Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

小當家的國士無雙麵真有這麼神奇?其實就是加了鹼水而已——《麵的科學》

晨星出版
・2020/07/09 ・1487字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

  • 作者/山田昌治;譯者/吳佩俞

我們已經知道中國在明代時使用了鹹水湖的湖水製麵,進而做出口感勁道十足的麵條,而且第一章也曾提到這與麵的起源有著極為密切的關聯。在中文裡,這種麵食被寫做「拉麵」,而「拉」字指的是緊抓而向外伸展。從這個名字來看,我們可以說拉麵並非使用刀切,而是用力拉開延伸成為細長的麵條。

開動了!圖/pixabay

此外,以小麥麵粉來說,使用的是粗蛋白質含量在 11% 以上的中筋到高筋的麵粉,換言之,拉麵使用的是蛋白質含量較高的小麥麵粉,所以可以製造出因鹽基性條件而使麩質變硬,以及用手拉伸以強化麩質組織構造的麵條。

據說,中華麵是在江戶時代後期傳至日本的。不過,現今日本這樣的拉麵文化卻是在進入明治時代(西元 1868 年至 1912 年後)才開始萌芽。之後完成日本獨自進化的拉麵便在全國各處遍地開花,這當然不用在此贅述。

小當家製麵用的鹹水湖,不是單純的鹽水湖

單純使用鹽水製麵,並無法做出勁道十足的麵條。圖/pixabay

接著,讓我們把話題轉回鹹水湖。所謂的鹹水湖,就是鹽水的湖泊,但就算使用氯化鈉( sodium chloride)與硫酸鈉( sodium sulfate)的水溶液來製麵,也不會做出中華麵那樣勁道十足的麵條。

-----廣告,請繼續往下閱讀-----

如果用的是碳酸鈉(sodium carbonate)與碳酸鉀(sodium carbonate)的水溶液,則是會讓麵條更加彈牙,並產生中華麵特有的香氣,麵條也會呈現黃色。換言之,成為中華麵起源的鹹水湖並非單純的鹽水湖,目前被推測應該是含有碳酸鈉等特殊成分的湖泊。

現在,添加用來改善口感的鹼水是依據食品衛生法的嚴格規定,添加時會從碳酸鉀、碳酸鈉、碳酸氫鈉(sodium hydrogen carbonate)、以及磷酸類的鉀或是鈉鹽當中選擇一種以上加入其中。此外,添加物也被限定是化學合成品,這個規定應該是針對以往氾濫使用天然低劣鹼水所採取的對策。

麵粉加入鹼水變硬,也跟小麥蛋白質有關

小麥麵團中添加鹼水,提升硬度。圖/pixabay

雖然會重複第一章的小麥蛋白質相關內容,但我們將對麵粉在使用鹼水的鹽基性條件下,硬度增加,且散發獨特香味與色澤的機制再次進行解說。

添加相對於小麥麵粉 1% 的鹼水來製作麵團,麵團就會呈現鹽基性。

小麥蛋白質的胺基酸組成中含有 30% 以上的麩醯胺酸。這種麩醯胺酸會在鹽基性條件下讓兩個胺基其中之一釋放出氨,並且成為麩胺酸。這麼一來,鹽基性的胺基酸(離胺酸、精胺酸、組胺酸等等)會產生離子鍵,造成分子之間的鍵結變多,麩質也隨之變硬。

-----廣告,請繼續往下閱讀-----

此外,反應產生的氨會促使麵條散發中華麵特有的氣味。就像我們在第一章的小麥麵粉章節所提到的,苯甲醛與苯乙酮這些植化素會在鹽基性條件下產生結合反應,並且生成名為查耳酮的物質。因為查耳酮是黃色的,所以麵條的顏色也會呈現黃色。

現在,雖然北至北海道、南至九州,全國各地都有當地特色拉麵,但麵條幾乎都是使用製麵機製造而成。所謂的「製麵機」,是以兩條滾輪向內側旋轉,然後將已加水揉製的帶狀麵團置入其中。帶狀麵團在經過數次的滾輪整平後,再用切刀切成麵條。

至於切刀,也會有各式各樣的尺寸大小,一般都是用 30 公釐寬度可切出幾條麵的切刀番手來表示。像是拉麵使用的是 12 番手(麵條寬度為 2.5 公釐)到 28 番手(麵條寬度為 1.07 公釐)的尺寸。

——本文摘自《麵的科學:麵粉如何創造豐富的口感、香氣和美味》,2020 年 3 月,晨星出版

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
晨星出版
12 篇文章 ・ 3 位粉絲

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
在家也想煮出彈牙又有嚼勁的麵?快試試小蘇打!——《麵的科學》
晨星出版
・2020/07/10 ・2689字 ・閱讀時間約 5 分鐘 ・SR值 497 ・六年級

  • 作者/山田昌治;譯者/吳佩俞

加點小蘇打,讓素麵更美味

夏天來點冷麵、沾麵,清涼吃下肚。圖/pixabay

在夏天的時候,素麵是一種能夠快速取得的碳水化合物來源,所以非常受到大家的歡迎。不過,素麵都只是拌上沾醬食用,久了就會感到膩了,所以偶爾也會想要試試看其他的料理方式吧!

這個時候大家不妨試試沖繩的家庭料理——雜炒素麵。這是先將苦瓜、胡蘿蔔、韭菜、豆芽菜、豬肉等食材炒過,然後再拌進素麵當中。

苦瓜的苦味對於在夏天疲倦不堪的胃來說,可是一道非常舒暢的料理。不過,遺憾的是這道料理的麵條太細,所以口感常會變得破碎又鬆軟。如果站在素麵的立場,先是被熱水煮過,接著用火炒過,歷經好幾道烹調手續後,變成這樣的口感也是會大嘆無奈吧!

不過,我們還是有對策的。首先,在水煮麵條的階段就要改用可讓麵體組織構造更加紮實的材料,好讓麵條口感更加彈牙有勁,而且還要能夠承受兩個烹調階段的壓力。因此,這裡登場的就是前面提到的「小蘇打」。

-----廣告,請繼續往下閱讀-----
  • 為了慎重起見,我們要特別說明不可以使用清潔用的小蘇打,大家務必要用食品專用的小蘇打

每 1 公升的水加入 1 大匙小蘇打(大約 15 公克)後就開始煮素麵。至於煮麵時間可以參考標籤記載的標準時間即可。小蘇打粉放得太少是無法顯現出效果的,太多則是會有鹼性帶來的獨特滑溜感,所以分量要拿捏適當。

  • 另外,請大家記得在溫度尚低時就放入小蘇打粉

如果煮麵水已經沸騰,放入小蘇打可是會有引起劇烈碳酸氣體散發的危險性。在還是生水時就放入的話,氣體會一點一點地冒出來,就不會有什麼問題了。

模擬牙齒測試口感

像這樣使用小蘇打水煮好的素麵顏色會呈現淡淡黃色,而且也會有中華麵特有的香氣。這與使用鹼水的效果都是一樣的。

材料測試裝置。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

在這裡,我們將利用材料測試裝置來確認看看麵條的口感到底會有多少改變。

進行量測時,先將麵條置放在橢圓形的平台上,並讓模擬人類牙齒的鋁製刀片(厚度為 3 公釐,前端加工為圓形)緩慢下降。這個刀片的驅動軸上裝有荷重元(load cell,用來測試力量的感測器),所以下降至碰到麵條的一瞬間就能量測出到底有多少力量。

另外,刀片的移動量也會同時被記錄下來,所以也可以將力與移動距離的關係製作為資料,並以 1 組的方式取得。因為 1 條素麵是非常細的,實在很難測出強度,所以實驗時是以 4 條素麵的粗細進行量測。

將 4 條煮好的素麵麵條放在平坦基座上平行排好,然後使用刀片切斷麵條。這時產生的力與變形量的關係就會如下圖所顯示。縱軸標示的應力指的是每 1 單位面積的力,而橫軸變形量則是意味著刀片碰到基座時的變形量為 1 時的比例。

-----廣告,請繼續往下閱讀-----

煮好的素麵在斷裂強度方面的差異。圖/晨星出版提供

當刀片碰到麵條時,應力仍會持續增加,等到達峰值後就會先下降 1 次,然後最後會在刀片碰到基座時結束測試。大家可以把這個峰值當作是勁道口感的對應數字。在本書中,我們會將這個對應應力稱為降伏應力(yield stress)。

從實驗結果我們可以看到,使用小蘇打水煮出來的素麵其應力峰值會比一般水煮出來的麵條大上 1.5 倍左右。而且使用小蘇打水煮的麵條的變形量從零到峰值所畫出來的曲線傾斜度會比一般水煮的麵來得大一些。這也表示若要造成相同變形量,就必須要有較大的應力。

這個傾斜的曲線被稱為「彈性率」,就是一種用來顯示量測物質軟硬程度的尺度。換言之,當傾斜度較大時,就表示量測物質比較硬。如果將這個傾斜度與峰值合起來,就意味著小蘇打水煮出的素麵更硬、口感也更加彈牙有勁。

-----廣告,請繼續往下閱讀-----

在麵的世界裡,經常可以看到「既彈牙又有嚼勁」、「強韌」等形容詞,但這種麵條較硬且勁道十足的狀態似乎還是用「既彈牙又有嚼勁」來形容比較適合。

小蘇打如何增加麵的口感、香氣與色澤?

想要彈牙多灑一點(母湯)。圖/giphy

在這裡,我們將針對小蘇打的運作機制稍加解說。所謂的小蘇打(NaHCO3,碳酸氫鈉),因為同時擁有酸性與鹽基性兩種性質,所以也被稱為兩性化合物 (amphoteric compound) 。

當小蘇打溶於室溫水時,氫離子濃度指數(pH值)大約是 8 左右。如果將溶有小蘇打的水加熱至 65℃ 左右,就會產生碳酸氣體而形成碳酸鈉( Na2CO3)。碳酸鈉是氫氧化鈉(NaOH)這種強鹼與碳酸(H2CO2)這種弱酸的鹽,所以水溶液會呈現強鹼性。這次的條件是將 pH值設為 11。

-----廣告,請繼續往下閱讀-----

接著,讓我們複習一下第一章的小麥麵粉蛋白質的相關內容。

在這種強鹼性的條件下,構成小麥麵粉蛋白質的麩醯胺酸與天門冬醯胺會與氨分離,並各自成為麩胺酸與天門冬胺酸。這個氨在低濃度時,會給人好的感覺,也是中華麵特有氣味的來源。另外,如果在鹽基性的條件下,則是會產生黃色物質(查耳酮),所以小蘇打水煮好的麵條也會變成淡黃色。

如果將鹽基性條件下產生的麩胺酸與天門冬胺酸與精胺酸、離胺酸、組胺酸等鹽基性胺基酸結合,麩質的組織構造就會更加強韌,而這部分在前面章節已經說明過了。最後,麵條也就變得更有彈性且嚼勁十足了。

使用小蘇打水煮好麵條後,再進一步料理的雜炒素麵。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

那麼,讓我們把話題轉回雜炒素麵的烹調方式。如果只是加強口感,就會讓人覺得像是較細的中華麵,但是這種烹調方法的真正價值就在這裡。大家可以試看看使用小蘇打水煮過的麵條來製作這道雜炒素麵。

如果是一般水煮的素麵,常常炒完後麵條就會變得碎碎的,或是整個糊掉,但先用小蘇打水煮過,麵條不但會變硬,還可以製作出一道維持長條形狀的雜炒素麵,甚至連口感都非常良好。

筆者是注重健康的人,所以點綴了一些青花菜芽與紅椒粉,雖然照片看不太清楚,但的確完成了一道色彩豐富,麵條扎實細長的美味料理。

像這樣藉由小蘇打讓麵條更加美味的現象,就是因為小麥麵粉含有很多麩醯胺酸這種麩質蛋白質的構成胺基酸,而這也是小麥麵粉既有的特性。雖然速食麵原本就是中華麵,但如果使用小蘇打水來煮麵,麵條的嚼勁也會明顯提升,甚至能讓速食麵更加接近高級中華料理店的口味。

-----廣告,請繼續往下閱讀-----

我們這裡介紹的是能夠承受煮過再炒的烹飪手法,而且口感更加彈牙有勁的雜炒素麵實驗,各位也請務必使用其他的麵條試試看!

——本文摘自《麵的科學:麵粉如何創造豐富的口感、香氣和美味》,2020 年 3 月,晨星出版

-----廣告,請繼續往下閱讀-----

0

2
1

文字

分享

0
2
1
小麥麵團可以任我們搓圓捏扁,其實跟小麥蛋白質很有關係!——《麵的科學》
晨星出版
・2020/07/08 ・2983字 ・閱讀時間約 6 分鐘 ・SR值 569 ・九年級

-----廣告,請繼續往下閱讀-----

  • 作者/山田昌治;譯者/吳佩俞

小麥蛋白質在麵粉的狀態下是堅硬且不易變形的,不過一旦加水搓揉就會產生變化,成為具有獨特彈性與黏性的物質。這種同時具備彈性與黏性的性質稱為「黏彈性(Viscoelasticity)」。如先前所提到的,因為室溫的水不會造成澱粉糊化,所以可以說這種黏彈性是因為小麥蛋白質才得以出現。

任由我們揉捏的麵糰。圖/pixabay

接下來,我們就針對小麥當中的蛋白質種類及性質加以解說。

小麥蛋白質的水合物稱為「麩質( gluten)」。蛋白質是一種由許多胺基酸聚集構成的串珠狀天然高分子(macromolecule),構造相當複雜。在這裡,我們先省略蛋白質構造的相關說明,把重點放在麩質的物理特性解析,並試著以湯馬斯.奧斯本(Thomas Osborne)的分餾(fractionation)分析法來進行說明。

奧斯本的分餾法是將麩質加入極性(溶解蛋白質的性質)較弱的溶劑當中,接著對溶出的蛋白質性質進行測試檢查,而無法溶出的物質會再繼續浸入極性較弱的溶劑裡,然後再繼續檢查溶出蛋白質的性質,換言之,分餾是一種依序不斷重複進行的手法。使用這種方法可以得知構成小麥蛋白質的蛋白質。也就是表 1-1 的內容。

-----廣告,請繼續往下閱讀-----

表 1-1 奧斯本的分餾法。圖/晨星出版提供

至於這份表格的閱讀方法,則是若為白蛋白(albumin),可溶在水中,不溶於水的球蛋白(globulin)則是溶入鹽水裡,然後這樣就能由上而下依序看出各種蛋白質能夠溶解和不能溶解的溶劑了。

  • 白蛋白

白蛋白的主要成分為澱粉酶抑制劑,不過其特性是只會抑制動物性澱粉酶,並不會對植物性澱粉酶產生抑制。許多研究學者都認為這可能是小麥種子為了避免被動物和昆蟲吃掉,才會發展出此種防禦特性。這也是大家說生吃小麥麵粉會讓胃腸不適的原因之一。

  • 球蛋白

所謂的「球蛋白」,就是無法溶入水中、但卻能以「食鹽水」萃取出的「餾分」。目前已經知道這是一種可溶於鹽水的蛋白質。雖然佔比極低,僅有 3 %,不過球蛋白擁有 α-澱粉酶、β-澱粉酶、蛋白酶(protease)等許多對於植物維持生命活動極為重要的酵素

-----廣告,請繼續往下閱讀-----
  • 麥膠蛋白

使用比食鹽水極性更強的「酒精溶液」萃取出的餾分,稱為麥膠蛋白(gliadin)。這種蛋白質具有黏性,置於斜面上會如泥流般滑動。麥膠蛋白與下面提到的麥穀蛋白(glutenin)都與小麥麵粉麵團展現的黏彈性有著密切的關聯。

  • 麥穀蛋白

麥穀蛋白是一種無法溶解於酒精溶液的蛋白質,不過卻可以溶在比酒精溶液更強烈的「醋酸溶液」當中。這種蛋白質與極富彈力的性質有著密切的關聯。所謂的極富彈性,就是意味著施加力道後,只要不再使力就會恢復原狀的性質。

小麥麵團黏彈性的祕密

在小麥蛋白質中,佔有關鍵地位的就是極具彈性的麥穀蛋白和富有黏性的麥膠蛋白。那麼,麥穀蛋白又為何會富有彈性呢?

我們在前面曾提過,小麥是生長在沙漠高原地帶並持續進化的植物。在這樣的環境中,與水同為小麥所必須的氮應該會出現常態性缺乏的情況。不過,即使在如此嚴苛的環境,有時還是會因為降雨而以銨離子(ammonium ion)與硝酸鹽離子(nitrate ion)的形式來取得氮的供給。

雖然無法獲得大量的補充,但小麥還是會盡其所能地留下這些氮的養分並加以儲存。銨離子雖然會保持原狀,但硝酸鹽離子一旦轉換成銨離子,就會改以麩胺酸(glutamic acid)及麩醯胺酸(glutamine)這類胺基酸的形式儲存在種子當中。

-----廣告,請繼續往下閱讀-----
含量(質量%)
麩胺酸 34.7
脯胺酸 11.8
絲胺酸 4.4
天門冬胺酸 3.7
甘胺酸 3.4
精胺酸 3.1
丙胺酸 2.6
蘇胺酸 2.4
離胺酸 1.9
芳香族胺基酸 11.0
含硫胺基酸
(branched-chain amino acid)
4.1
支鏈胺基酸
(ammonia)
13.1
3.8
合計 100

小麥麩質的胺基酸組成

麩胺酸與麩醯胺酸都是蛋白質的原料,利用這些原料所合成的蛋白質即被稱為儲藏蛋白(storage protein)。因此,小麥種子當中的蛋白質就是由麩胺酸、麩醯胺酸,以及作為誘導體的脯胺酸(proline)以極高比率所構成的。

麥穀蛋白加水揉和,結構開始變化

如同圖① 所顯示的,麥穀蛋白的構造是兩條帶子於末端互相連結。因為麥殼蛋白也是一種蛋白質,所以這種「帶子」其實是由胺基酸連結成為一長串而形成的。

麥穀蛋白的構造。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

我們在前面提過,麥殼蛋白的構成胺基酸因含有較多麩醯胺酸,所以乾燥狀態下會因麩醯胺酸彼此結合而變成兩條軌道般的形狀。此時加水揉和的話,水分就會進入這兩條軌道之間,成為圖② 那樣的小圓圈。

麥穀蛋白的構造。圖/晨星出版提供

如果再繼續加入大量水分,即會出現如同圖③ 的大圓圈。看到這張圖,大家應該就能夠感受到小麥麵粉具有的彈性了。

麥穀蛋白的構造。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

擁有泥土般黏性的小麥麵團

另一方面,若從分子等級來觀察,可以發現麥膠蛋白呈現微小球狀,直覺上就給人似彈珠滾來滾去那種滑動的感覺,所以在目視程度時,就會有如泥土般地溢流移動。這種泥土般流動的性質稱為「黏性」。

因此,麥穀蛋白的彈性與麥膠蛋白的黏性彼此混合在一起後,就形成了小麥麵粉麵團的性質。從這層意義來看,小麥麵粉麵團的物理性質也可以稱為黏彈性質。

麥殼蛋白、麥膠蛋白的每一個單位(domain,結構域)大小約僅有數奈米(奈米:10億分之1公尺),不過,這些結構域會因各種相互作用而連結起來,並且聚合(polymerization)成為目視程度尺寸的薄膜般構造。

我是一坨充分揉和的小麥麵團。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

上圖就是將小麥麵粉與水混合並充分搓揉後的麵團狀態。這點從麵團延展性極佳,且呈現為可透光至對側的薄膜就能看得出來。

掌控空間、溫度與時間,做出專屬口感

麵團之所以延展良好,其實是來自於結構域彼此結合的相互作用,但其中原因為何正是長年研究小麥學者們的課題。目前知道的是這與名為交聯(cross-link)的結合作用有著密切的關係。

因為交聯效應而聚合體化(macropolymer)示意圖。圖/晨星出版提供

因為交聯的形成屬於一種化學反應,所以也會依循化學反應的一般規則。換言之,只要充分混合拌勻,就能提高與反應相關部分的促發機率,進而開展交聯作用。這種情況就稱之為「空間效果」。

-----廣告,請繼續往下閱讀-----

另外,我們也可以說溫度較高時亦較容易進行化學反應。這種情況被稱為溫度效果。還有,花費較多時間也能使化學反應持續進展。這個情況則稱之為時間效果。

空間效果、溫度效果,以及時間效果這三大原則,對於思考麩質的形成與控制是很有幫助的。

舉例來說,烤點心時,如果充分揉和麵團,就會做出脆硬口感的餅乾,但若只是稍加搓揉,就會成為鬆軟口感的點心。不同揉製方法帶來不同口感,應該就是交聯作用的空間效果。此外,製作烏龍麵時,也是有個充分揉和後放上一晚靜置醒麵的作業,這個程序的重點應該就是交聯作用的時間效果了。

——本文摘自《麵的科學:麵粉如何創造豐富的口感、香氣和美味》,2020 年 3 月,晨星出版

-----廣告,請繼續往下閱讀-----