Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展

鳥苷三磷酸 (PanSci Promo)_96
・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

本文由 Intel 委託,泛科學企劃執行。 

在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

先進製程:效能飛躍提升

現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

圖/PanSci

Tile 架構:釋放多核心潛能

在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

鰭式電晶體 FinFET。圖/Intel

Foveros 3D 封裝技術:高效數據傳輸

2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

圖/Intel

而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

文章難易度

討論功能關閉中。

0

5
1

文字

分享

0
5
1
一顆科技巨星的隕落(上)—英特爾的興起
賴昭正_96
・2025/02/22 ・5335字 ・閱讀時間約 11 分鐘

我當時負責管理一條用於生產記憶體晶片的裝配線。我認為微處理器是個非常大的麻煩。
-Andrew Grove(英特爾首席執行官)

蕭克利(William Shockley Jr.)1910 年 2 月 13 日出生於英國倫敦,父母是美國人,1913 年返回美國,在加州帕洛阿爾托(Palo Alto)接受教育,1932 年加州理工學院畢業,1936 年取得麻省理工學院物理學博士學位後,到貝爾電話實驗室工作。第二次世界大戰爆發後,研究中斷,1942 年 5 月離職,擔任哥倫比亞大學雷達研究、反潛戰作戰小組的研究主任。

1945 年戰爭結束後不久,回到貝爾電話實驗室與化學家摩根(Stanley Morgan)領導新成立的固態物理小組; 1956 年與同事巴丁(John Bardeen)和布拉頓(Walter Brattain)因「在半導體和電晶體效應方面的工作」而榮獲諾貝爾物理學獎。1954 年蕭克利離開貝爾實驗室,到加州理工學院任國防部武器系統評估小組副主任兼研究主任。因想嘗試將新型電晶體設計商業化,於 1956 年回到故鄉附近的山景城(Mountain View),在 Beckman Instruments, Inc. 的資助下,建立了自己的公司「蕭克利半導體實驗室」(Shockley Semiconductor Laboratory),專注於開發矽基半導體裝置。

蕭克利半導體實驗室原址紀念牌。圖/wikimedia

「蕭克利半導體實驗室」為現在被稱為「矽谷」(Silicon Valley)的第一家致力於開發半導體裝置的高科技公司。蕭克利跑遍全美國招募了許多優秀員工,但因其傲慢;粗魯、專制、不穩定的管理、和研究方向不同而造成許多人才不久便紛紛離開,在附近創立新公司,將原本主要產業為種植李子、到處都是杏樹和櫻桃樹果園的舊金山灣區南部發展成為今天全世界科技中心的「矽谷」。在後來被稱為「叛徒八人」(traitorous eight)於 1957 年辭職後,「蕭克利半導體公司」就再也沒有從中恢復過來;在幾次轉賣後,終於在 1969 年壽終正寢。幾經曲折,當初引發半導體革命的建築物現在已經完全消失,為新建築及一些紀念蕭克利對矽谷開端所做之貢獻的噴泉、雕塑和幾塊牌匾等取代。

蕭克利雖然被《時代》雜誌評為「本世紀最重要的科學家之一」,但創業的目的完全失敗,只能眼睜睜地看著財富和權力落入他人手中。1963-1974 年蕭克利擔任史丹佛大學電機工程教授;在生命的最後二十年裡,他力倡種族主義和優生學,毀了其名譽;除了忠實的第二任妻子之外,他與大多數朋友和家人都疏遠了,非常孤獨。蕭克利於 1989 年 8 月 12 日死於攝護腺癌,享年 79 歲。

誰是那被蕭克利稱為「背叛」(betrayal)的八位頂尖科學家呢?因為編幅的關係,我們在這裡只提將要出現在本文的四位:諾伊斯(Robert Noyce)、摩爾(Gordon Moore)、赫爾尼(Jean Hoerni)、與拉斯特(Jay Last)。

仙童半導體公司

諾伊斯 1953 年獲得麻省理工學院物理學博士學位,於 1956 年加入蕭克利半導體實驗室團隊。一年後,諾伊斯因對蕭克利的管理風格產生疑問與其他七人一起離開。諾伊斯說服了商人和投資家費爾柴爾德 ( Sherman Fairchild ),八人共同創立了仙童半導體公司(Fairchild Semiconductor)。新成立的仙童半導體很快就成長為半導體產業的領導者及「矽谷」的孵化器,直接或間接地促成了包括英特爾(Intel)和超微半導體公司(Advanced Micro Devices, Inc.,簡稱 AMD)在內的數十家「仙童小孩」(Fairchildren)公司的創建。

50 年代前,電路都是用手將許多離散零件(電阻器、電晶體、和電容器等)用電線連接在一起來控制內部電流的。1959 年德州儀器(Texas Instruments)的基爾比(Jack Kilby,註一)和諾伊斯分別同時發展出將所有零件放在矽(鍺)晶片上,再用銅線將它們連接起來。同年,赫爾尼開發出透過二氧化矽層保護的平坦表面來製造電晶體的平面製程(planar process),隨後諾伊斯提出在晶圓頂部沉積鋁「線」來互連晶圓上的電晶體;拉斯特的團隊於 1960 年製造出第一塊平面「積體電路」(integrated circuit,簡稱 IC )。這種製程不但使得電路更穩定,還可以完全避開緩慢手工接線的需求,使得大規模生產電路成為可能,催生了現代電腦晶片(chip)產業,開創了前所未有的電子設備小型化,徹底改變了我們的日常生活範式

1968 年,諾伊斯因未能晉升到公司的領導職位,及想尋求更多的自主權和建立具有新願景的新公司,與摩爾離開仙童半導體公司,共同創立英特爾;不久開發助理總監格羅夫(Andrew Grove)也離開仙童半導體公司,於英特爾成立之日加入,成為第三號員工。

格羅夫、諾伊絲、摩爾三人合照(1978)。

英特爾成立

英特爾成立的初衷是做半導體記憶體。1970 年 10 月英特爾開發和製造第一款商用動態隨機存取記憶體 ( DRAM ) 積體電路;相對於當時廣泛使用的磁芯記憶體,因其較小的物理尺寸和較低的價格,它在許多應用中取代了後者,為 1981 年前英特爾的主要業務。

1971 年 10 月 13 日英特爾首次公開募股,為首批在當時新成立的全國證券交易商協會自動報價(納斯達克,NASDAQ)證券交易所上市的公司之一。

雖然英特爾解決了不少內部基本技術問題,但他們認為也應該進行一些根據客戶的特定規格製造晶片的客製化工作。因此於 1969 年 4 月與一家日本計算器公簽訂了一份晶片製造合約,為其一系列不同的計算器型號構建不同的顯示器、印表機、內存量等等的晶片。沒想到這決定竟然使英特爾能即時在日本以品質更優越、成本更低的記憶體晶片侵食其主要產品市場時,脫胎換骨成為今天我們所知道的英特爾,不再是記憶體的大供應商。  

霍夫 ( Ted Hoff ) 於 1962 年獲得是史丹佛大學電機博士,在史丹佛大學工作一段時間後,於1968年9月被諾伊斯挖角成為英特爾第 12 號員工。當他在塔希提島(Tahiti)裸露上身的海灘上時,不知道看到什麼(美女?),突然悟出了一種解決日本計算器製造商專案的革命性方法:類似於諾伊斯和基爾比的想法,將處理器的所有基本元件組合到一個小晶片上。在當時,處理器是由一個實際處理資料的核心晶片、一些準備資料供核心晶片使用的邏輯晶片、及一些記憶體等不同元件組成的,因此體積很大,為大型主機中的巨大部件。當時唯一存在的微型處理器是計算器內部的處理器,它們僅針對一些數學函數而設計,無法重新編程來處理文字、圖形或其它事物。

1971 年 11 月 15 日英特爾推出首款霍夫的微處理器(microprocessor, 註二)4004。半年後發表第一款8位元微處理器 8008。1974 年 4 月,英特爾推出具有 4,500 個電晶體的第一款通用 8080 微處理器,啟動了個人電腦(PC)的開發。1978 年 6 月英特爾推出成為個人電腦業界標準(x86 指令集)的 16 位元微處理器 8086。

綽號「矽谷市長」的諾伊斯被認為是英特爾早期願景及其大部分企業文化的製定者,而摩爾則是一位技術奇才,以 1975 年預測未來 10 年積體電路上的電晶體數將每年翻倍的「摩爾定律」(Moore’s law)聞名;在他和格羅夫的領導下,英特爾在矽存儲器及微處理器領域取得早期領先地位,並成功地將公司從 80 年代中期的記憶體轉型到微處理器。英特爾雖然開創了電腦記憶體、積體電路、和微處理器設計的新技術,但它真正成為一顆科技巨星則是運氣加上豪賭的結果━且聽筆者道來。

IBM 的個人電腦

早在蘋果公司的小鬼們在車庫裡建造個人電腦之前數年,雄霸商用電腦、目中無人的 IBM(國際商業機器公司)就已看出了個人電腦的發展前途與機會。但十幾年過去了,卻只聞樓梯響,不見人下來;因此在 1980 美國國慶的前一個禮拜,舉行了最高階全權管理委員會會議。會中董事長卡里(Frank Cary)生氣地問:「我的蘋果電腦在哪裡?」當通用產品部負責人羅傑斯(John Rogers)回答說他的部門手頭緊,無法資助個人電腦研發時,卡里立刻說:「好,不用操心,我來資助它。」他轉問曾做過有關開發個人電腦演示的羅傑斯下屬洛比爾(Bill Lowe):「你是否有任何場外土地可以放置一個與他人隔離的開發團隊?」洛比爾回說:「有,佛羅裡達州的博卡拉頓(Boca Raton)。」卡里: 「你帶四十個人到那裡,然後挑選一位直接向我匯報的菁英來管理。我給你一個月的時間去組織起來向我匯報。」

事實上不是金錢,而是 IBM 的官僚及各部門之明爭暗鬥扼殺了其個人電腦的發展。因此洛比爾挑選了一位謙虛、穿牛仔靴、完全不符合 IBM 形象、幾乎被 IBM 踢出大門的 43 歲中階管理「菁英」伊斯基(Philip Donald Estridge)。既然有太上皇令箭,伊斯基就大膽地、毫無顧忌地違反所有 IBM 的規則去推進洛比爾的項目。基於過去失敗的經驗,為了避免內部不停的干擾,及像他人在個人電腦市場上花費兩三年的時間,伊斯基決定選擇開放式架構和現成元件,在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件。當 IBM 個人電腦於 1981 年問世,1982 年和 1983 年真正開始流行時,IBM的收入開始起飛:從 1981 年的 290 億美元增加到 1984 年的 460 億美元;股票市值在 1984 年底達到約 720 億美元,為當時全球最值錢及最賺錢的公司。在《財星》雜誌的美國企業年度調查中,IBM 成為最受敬佩的公司。

IBM 個人電腦。

當初領導一個只有 14 人的「臭鼬工廠」團隊,竟然開發出了 IBM PC 產業,伊斯基「瞬間」成為個人電腦界名人,被稱為「IBM PC 之父」,出現在各主流雜誌和報紙上,好像他就是 IBM;儘管外界不停地挖角,他都以「在 IBM 工作」為榮拒絕(註三)。但在 IBM 內部,伊斯基則成為高階主管既羨慕、又嫉妒、又恨的對象,於 1985 年年初表面上將他「提升」為製造副總,負責監督全球所有製造業務,但實際上是沒大權責的貶職;伊斯基私下向親友表示不懂為什麼會被打下來,也因此曾經想離開 IBM(註四)。正方興未艾的個人電腦事業則不再獨立、被歸入稱為「入門級系統」的公司部門編制,由伊斯基以前的老闆、IBM 官僚體系內的洛比爾接管。

英特爾興起

相信大部分讀者都已經知道,伊斯基決定在 IBM 外部購買操作系统軟體和幾乎所有的硬體零件的最大幸運受惠者是:前者是微軟公司(Microsoft Corp.),後者就是本文的主角英特爾。但如果僅此,英特爾可能將永遠只是活在 IBM 陰影下的零件供應商而已。

改變IBM主導個人電腦市場的英特爾 80286 微處理器。圖/英特爾歷史網站

話說 IBM 的大佬們都想控制小型系統團隊,因此將伊斯基提升為公司製造副總,將他所帶領的獨立團隊併入母公司體系,依照官僚體制製定了一項基於英特爾 1982 年 2 月推出之 80286 微處理器的「個人系統二號」(PS/2)十年計劃。1985 年 10 月,英特爾推出一款可更快地同時運行多個軟體程式的 32 位元 80386 微處理器晶片時,IBM 還是圍繞著 80286 開會又開會、討論又討論、…。英特爾不能眼看這項先進技術擱置在哪裡等待別人來追趕,因此決定進行一豪賭:尋找新客戶。英特爾很清楚這項決定可能會摧毀它,因為 IBM不但是銷售最多個人電腦的大客戶,還擁有世界一流的製造處理器技術,惹惱了可以隨時推出更強大的英特爾晶片變體來取代 80386。

英特爾公司總部。圖/wikimedia

最後決定還是賭了:英特爾轉向1982年成立的康柏電腦公司(Compaq Computer Corp.)。1986 年 9 月,康柏電腦非常成功地在紐約市展示一系列首次能與 IBM 個人電腦相容、採用英特爾 80386 微處理器的個人電腦。這是 IBM 個人電腦主要元件由非 IBM 公司進行更新之首例:從 80286 處理器升級到 80386。《紐約時報》謂 Deskpro 386 的發布確立了康柏作為個人電腦行業領導者的地位,「在聲譽和金錢方面,沒有任何一家公司比 IBM 受到更大的傷害」。《資訊世界》(InfoWorld)在其 1986 年 9 月 15 日刊的封面上刊登了標題:「康柏推出 386PC,挑戰 IBM 與之匹敵」。IBM 終於在 1987 年 7 月發布了他們的第一台基於 386 的個人電腦 PS/2  Model 80,但為時已晚,IBM 標誌已經開始失去其商標價值,個人電腦的未來已經改由英特爾和微軟主導了!微軟創辦人蓋茨(Bill Gates)謂:

個人電腦產業歷史上的一個重要里程碑是 IBM 的員工不信任 386。因此我們鼓勵康柏繼續生產 386 機器。那是人們第一次意識到不僅僅是 IBM 在製定標準,這個行業(已)有自己的生命力,而像康柏和英特爾這樣的公司正在做新的事情,人們應該關注。

英特爾這場賭博得到了回報:康柏的成功加速客戶轉向新的英特爾80386晶片後,英特爾在某些年份的獲利超過了 IBM,其股票市值在 90 年代初期也超過了 IBM,於 1999 年成為代表美國 30 主要工業的道瓊指數之一。

備註

  • (註一)基爾比獲 2000 年諾貝爾物理學獎;在他的「諾貝爾演講」中,三次提到了已經過世(1990年)的諾伊斯對積體電路的貢獻。
  • (註二)英特爾的微處理器事實上是一「中央處理器」(Central Processor Unit,CPU)。微處理器和 CPU 的相似之處多於不同之處。事實上,所有 CPU 都是微處理器,但並非所有微處理器都是 CPU。兩者之間的主要區別在於它們在電腦系統中的功能和用途。CPU 是一種具有多種角色的處理器;而微處理器通常僅負責一項特定任務,能夠非常出色地完成該任務。CPU 向微處理器發出指令,微處理器依令將資料傳送到 CPU 或 CPU 指定的其它元件。微處理器的任務是執行特定且可重複的操作,而 CPU 的任務則是執行廣泛且多樣化的任務。如果將 CPU 比喻成電腦中的大腦,那麼身體的腿和手將成為微處理器的區域。
  • (註三)蘋果電腦創辦人賈伯斯(Steve Jobs)曾提供一份身價數百萬美元的蘋果電腦總裁職引誘。
  • (註四)1985 年 8 月攜妻度假,飛機失事雙亡。

延伸閱讀 :日常生活範式的轉變:從紙筆到 AI

討論功能關閉中。

賴昭正_96
47 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

鳥苷三磷酸 (PanSci Promo)_96
227 篇文章 ・ 315 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia