0

1
1

文字

分享

0
1
1

在家也想煮出彈牙又有嚼勁的麵?快試試小蘇打!——《麵的科學》

晨星出版
・2020/07/10 ・2689字 ・閱讀時間約 5 分鐘 ・SR值 497 ・六年級

  • 作者/山田昌治;譯者/吳佩俞

加點小蘇打,讓素麵更美味

夏天來點冷麵、沾麵,清涼吃下肚。圖/pixabay

在夏天的時候,素麵是一種能夠快速取得的碳水化合物來源,所以非常受到大家的歡迎。不過,素麵都只是拌上沾醬食用,久了就會感到膩了,所以偶爾也會想要試試看其他的料理方式吧!

這個時候大家不妨試試沖繩的家庭料理——雜炒素麵。這是先將苦瓜、胡蘿蔔、韭菜、豆芽菜、豬肉等食材炒過,然後再拌進素麵當中。

苦瓜的苦味對於在夏天疲倦不堪的胃來說,可是一道非常舒暢的料理。不過,遺憾的是這道料理的麵條太細,所以口感常會變得破碎又鬆軟。如果站在素麵的立場,先是被熱水煮過,接著用火炒過,歷經好幾道烹調手續後,變成這樣的口感也是會大嘆無奈吧!

不過,我們還是有對策的。首先,在水煮麵條的階段就要改用可讓麵體組織構造更加紮實的材料,好讓麵條口感更加彈牙有勁,而且還要能夠承受兩個烹調階段的壓力。因此,這裡登場的就是前面提到的「小蘇打」。

  • 為了慎重起見,我們要特別說明不可以使用清潔用的小蘇打,大家務必要用食品專用的小蘇打

每 1 公升的水加入 1 大匙小蘇打(大約 15 公克)後就開始煮素麵。至於煮麵時間可以參考標籤記載的標準時間即可。小蘇打粉放得太少是無法顯現出效果的,太多則是會有鹼性帶來的獨特滑溜感,所以分量要拿捏適當。

-----廣告,請繼續往下閱讀-----
  • 另外,請大家記得在溫度尚低時就放入小蘇打粉

如果煮麵水已經沸騰,放入小蘇打可是會有引起劇烈碳酸氣體散發的危險性。在還是生水時就放入的話,氣體會一點一點地冒出來,就不會有什麼問題了。

模擬牙齒測試口感

像這樣使用小蘇打水煮好的素麵顏色會呈現淡淡黃色,而且也會有中華麵特有的香氣。這與使用鹼水的效果都是一樣的。

材料測試裝置。圖/晨星出版提供

在這裡,我們將利用材料測試裝置來確認看看麵條的口感到底會有多少改變。

進行量測時,先將麵條置放在橢圓形的平台上,並讓模擬人類牙齒的鋁製刀片(厚度為 3 公釐,前端加工為圓形)緩慢下降。這個刀片的驅動軸上裝有荷重元(load cell,用來測試力量的感測器),所以下降至碰到麵條的一瞬間就能量測出到底有多少力量。

-----廣告,請繼續往下閱讀-----

另外,刀片的移動量也會同時被記錄下來,所以也可以將力與移動距離的關係製作為資料,並以 1 組的方式取得。因為 1 條素麵是非常細的,實在很難測出強度,所以實驗時是以 4 條素麵的粗細進行量測。

將 4 條煮好的素麵麵條放在平坦基座上平行排好,然後使用刀片切斷麵條。這時產生的力與變形量的關係就會如下圖所顯示。縱軸標示的應力指的是每 1 單位面積的力,而橫軸變形量則是意味著刀片碰到基座時的變形量為 1 時的比例。

煮好的素麵在斷裂強度方面的差異。圖/晨星出版提供

當刀片碰到麵條時,應力仍會持續增加,等到達峰值後就會先下降 1 次,然後最後會在刀片碰到基座時結束測試。大家可以把這個峰值當作是勁道口感的對應數字。在本書中,我們會將這個對應應力稱為降伏應力(yield stress)。

從實驗結果我們可以看到,使用小蘇打水煮出來的素麵其應力峰值會比一般水煮出來的麵條大上 1.5 倍左右。而且使用小蘇打水煮的麵條的變形量從零到峰值所畫出來的曲線傾斜度會比一般水煮的麵來得大一些。這也表示若要造成相同變形量,就必須要有較大的應力。

-----廣告,請繼續往下閱讀-----

這個傾斜的曲線被稱為「彈性率」,就是一種用來顯示量測物質軟硬程度的尺度。換言之,當傾斜度較大時,就表示量測物質比較硬。如果將這個傾斜度與峰值合起來,就意味著小蘇打水煮出的素麵更硬、口感也更加彈牙有勁。

在麵的世界裡,經常可以看到「既彈牙又有嚼勁」、「強韌」等形容詞,但這種麵條較硬且勁道十足的狀態似乎還是用「既彈牙又有嚼勁」來形容比較適合。

小蘇打如何增加麵的口感、香氣與色澤?

想要彈牙多灑一點(母湯)。圖/giphy

在這裡,我們將針對小蘇打的運作機制稍加解說。所謂的小蘇打(NaHCO3,碳酸氫鈉),因為同時擁有酸性與鹽基性兩種性質,所以也被稱為兩性化合物 (amphoteric compound) 。

當小蘇打溶於室溫水時,氫離子濃度指數(pH值)大約是 8 左右。如果將溶有小蘇打的水加熱至 65℃ 左右,就會產生碳酸氣體而形成碳酸鈉( Na2CO3)。碳酸鈉是氫氧化鈉(NaOH)這種強鹼與碳酸(H2CO2)這種弱酸的鹽,所以水溶液會呈現強鹼性。這次的條件是將 pH值設為 11。

-----廣告,請繼續往下閱讀-----

接著,讓我們複習一下第一章的小麥麵粉蛋白質的相關內容。

在這種強鹼性的條件下,構成小麥麵粉蛋白質的麩醯胺酸與天門冬醯胺會與氨分離,並各自成為麩胺酸與天門冬胺酸。這個氨在低濃度時,會給人好的感覺,也是中華麵特有氣味的來源。另外,如果在鹽基性的條件下,則是會產生黃色物質(查耳酮),所以小蘇打水煮好的麵條也會變成淡黃色。

如果將鹽基性條件下產生的麩胺酸與天門冬胺酸與精胺酸、離胺酸、組胺酸等鹽基性胺基酸結合,麩質的組織構造就會更加強韌,而這部分在前面章節已經說明過了。最後,麵條也就變得更有彈性且嚼勁十足了。

使用小蘇打水煮好麵條後,再進一步料理的雜炒素麵。圖/晨星出版提供

那麼,讓我們把話題轉回雜炒素麵的烹調方式。如果只是加強口感,就會讓人覺得像是較細的中華麵,但是這種烹調方法的真正價值就在這裡。大家可以試看看使用小蘇打水煮過的麵條來製作這道雜炒素麵。

-----廣告,請繼續往下閱讀-----

如果是一般水煮的素麵,常常炒完後麵條就會變得碎碎的,或是整個糊掉,但先用小蘇打水煮過,麵條不但會變硬,還可以製作出一道維持長條形狀的雜炒素麵,甚至連口感都非常良好。

筆者是注重健康的人,所以點綴了一些青花菜芽與紅椒粉,雖然照片看不太清楚,但的確完成了一道色彩豐富,麵條扎實細長的美味料理。

像這樣藉由小蘇打讓麵條更加美味的現象,就是因為小麥麵粉含有很多麩醯胺酸這種麩質蛋白質的構成胺基酸,而這也是小麥麵粉既有的特性。雖然速食麵原本就是中華麵,但如果使用小蘇打水來煮麵,麵條的嚼勁也會明顯提升,甚至能讓速食麵更加接近高級中華料理店的口味。

我們這裡介紹的是能夠承受煮過再炒的烹飪手法,而且口感更加彈牙有勁的雜炒素麵實驗,各位也請務必使用其他的麵條試試看!

-----廣告,請繼續往下閱讀-----

——本文摘自《麵的科學:麵粉如何創造豐富的口感、香氣和美味》,2020 年 3 月,晨星出版

文章難易度
晨星出版
12 篇文章 ・ 3 位粉絲

0

15
6

文字

分享

0
15
6
糖漿加了小蘇打粉就膨漲?解析《魷魚遊戲》中的椪糖製作原理
Evelyn 食品技師_96
・2021/10/27 ・2776字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

超夯韓劇《魷魚遊戲》近期成為熱門討論話題,尤其椪糖關卡使南韓童年美食遊戲「戳椪糖」爆紅,劇情中玩家必須使用牙籤將椪糖上的圖案取下來,若失敗可是會直接被開槍爆頭,不過在臺灣其實也有很相似的古早味的零食椪糖喔!

韓式椪糖。圖/WIKIPEDIA by 도자놀자

臺南人的童年零食——古早味椪糖

椪糖,又名膨糖、發財糖、泡糖,是四、五年級生臺南人的童年零食。那個年代生活單純,還沒有太多的娛樂、精緻美食可供選擇,在廟口歌仔戲、布袋戲戲棚下煮椪糖的攤販,是當時孩童的娛樂及零食來源。

剛煮好的椪糖長得就像胖嘟嘟的核桃酥餅,吃起來焦香酥脆、入口即化,雖然只是純粹的甜味,在物質稀缺的當時,已經十分幸福了。

而椪糖的製作流程很簡單,將砂糖或二砂與水倒入大湯勺中,置於爐火上加熱並攪拌,至糖漿變成紅褐色時,加一點小蘇打粉至大湯勺中拌勻,糖漿便會迅速膨脹鼓起,待其冷卻定型後即完成。

-----廣告,請繼續往下閱讀-----

而韓國的椪糖與臺灣的椪糖作法及原理大同小異,只是塑形的方式不太一樣,韓版的會壓扁再壓上圖案,弄成扁扁的薄餅狀;臺版的就讓他自然膨脹成球狀,表面帶點裂痕,模樣也是十分討喜可愛。

台式椪糖。圖/WIKIPEDIA

影響椪糖質地最關鍵的因素——溫度

若有做過椪糖就會知道,小蘇打粉加進去的時機點很重要,太早或太晚皆會導致成型失敗,這是為什麼呢?因為加熱溫度是影響糖的結晶、軟硬度和焦糖化的主要因素,不同的加熱溫度,糖的結晶狀態、質地和色澤都會不同。

糖液在加熱時,會有兩種情況發生:

  • 一、水分不斷蒸發,使溶液濃度增加。
  • 二、隨著溶解的糖增加,沸點會不斷上升,因此糖液的溫度要小心控制。

「糖液的濃度」與最後成品的「軟硬度」有直接關係,濃度不夠會過軟,椪糖表面無法形成保護殼而無法膨脹成型;濃度過高會過硬,椪糖膨脹不易,容易縮小或塌陷。

-----廣告,請繼續往下閱讀-----

而當糖液加熱至攝氏 130 度左右時滴入冷水中,會形成能保持形狀且具可塑性的硬球,這時候糖液的質地是能讓椪糖膨發效果最佳的狀態,因此不會用肉眼判斷添加小蘇打粉至糖漿的好時機沒關係,可以在加熱的同時,使用專門測糖液的溫度計測量糖溫就可以了!

東京淺草的街頭小販手工製作椪糖。圖/WIKIPEDIA

糖怎麼轉變成令人誘惑的焦糖色呢?

說到糖的加熱,就不得不提到焦糖化反應(caramelization)了,它是自催化的非酵素性褐變(non-enzymatic brownin)反應,指的是蔗糖這類的小分子醣類於高溫環境發生脫水、聚合的反應,顏色逐漸轉變成金黃、淺褐至深褐色的產物 (通稱為焦糖) 的過程。

這個過程非常複雜,反應溫度通常在攝氏 120 度以上,在酸性與鹼性環境下均會發生。在食品工業上可製造成焦糖色素,作為食品添加物使用,常添加於醬油、糖漿、可樂或酒類等食品中。

焦糖的色澤會隨加熱溫度及時間的增加,由金黃、琥珀、淺褐、褐、深褐色至焦黑碳化;味覺的變化則是先為甜味,隨著顏色加深逐漸轉至苦味,最後甚至可能出現辛辣味。 

-----廣告,請繼續往下閱讀-----

攝氏 130 度的糖液大概是呈現淡淡的金黃色,不過這是單純以細砂糖製作來看,若使用二砂製作椪糖的話,那糖液一開始就會是呈現金黃色了。

椪糖膨脹的關鍵——碳酸氫鈉遇熱分解

在加熱攪拌過程中,糖液已經拌入許多空氣,隨著加熱空氣持續在膨脹,水氣也一直持續蒸發,直到糖液加熱到攝氏 130 度的糖漿時,須離開熱源並加入小蘇打粉。

小蘇打粉即是碳酸氫鈉(sodium bicarbonate),受到高溫直接分解產生大量二氧化碳氣體。最外層接觸到空氣的糖液最先冷卻,變硬形成保護殼,椪糖膨脹隆起,待膨脹停止後,內部的構造就形成具有許多小氣孔的蓬鬆質地。

椪糖會不會致癌?

就從焦糖化反應可製造出焦糖色素的標準來看,聯合國農糧醫藥食品添加物專家聯席委員會(Joint FAO/WHO Expert Committee on Food Additives, JECFA)將焦糖色素分成四類:

-----廣告,請繼續往下閱讀-----

第一類:普通焦糖 (plain caramel)

第二類:亞硫酸鹽焦糖 (sulfite caramel)

第三類:銨鹽焦糖 (ammonia caramel)

第四類:亞硫酸-銨鹽焦糖 (sulfite ammonia caramel)

不同類別的焦糖色素,具有不同的焦體電荷、安定性與色度,用途亦各不相同。我國針對這四類焦糖色素有明確訂定,規範細節可見衛福部食藥署公告的食品添加物使用範圍及限量暨規格標準[8]

數十年來眾多針對焦糖色素所進行的毒理學研究,特別是安全疑慮比較高的第三類及第四類焦糖色素,都發現焦糖色素不具基因毒性、遺傳毒性與致癌性,確認焦糖色素是安全的食品添加物。

加上椪糖才加熱到攝氏 130 度,焦糖化反應影響因素很少,所以吃椪糖其實不必太過擔心致癌風險。

可樂、醬油經常添加焦糖色素。圖/WIKIPEDIA

跟致癌比起來,你比較需要擔心熱量

比起擔憂致癌疑慮,椪糖的熱量才是比較需要注意的地方,畢竟它幾乎都是由精製糖所製成。

-----廣告,請繼續往下閱讀-----

我國衛福部國民健康署建議「精製糖建議攝取上限為 10% 以內,例如:總攝取熱量若為 2000 大卡,精製糖攝取量就不宜超過 200 大卡,每日精製糖攝取量最好能控制在 50 克以內。」最佳的情況,是每日不超過 25 克,其實就相當於一個椪糖 (20 克上下) 的重量了。

所以當你開心吃著好吃又好玩的椪糖時,還是要記得別吃太多,以避免攝取過多的精製糖及熱量,而賠上健康喔!

參考資料

  1. 國立台中教育大學科學教育與應用學系 科學遊戲實驗室,膨糖:http://scigame.ntcu.edu.tw/chemistry/chemistry-005.html
  2. 施明智 (2021)。食物學原理 (第三版)。新北市:藝軒圖書出版社。
  3. Mcdowell, E. J. (2015) Everything You Need to Know to Make Caramel Candies at Home. Retrieved from https://food52.com/blog/12212-everything-you-need-to-know-to-make-caramel-candies-at-home (Oct 10, 2021)
  4. 徐若瑄 (2017)。利用科學方法研究古早味椪糖。中華民國第 57 屆中小學科學展覽會。新北市。
  5. 戴士傑,2006。焦糖化產物的特性及其與酚類物質交聯程度之探討。國立屏東科技大學食品科學系碩士學位論文。屏東。
  6. 張月櫻,焦糖色素與 4-MEI (4-甲基咪唑) 說明稿 (2013)。檢自https://www.food.org.tw/TW/DisquisitionDetail.aspx?DisquisitionID=iZcsl/uRyXg= (Oct 10, 2021)
  7. 衛生福利部食品藥物管理署,食品添加物使用範圍及限量暨規格標準 焦糖色素 (2013)。檢自https://consumer.fda.gov.tw/Law/FoodAdditivesListDetail.aspx?nodeID=521&id=854 (Oct 10, 2021)
  8. 灃食公益飲食文化教育基金會,精製糖與非精製糖的差別為何? (2019)。檢自https://www.foodnext.net/science/machining/paper/5470279180 (Oct 10, 2021)
Evelyn 食品技師_96
23 篇文章 ・ 27 位粉絲
一名食品技師兼食品生技研發工程師,個性鬼靈精怪,對嗅覺與味覺特別敏銳,經訓練後居然成為專業品評員(專業吃貨)?!因為對食品科學充滿熱忱,希望能貢獻微薄之力寫些文章,傳達食品科學的正確知識給大家!商業合作請洽:10632015@email.ntou.edu.tw

0

1
1

文字

分享

0
1
1
小當家的國士無雙麵真有這麼神奇?其實就是加了鹼水而已——《麵的科學》
晨星出版
・2020/07/09 ・1487字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

  • 作者/山田昌治;譯者/吳佩俞

我們已經知道中國在明代時使用了鹹水湖的湖水製麵,進而做出口感勁道十足的麵條,而且第一章也曾提到這與麵的起源有著極為密切的關聯。在中文裡,這種麵食被寫做「拉麵」,而「拉」字指的是緊抓而向外伸展。從這個名字來看,我們可以說拉麵並非使用刀切,而是用力拉開延伸成為細長的麵條。

開動了!圖/pixabay

此外,以小麥麵粉來說,使用的是粗蛋白質含量在 11% 以上的中筋到高筋的麵粉,換言之,拉麵使用的是蛋白質含量較高的小麥麵粉,所以可以製造出因鹽基性條件而使麩質變硬,以及用手拉伸以強化麩質組織構造的麵條。

據說,中華麵是在江戶時代後期傳至日本的。不過,現今日本這樣的拉麵文化卻是在進入明治時代(西元 1868 年至 1912 年後)才開始萌芽。之後完成日本獨自進化的拉麵便在全國各處遍地開花,這當然不用在此贅述。

-----廣告,請繼續往下閱讀-----

小當家製麵用的鹹水湖,不是單純的鹽水湖

單純使用鹽水製麵,並無法做出勁道十足的麵條。圖/pixabay

接著,讓我們把話題轉回鹹水湖。所謂的鹹水湖,就是鹽水的湖泊,但就算使用氯化鈉( sodium chloride)與硫酸鈉( sodium sulfate)的水溶液來製麵,也不會做出中華麵那樣勁道十足的麵條。

如果用的是碳酸鈉(sodium carbonate)與碳酸鉀(sodium carbonate)的水溶液,則是會讓麵條更加彈牙,並產生中華麵特有的香氣,麵條也會呈現黃色。換言之,成為中華麵起源的鹹水湖並非單純的鹽水湖,目前被推測應該是含有碳酸鈉等特殊成分的湖泊。

現在,添加用來改善口感的鹼水是依據食品衛生法的嚴格規定,添加時會從碳酸鉀、碳酸鈉、碳酸氫鈉(sodium hydrogen carbonate)、以及磷酸類的鉀或是鈉鹽當中選擇一種以上加入其中。此外,添加物也被限定是化學合成品,這個規定應該是針對以往氾濫使用天然低劣鹼水所採取的對策。

-----廣告,請繼續往下閱讀-----

麵粉加入鹼水變硬,也跟小麥蛋白質有關

小麥麵團中添加鹼水,提升硬度。圖/pixabay

雖然會重複第一章的小麥蛋白質相關內容,但我們將對麵粉在使用鹼水的鹽基性條件下,硬度增加,且散發獨特香味與色澤的機制再次進行解說。

添加相對於小麥麵粉 1% 的鹼水來製作麵團,麵團就會呈現鹽基性。

小麥蛋白質的胺基酸組成中含有 30% 以上的麩醯胺酸。這種麩醯胺酸會在鹽基性條件下讓兩個胺基其中之一釋放出氨,並且成為麩胺酸。這麼一來,鹽基性的胺基酸(離胺酸、精胺酸、組胺酸等等)會產生離子鍵,造成分子之間的鍵結變多,麩質也隨之變硬。

此外,反應產生的氨會促使麵條散發中華麵特有的氣味。就像我們在第一章的小麥麵粉章節所提到的,苯甲醛與苯乙酮這些植化素會在鹽基性條件下產生結合反應,並且生成名為查耳酮的物質。因為查耳酮是黃色的,所以麵條的顏色也會呈現黃色。

-----廣告,請繼續往下閱讀-----

現在,雖然北至北海道、南至九州,全國各地都有當地特色拉麵,但麵條幾乎都是使用製麵機製造而成。所謂的「製麵機」,是以兩條滾輪向內側旋轉,然後將已加水揉製的帶狀麵團置入其中。帶狀麵團在經過數次的滾輪整平後,再用切刀切成麵條。

至於切刀,也會有各式各樣的尺寸大小,一般都是用 30 公釐寬度可切出幾條麵的切刀番手來表示。像是拉麵使用的是 12 番手(麵條寬度為 2.5 公釐)到 28 番手(麵條寬度為 1.07 公釐)的尺寸。

——本文摘自《麵的科學:麵粉如何創造豐富的口感、香氣和美味》,2020 年 3 月,晨星出版

0

2
1

文字

分享

0
2
1
小麥麵團可以任我們搓圓捏扁,其實跟小麥蛋白質很有關係!——《麵的科學》
晨星出版
・2020/07/08 ・2983字 ・閱讀時間約 6 分鐘 ・SR值 569 ・九年級

  • 作者/山田昌治;譯者/吳佩俞

小麥蛋白質在麵粉的狀態下是堅硬且不易變形的,不過一旦加水搓揉就會產生變化,成為具有獨特彈性與黏性的物質。這種同時具備彈性與黏性的性質稱為「黏彈性(Viscoelasticity)」。如先前所提到的,因為室溫的水不會造成澱粉糊化,所以可以說這種黏彈性是因為小麥蛋白質才得以出現。

任由我們揉捏的麵糰。圖/pixabay

接下來,我們就針對小麥當中的蛋白質種類及性質加以解說。

小麥蛋白質的水合物稱為「麩質( gluten)」。蛋白質是一種由許多胺基酸聚集構成的串珠狀天然高分子(macromolecule),構造相當複雜。在這裡,我們先省略蛋白質構造的相關說明,把重點放在麩質的物理特性解析,並試著以湯馬斯.奧斯本(Thomas Osborne)的分餾(fractionation)分析法來進行說明。

奧斯本的分餾法是將麩質加入極性(溶解蛋白質的性質)較弱的溶劑當中,接著對溶出的蛋白質性質進行測試檢查,而無法溶出的物質會再繼續浸入極性較弱的溶劑裡,然後再繼續檢查溶出蛋白質的性質,換言之,分餾是一種依序不斷重複進行的手法。使用這種方法可以得知構成小麥蛋白質的蛋白質。也就是表 1-1 的內容。

-----廣告,請繼續往下閱讀-----

表 1-1 奧斯本的分餾法。圖/晨星出版提供

至於這份表格的閱讀方法,則是若為白蛋白(albumin),可溶在水中,不溶於水的球蛋白(globulin)則是溶入鹽水裡,然後這樣就能由上而下依序看出各種蛋白質能夠溶解和不能溶解的溶劑了。

  • 白蛋白

白蛋白的主要成分為澱粉酶抑制劑,不過其特性是只會抑制動物性澱粉酶,並不會對植物性澱粉酶產生抑制。許多研究學者都認為這可能是小麥種子為了避免被動物和昆蟲吃掉,才會發展出此種防禦特性。這也是大家說生吃小麥麵粉會讓胃腸不適的原因之一。

  • 球蛋白

所謂的「球蛋白」,就是無法溶入水中、但卻能以「食鹽水」萃取出的「餾分」。目前已經知道這是一種可溶於鹽水的蛋白質。雖然佔比極低,僅有 3 %,不過球蛋白擁有 α-澱粉酶、β-澱粉酶、蛋白酶(protease)等許多對於植物維持生命活動極為重要的酵素

-----廣告,請繼續往下閱讀-----
  • 麥膠蛋白

使用比食鹽水極性更強的「酒精溶液」萃取出的餾分,稱為麥膠蛋白(gliadin)。這種蛋白質具有黏性,置於斜面上會如泥流般滑動。麥膠蛋白與下面提到的麥穀蛋白(glutenin)都與小麥麵粉麵團展現的黏彈性有著密切的關聯。

  • 麥穀蛋白

麥穀蛋白是一種無法溶解於酒精溶液的蛋白質,不過卻可以溶在比酒精溶液更強烈的「醋酸溶液」當中。這種蛋白質與極富彈力的性質有著密切的關聯。所謂的極富彈性,就是意味著施加力道後,只要不再使力就會恢復原狀的性質。

小麥麵團黏彈性的祕密

在小麥蛋白質中,佔有關鍵地位的就是極具彈性的麥穀蛋白和富有黏性的麥膠蛋白。那麼,麥穀蛋白又為何會富有彈性呢?

我們在前面曾提過,小麥是生長在沙漠高原地帶並持續進化的植物。在這樣的環境中,與水同為小麥所必須的氮應該會出現常態性缺乏的情況。不過,即使在如此嚴苛的環境,有時還是會因為降雨而以銨離子(ammonium ion)與硝酸鹽離子(nitrate ion)的形式來取得氮的供給。

雖然無法獲得大量的補充,但小麥還是會盡其所能地留下這些氮的養分並加以儲存。銨離子雖然會保持原狀,但硝酸鹽離子一旦轉換成銨離子,就會改以麩胺酸(glutamic acid)及麩醯胺酸(glutamine)這類胺基酸的形式儲存在種子當中。

-----廣告,請繼續往下閱讀-----
含量(質量%)
麩胺酸 34.7
脯胺酸 11.8
絲胺酸 4.4
天門冬胺酸 3.7
甘胺酸 3.4
精胺酸 3.1
丙胺酸 2.6
蘇胺酸 2.4
離胺酸 1.9
芳香族胺基酸 11.0
含硫胺基酸
(branched-chain amino acid)
4.1
支鏈胺基酸
(ammonia)
13.1
3.8
合計 100

小麥麩質的胺基酸組成

麩胺酸與麩醯胺酸都是蛋白質的原料,利用這些原料所合成的蛋白質即被稱為儲藏蛋白(storage protein)。因此,小麥種子當中的蛋白質就是由麩胺酸、麩醯胺酸,以及作為誘導體的脯胺酸(proline)以極高比率所構成的。

麥穀蛋白加水揉和,結構開始變化

如同圖① 所顯示的,麥穀蛋白的構造是兩條帶子於末端互相連結。因為麥殼蛋白也是一種蛋白質,所以這種「帶子」其實是由胺基酸連結成為一長串而形成的。

麥穀蛋白的構造。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

我們在前面提過,麥殼蛋白的構成胺基酸因含有較多麩醯胺酸,所以乾燥狀態下會因麩醯胺酸彼此結合而變成兩條軌道般的形狀。此時加水揉和的話,水分就會進入這兩條軌道之間,成為圖② 那樣的小圓圈。

麥穀蛋白的構造。圖/晨星出版提供

如果再繼續加入大量水分,即會出現如同圖③ 的大圓圈。看到這張圖,大家應該就能夠感受到小麥麵粉具有的彈性了。

麥穀蛋白的構造。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

擁有泥土般黏性的小麥麵團

另一方面,若從分子等級來觀察,可以發現麥膠蛋白呈現微小球狀,直覺上就給人似彈珠滾來滾去那種滑動的感覺,所以在目視程度時,就會有如泥土般地溢流移動。這種泥土般流動的性質稱為「黏性」。

因此,麥穀蛋白的彈性與麥膠蛋白的黏性彼此混合在一起後,就形成了小麥麵粉麵團的性質。從這層意義來看,小麥麵粉麵團的物理性質也可以稱為黏彈性質。

麥殼蛋白、麥膠蛋白的每一個單位(domain,結構域)大小約僅有數奈米(奈米:10億分之1公尺),不過,這些結構域會因各種相互作用而連結起來,並且聚合(polymerization)成為目視程度尺寸的薄膜般構造。

我是一坨充分揉和的小麥麵團。圖/晨星出版提供

-----廣告,請繼續往下閱讀-----

上圖就是將小麥麵粉與水混合並充分搓揉後的麵團狀態。這點從麵團延展性極佳,且呈現為可透光至對側的薄膜就能看得出來。

掌控空間、溫度與時間,做出專屬口感

麵團之所以延展良好,其實是來自於結構域彼此結合的相互作用,但其中原因為何正是長年研究小麥學者們的課題。目前知道的是這與名為交聯(cross-link)的結合作用有著密切的關係。

因為交聯效應而聚合體化(macropolymer)示意圖。圖/晨星出版提供

因為交聯的形成屬於一種化學反應,所以也會依循化學反應的一般規則。換言之,只要充分混合拌勻,就能提高與反應相關部分的促發機率,進而開展交聯作用。這種情況就稱之為「空間效果」。

-----廣告,請繼續往下閱讀-----

另外,我們也可以說溫度較高時亦較容易進行化學反應。這種情況被稱為溫度效果。還有,花費較多時間也能使化學反應持續進展。這個情況則稱之為時間效果。

空間效果、溫度效果,以及時間效果這三大原則,對於思考麩質的形成與控制是很有幫助的。

舉例來說,烤點心時,如果充分揉和麵團,就會做出脆硬口感的餅乾,但若只是稍加搓揉,就會成為鬆軟口感的點心。不同揉製方法帶來不同口感,應該就是交聯作用的空間效果。此外,製作烏龍麵時,也是有個充分揉和後放上一晚靜置醒麵的作業,這個程序的重點應該就是交聯作用的時間效果了。

——本文摘自《麵的科學:麵粉如何創造豐富的口感、香氣和美味》,2020 年 3 月,晨星出版

晨星出版
12 篇文章 ・ 3 位粉絲