Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

德國青銅時代的戰士們,大多乳糖不耐

寒波_96
・2020/09/22 ・3071字 ・閱讀時間約 6 分鐘 ・SR值 572 ・九年級

-----廣告,請繼續往下閱讀-----

德國北部的圖蘭森河邊,距今 3200 多年前的青銅時代,曾經上演過仿佛世紀帝國真人版的大戰。至今戰場只有一小部分被調查過,卻已經發現分屬 140 位死者的遺骸。

參戰戰士想像圖,他們大部分應該無法消化乳糖。圖/取自 Slaughter at the bridge: Uncovering a colossal Bronze Age battle

考古學家認為這一場戰爭,應該是在一天、一地發生,估計參戰人數破千,可能多達數千人。這場公元前 13 世紀的大戰缺乏文字記載,也沒有詩歌傳說提及,早已遭到歷史遺忘。

1996 年有人在河邊撿到死人骨頭,才開啟一系列發掘,成為歐洲那個時期規模最大的戰場考古研究。新問世的論文報告古代 DNA 的分析,證實參戰人員中有女生;另一項有趣的發現是,他們幾乎都不能消化乳糖。[1, 2, 3]

延伸閱讀:青銅時代圖蘭森河大戰,金屬工匠工具包

遺落在圖蘭森戰場上的金屬物件。圖/取自 Lost in combat? A scrap metal find from the Bronze Age battlefield site at Tollense

古代戰場中的 DNA

研究團隊試圖由 21 人的遺骸取樣 DNA,不過只有 14 人的品質夠好,基因組覆蓋率超過 4%,能被用於後續分析。這場戰爭中同年同月同日死的 14 人,遺傳上看來都不是近親;意外的是其中有 2 位女生,可見也有女生參戰,而且不幸陣亡,不過還不清楚女生的角色為何。

-----廣告,請繼續往下閱讀-----

歐洲到 3000 年前的青銅時代晚期,許多地區人群的遺傳組成,和同一地區的現代族群已經差不多。這 14 人遺傳上都類似今日歐洲中部、北部的族群,沒有明顯的外來成分。

光看 DNA 無法判斷這群人具體的地理來歷,之前發表的研究根據鍶穩定同位素,推論有些參戰者在本地長大,也有從外地來的。

延伸閱讀:世紀帝國真人版:一場被遺忘的史詩級青銅器大戰

這群人的 DNA 有一件有趣的發現:14 人中只有 1 位,配備成年後能夠消化乳糖的遺傳變異。

各地人群配備 LP 的頻率。圖/取自 ref 4

成年後消化乳糖的能力

哺乳動物小時候,母乳是重要的營養來源,乳糖酶(lactase,常簡稱為 LCT)能夠消化母乳中的乳糖。哺乳動物長大後乳糖酶基因不再表現,有些智人卻是例外,他們乳糖酶基因附近的 DNA 變異,會改變基因調控,使乳糖酶在長大後持續表現,讓成年人能夠消化乳糖。

-----廣告,請繼續往下閱讀-----

讓乳糖酶維持運作的 DNA 變異不只一種,目前已經知道至少有 5 個;其中 4 個分佈於非洲與中東,1 個在歐洲是主流。歐洲流行的變異位置「rs4988235」位於乳糖酶基因的上游約 1.4 萬個鹼基處,由 C 改變為 T(−13.910:C>T)。[4]

成年後還能消化乳糖的能力稱作「乳糖酶持續性(lactase persistence)」,簡稱 LP。

5 種 LP 遺傳變異 。圖/取自 ref 4

青銅時代 LP 已經存在,只不過相當小眾

歐洲人群中 LP 的比例為 60 到 70% 左右。之前有研究估計它誕生的年代超過 6000 年,甚至超過一萬年;不過近來的古代 DNA 研究發現,已知最早的 LP 距今只有 4000 多年而已。

可以肯定一直到距今 3000 年前,LP 在歐洲仍然小眾,在各地遺址常常存在,比例卻都不高。

-----廣告,請繼續往下閱讀-----

青銅時代的樣本,這回圖蘭森遺址的 14 人中只有 1 位(7.1%),西伯利亞的 Mokrin 遺址距今 3700 到 4100 年前的 18 人中也只有 1 位(4.6%)。不列顛 6 人中占 17%、捷克 14 人中占 10%、德國的萊西河谷 34 人中占 29%。

年代比較晚的遺址 LP 比例比較高。波羅地海旁邊的拉脫維亞,距今 2730 到 2560 年前的 8 人,以及德國南部 1500 年前的 21 人,比例皆為 57%。匈牙利中世紀早期的 13 人,比例高達 73%。

不同年代、地點的古代樣本中 LP 存在的頻率。圖/取自 ref 1

整體看來,成年後能消化乳糖的 LP 遺傳變異,在青銅時代的歐洲已經存在,不過比例很低;之後各地都有所增加,但是離現在的 60% 到 70% 還有一段差距,歷史上應該是持續上升。

沒有證據支持 LP 源自草原

有些地區的人從一萬年前開始,與牛奶、羊奶有大量接觸機會。等到 7000 年前,歐亞大陸西部的多數地區都已經出現乳製品,不過直到青銅時代結束的 3000 年前,LP 的比例仍然不高。

-----廣告,請繼續往下閱讀-----

有個論點主張 LP 起源自畜牧發達的草原地區,隨著青銅時代的草原移民潮進入歐洲,但是目前的古代樣本不支持這個論點。

新研究除了圖蘭森遺址之外,也取樣歐洲東部的草原地區,距今 3000 多到 5000 多年前的 37 人中,配備 LP 的竟然連一個人都沒有。之前發表過的樣本中,東歐草原 4300 到 5600 年前的 37 人,LP 的頻率為 0%;4300 到 4900 年前的 Corded Ware 文化的 55 人,頻率只有 1.8%。

目前並沒有強力證據支持 LP 來自草原。青銅時代早期的東歐草原,LP 即使存在,也相當罕見。

各地古代樣本的分佈狀況,黃色是配備 LP 的樣本,紅色沒有。圖/取自 ref 1

近 3000 年來時代力量的寵兒

不論 LP 起源自何時、何處,所有分析方法都指出,LP 在最近 3000 年內受到很強大的正面天擇影響,使得比例持續上升。

-----廣告,請繼續往下閱讀-----

也許會有人質疑,LP 比例上升會不會只是運氣好?事實上,總共分析超過 400 個類似的基因變異,在同樣的標準下,LP 之外,只有一個和免疫有關的基因 TLR6(rs5743810)明顯受到天擇青睞,不過強度當然不如 LP。

由此看來 LP 確實是時代力量近 3000 年來的寵兒。這麼明顯的現象也許不是單一優勢所致,詳情仍有待深究。對於此一遺傳學課本介紹天擇時的經典案例,仍然有許多未知之處。

延伸閱讀

  1. 短篇 7200 年前,地中海北岸最早的起司
  2. 短篇 7000 多年前,非洲最早的乳製品
  3. 考古探密:奶與蜜 
  4. 箕形門齒 X 美洲原住民 X 母乳——這三者源自冰河時期的神秘關係是?
  5. 人類也會被馴化?從乳糖不耐症,看人類基因的轉變——《祖先的故事》
  6. 為何牛奶會讓人「小時好好,長大拉拉」?乳糖不耐和基因調控──《生命如何創新》
  1. Burger, J., Link, V., Blöcher, J., Schulz, A., Sell, C., Pochon, Z., … & Reyna-Blanco, C. S. (2020). Low Prevalence of Lactase Persistence in Bronze Age Europe Indicates Ongoing Strong Selection over the Last 3,000 Years. Current Biology.
  2. Lactose tolerance spread throughout Europe in only a few thousand years
  3. Study reveals lactose tolerance happened quickly in Europe
  4. Ségurel, L., & Bon, C. (2017). On the evolution of lactase persistence in humans. Annual review of genomics and human genetics,, 18.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
文章難易度
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
翻越性別高牆 打破生乳營養迷思 埃凡斯促成牛奶滅菌(1)
顯微觀點_96
・2024/07/24 ・1686字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

顯微鏡後的女性科學家系列

顯微鏡學的蓬勃發展,不僅促進了醫學﹑公共衛生的發展,而在這背後也有許多偉大的女性科學家參與其中。

屏東縣九如鄉一處養羊場有 3 頭羊確診「布氏桿菌病」,為台灣約 30 年來首例,動防所已撲殺感染羊隻並進行消毒。由於「布氏桿菌」為人畜共通傳染病,衛福部疾病管制署匡列 4 名牧場員工…。2023 年 12 月 9 日報導

由於乳製品滅菌的觀念普及,現在已很少聽聞布氏桿菌感染。這都得歸功於首先發現經由飲用感染布氏桿菌的生牛乳而導致人類得馬爾他熱,進而促成乳品全面巴氏消毒的細菌學家艾莉絲.埃凡斯(Alice Catherine Evans)。

Alice C Evans。圖片來源:PICRYL public domain

從偏鄉教師到微生物學家

埃凡斯的祖父 1831 年從英國威爾斯移民至美國,她於 1881 年 1 月 29 日出生在美國賓州尼斯威爾斯社區的一戶農家。

-----廣告,請繼續往下閱讀-----

埃凡斯在出生地念中小學,因當地沒有高中,她到了賓州托旺達(Towanda)的薩斯奎漢納學院(Susquehenna)就讀。1901 年畢業後,進入大學就讀的夢想因家裡無法負擔而破碎,且當時小學教職幾乎是唯一對女性開放的非基層勞力職業,因此她沒有多想就進入一所小學擔任 1 至 4 年級的教師。

她在家鄉和外地的小學共教了 4 年書後,得知有康乃爾大學農學院提供偏鄉教師免學費的自然科學課程。當時康乃爾大學的農學院院長貝利(Liberty Hyde Bailey)希望藉由受過訓練的教師,培養學生對大自然的熱愛、對植物和動物以及無生命世界的興趣。

埃凡斯申請了這項計畫,並用她四年教書的積蓄來到康乃爾大學,並選擇細菌學作為研究領域,指導教授是研究乳製品的微生物學家史托金(William A. Stocking)。

1908 年她獲得康乃爾大學農學院的學士學位,經指導教授推薦,獲得威斯康辛大學的獎學金;這是專門提供給專攻農化或細菌學研究的獎學金,且在此之前未曾頒給女性。於是埃凡斯前往威斯康辛大學繼續碩士學業。

-----廣告,請繼續往下閱讀-----

但她雖然是拿細菌學獎學金,但在農業細菌學指導教授黑斯廷斯(Edwin George Hastings)的要求下,埃凡斯花了三分之二的時間研讀化學,並於 1910 年獲得碩士學位。 碩士學業最後一年,教授希望埃凡斯留下來繼續攻讀博士學位。雖然意識到這是不錯的機會,但大學和碩士學業已帶給她不小的經濟和精神負擔,加上博士學位在當時對科學家並非必要,因此她選擇不再繼續攻讀。

與布氏桿菌相遇

每個人都有自己的天職,天賦就是呼喚,有一個方向,所有的空間都向他敞開。他擁有靜靜地吸引不斷往前努力的能力。

——愛默生

幸運的是,埃凡斯獲得了農業部動物產業局(Bureau of Animal Industry)的研究職位。由於乳酪是威斯康辛州的重要產業,當時威斯康辛大學化學系和細菌學系與乳製品部門合作,研究更好的乳酪製作方法。

埃凡斯是該單位首位女性員工。當時的動物產業局官員沒有想到可能會選擇女性。據傳聞,官員們在一次會議中聽到一名女科學家將加入他們的工作行列的「壞消息」時,他們充滿了驚愕,甚至「差點從椅子上跌下來」。

埃凡斯的回憶錄寫到:「就我而言,進入動物產業局純屬意外,因為長官在女性就業屏障上留下了一個漏洞,我不知不覺地就鑽了進去。」但這在女性就業可說是一個重要的里程碑,因為除非對美國公務員提出嚴重的投訴,否則埃凡斯不會被任意解僱。

-----廣告,請繼續往下閱讀-----

所幸埃凡斯的頂頭上司,乳製品部長羅爾(B. H. Rawl)與研究主任羅傑斯(Lore A. Rogers),都不認同其他高級官員對女性的敵意。她在此研究主題是牛乳中各式各樣的細菌,並了解這些類型細菌的來源。同時,她也每年在大學選修一門課,以充實知識。

研究過程中,她的目光漸漸集中到一個特定的對象,一種致流產的傳染性微生物。

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。