定還是賭了:英特爾轉向1982年成立的康柏電腦公司(Compaq Computer Corp.)。1986 年 9 月,康柏電腦非常成功地在紐約市展示一系列首次能與 IBM 個人電腦相容、採用英特爾 80386 微處理器的個人電腦。這是 IBM 個人電腦主要元件由非 IBM 公司進行更新之首例:從 80286 處理器升級到 80386。《紐約時報》謂 Deskpro 386 的發布確立了康柏作為個人電腦行業領導者的地位,「在聲譽和金錢方面,沒有任何一家公司比 IBM 受到更大的傷害」。《資訊世界》(InfoWorld)在其 1986 年 9 月 15 日刊的封面上刊登了標題:「康柏推出 386PC,挑戰 IBM 與之匹敵」。IBM 終於在 1987 年 7 月發布了他們的第一台基於 386 的個人電腦 PS/2  Model 80,但為時已晚,IBM 標誌已經開始失去其商標價值,個人電腦的未來已經改由英特爾和微軟主導了!微軟創辦人蓋茨(Bill Gates)謂:

-----廣告,請繼續往下閱讀-----

個人電腦產業歷史上的一個重要里程碑是 IBM 的員工不信任 386。因此我們鼓勵康柏繼續生產 386 機器。那是人們第一次意識到不僅僅是 IBM 在製定標準,這個行業(已)有自己的生命力,而像康柏和英特爾這樣的公司正在做新的事情,人們應該關注。

英特爾這場賭博得到了回報:康柏的成功加速客戶轉向新的英特爾80386晶片後,英特爾在某些年份的獲利超過了 IBM,其股票市值在 90 年代初期也超過了 IBM,於 1999 年成為代表美國 30 主要工業的道瓊指數之一。

備註

  • (註一)基爾比獲 2000 年諾貝爾物理學獎;在他的「諾貝爾演講」中,三次提到了已經過世(1990年)的諾伊斯對積體電路的貢獻。
  • (註二)英特爾的微處理器事實上是一「中央處理器」(Central Processor Unit,CPU)。微處理器和 CPU 的相似之處多於不同之處。事實上,所有 CPU 都是微處理器,但並非所有微處理器都是 CPU。兩者之間的主要區別在於它們在電腦系統中的功能和用途。CPU 是一種具有多種角色的處理器;而微處理器通常僅負責一項特定任務,能夠非常出色地完成該任務。CPU 向微處理器發出指令,微處理器依令將資料傳送到 CPU 或 CPU 指定的其它元件。微處理器的任務是執行特定且可重複的操作,而 CPU 的任務則是執行廣泛且多樣化的任務。如果將 CPU 比喻成電腦中的大腦,那麼身體的腿和手將成為微處理器的區域。
  • (註三)蘋果電腦創辦人賈伯斯(Steve Jobs)曾提供一份身價數百萬美元的蘋果電腦總裁職引誘。
  • (註四)1985 年 8 月攜妻度假,飛機失事雙亡。

延伸閱讀 :日常生活範式的轉變:從紙筆到 AI

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
E10 低碳汽油:台灣減碳新契機,為何我們應該接受?
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/17 ・3468字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與美國穀物協會合作,泛科學企劃執行。

台灣將在 2040 年禁售燃油車。但別急,現在路上開的舊有車款不會馬上報廢消失,因為舊有的車輛會繼續開到年限結束。根據計算,當禁售燃油車的那一天來臨時,還有大約 60% 的車輛是燃油車。這時,在多數交通工具還是燃油的情況下,美國、歐盟等國已經開始使用酒精燃料來減少碳排放,那麼,台灣也能做到嗎?

你聽過 E3、E10 汽油嗎?

這是指在汽油中加入酒精,E3 代表有 3% 的汽油被酒精取代,而 E10 則是 10% 的汽油換成酒精。酒精是一種抗爆震性能更好的燃料,且比化石燃料更環保,因為它可以來自生質燃料,碳排放也較低。即便算上運輸和加工的碳足跡,用玉米製造的乙醇仍比傳統汽油的碳排放低了 43%。其實,在美國、歐洲、澳洲等地,E10 或更高比例的酒精汽油早已廣泛使用,這在我們之前的影片中也有提過。

現在,台灣有 14 間加油站可以加到 E3 汽油,而中油也正積極促使相關部門開放 E10 汽油的銷售。

-----廣告,請繼續往下閱讀-----

不過,在推動這項改變之前,仍有許多民眾對酒精汽油有疑慮。大家最關心的問題是,把不是汽油的燃料放到引擎中,到底會不會對車輛引擎造成不良影響?例如會不會影響引擎運行,甚至影響里程數?
其實,換燃料確實會對引擎有影響,因為不同燃料燃燒後所產生的能量與副產物都不一樣。但別擔心,根據我們之前的討論,2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。換句話說,除了少數舊車或特殊車型,約 95% 的汽機車都不需要擔心這個相容性問題。

2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。圖 / 美國穀物協會提供

E10 汽油在效能上的表現,會不會受到影響?

學過化學的人都知道,燃燒其實是一種氧化反應,可以用化學式表達。也就是只要汽缸的大小是固定的,就能算出空氣中能參與氧化反應的氧氣分子有多少,進而推算出每次汽缸燃燒時,應該搭配多少的燃料。

當引擎運作時,汽缸內的氧氣分子會與燃料反應,產生動力。為了最佳化效能,引擎的噴油嘴會精準控制每次的進油量,確保空氣和燃料的比例,稱為「空燃比」。接著調整噴油嘴的設定,讓出油量符合我們的需求。

每當空氣成分改變,燃料量或燃料的種類更換時,空燃比就會產生變化。在燃料相對空氣來說比較多時,我們通常稱為「富油」;相反的,如果燃料相比空氣來的少,就稱為「貧油」。如果我們把汽油換成百分之百的酒精,因為酒精每單位體積所需要的氧氣比較少,而且熱值比較低,因此會產生貧油現象,推力感受起來自然也會比較低。

要解決這個問題,方法其實不難,只要增加燃料量即可。而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。

而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。圖/美國穀物協會

這類交通工具被稱為彈性燃料引擎,顧名思義,能很彈性的使用汽油、E100 酒精汽油、或是任何比例的甲醇、乙醇、汽油的混合物。彈性燃料引擎跟一般引擎最大的差別,就是內建了「燃料成分感測器」。能透過判斷燃料的種類與比例,調整噴油嘴的出油量設定以及點火正時,讓引擎的輸出動力維持在最佳狀態,確保引擎效能不受影響。

-----廣告,請繼續往下閱讀-----

所謂的點火正時,指的是火星塞點火的時機。不同的燃料,化學反應的速度與膨脹的體積不同,當然會對應不同的點火時機。

但是 E100 其實也不是純酒精?

大家都知道,蒸餾酒需要經過多次反覆蒸餾,為什麼不能只蒸餾一次就好呢?原因在於,酒精與水的沸點雖然不同,但它們不完全互斥,會產生交互作用。在蒸餾過程中,即使酒精的沸點較低,水仍然會在加熱的過程中,隨著酒精部分蒸發進入容器中。

事實上,當酒精濃度達到 95.63% 時,不論再怎麼蒸餾,濃度也不會再上升。這是因為當酒精濃度接近這個比例時,酒精與水的沸點非常接近,這種現象稱為「共沸」,意思是酒精和水的混合物會一起沸騰,無法再進一步蒸餾分離。

共沸現象的結果,就是為什麼市面上銷售的藥用酒精,濃度最高都是 95%,而非 100%。因為更高濃度就必須使用脫水劑等方式處理,成本會提高,或是因為有添加物而不符合藥用標準。所以當然,E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。

-----廣告,請繼續往下閱讀-----
E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。 圖 / 美國穀物協會提供

解決迷思:酒精汽油是否容易因吸收水分,而產生油水分離?

事實上,酒精和水是高度互溶的,這使得高比例的酒精在汽油中有更高的水分耐受性。簡單來說,進入油箱的水氣,會溶在酒精汽油中而不會產生油水分離。

根據美國國家可再生能源實驗室的研究,即使在高溫高濕的極端環境下,E10 酒精汽油也需要經過三個月才會出現明顯的油水分離。而三個月也是一般汽油建議最長的保存時間,因為汽油放太久就會氧化。

也就是說,酒精與水混和物的特性,不是把酒精和水的相加除以二那麼簡單,它們的交互作用更加複雜。

一篇刊登在《國際能源研究期刊》的研究指出,在可變壓縮比引擎中的實驗結果,加入酒精後,引擎的功率會逐漸升高,在 E10 酒精時為最佳比例效果。

-----廣告,請繼續往下閱讀-----

當然,實際情況和實驗室當然不能直接類比。大多數汽車和機車並未專門為酒精汽油做調整,那這樣會有多大影響呢?根據英國政府的官方結論,直接使用 E10 汽油與一般汽油相比,每公升的里程數大約會降低 1%,但在日常駕駛中,這個差異幾乎不會被察覺。實際上,載貨量和駕駛習慣對油耗的影響,遠遠大於是否使用 E10 汽油的影響。

更好的一點是,酒精其實是一種常見的工業用品,以每美國為例,在過去一年中,酒精的離岸價格實際上都比汽油還低,因此不用擔心酒精會讓油價變貴。

此外,經過調校的引擎也不必擔心推力問題。事實上,F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。

F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。圖/unsplash

最重要的是,使用 E10 燃料的好處明顯更多。由於酒精和烷類燃料的分子式不一樣,酒精分子式中多了一個氧原子,這使得燃燒過程中反應會更完全,能夠產生更多二氧化碳而非有毒的一氧化碳,同時降低一氧化氮和二氧化氮等氮氧化物的產生。

-----廣告,請繼續往下閱讀-----

最關鍵的一點,酒精與化石燃料相比,能夠更快速地幫助減碳。只要確保使用永續農法、不與糧食競爭土地的前提下,所製造的玉米乙醇,碳排量就是比化石燃料還要低。

E10 低碳汽油是填補減碳缺口的最快方案,挑戰只在接受度

英國引入 E10 後,每年減碳 75 萬噸,相當於減少 35 萬輛汽車的碳排量。而台灣呢?目前根據政策規劃,台灣 2040 年起將新售的汽機車全面電動化。依照這個目標進程,在 2025 年將達成減碳 288.6 萬噸的目標。然而,這距離運輸部門須減少 487 萬噸碳排量目標,還差 198 萬噸。

如果燃油車全面改用 E10 低碳汽油,則能減碳 202 萬噸,幾乎能完全彌補缺口。這項方案的優勢在於,E10 與一般汽油性質相近,不需更換新的引擎設計或架設特規加油站,執行門檻低。

實際上,目前推動低碳汽油最大的瓶頸,大概就是民眾對於這個新燃料的接受度了吧!如果接受度提升,購買量上升,成本也有機會進一步再下降。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia