Loading [MathJax]/extensions/tex2jax.js

0

2
1

文字

分享

0
2
1

小麥麵團可以任我們搓圓捏扁,其實跟小麥蛋白質很有關係!——《麵的科學》

晨星出版
・2020/07/08 ・2983字 ・閱讀時間約 6 分鐘 ・SR值 569 ・九年級

  • 作者/山田昌治;譯者/吳佩俞

小麥蛋白質在麵粉的狀態下是堅硬且不易變形的,不過一旦加水搓揉就會產生變化,成為具有獨特彈性與黏性的物質。這種同時具備彈性與黏性的性質稱為「黏彈性(Viscoelasticity)」。如先前所提到的,因為室溫的水不會造成澱粉糊化,所以可以說這種黏彈性是因為小麥蛋白質才得以出現。

任由我們揉捏的麵糰。圖/pixabay

接下來,我們就針對小麥當中的蛋白質種類及性質加以解說。

小麥蛋白質的水合物稱為「麩質( gluten)」。蛋白質是一種由許多胺基酸聚集構成的串珠狀天然高分子(macromolecule),構造相當複雜。在這裡,我們先省略蛋白質構造的相關說明,把重點放在麩質的物理特性解析,並試著以湯馬斯.奧斯本(Thomas Osborne)的分餾(fractionation)分析法來進行說明。

奧斯本的分餾法是將麩質加入極性(溶解蛋白質的性質)較弱的溶劑當中,接著對溶出的蛋白質性質進行測試檢查,而無法溶出的物質會再繼續浸入極性較弱的溶劑裡,然後再繼續檢查溶出蛋白質的性質,換言之,分餾是一種依序不斷重複進行的手法。使用這種方法可以得知構成小麥蛋白質的蛋白質。也就是表 1-1 的內容。

表 1-1 奧斯本的分餾法。圖/晨星出版提供

至於這份表格的閱讀方法,則是若為白蛋白(albumin),可溶在水中,不溶於水的球蛋白(globulin)則是溶入鹽水裡,然後這樣就能由上而下依序看出各種蛋白質能夠溶解和不能溶解的溶劑了。

-----廣告,請繼續往下閱讀-----
  • 白蛋白

白蛋白的主要成分為澱粉酶抑制劑,不過其特性是只會抑制動物性澱粉酶,並不會對植物性澱粉酶產生抑制。許多研究學者都認為這可能是小麥種子為了避免被動物和昆蟲吃掉,才會發展出此種防禦特性。這也是大家說生吃小麥麵粉會讓胃腸不適的原因之一。

  • 球蛋白

所謂的「球蛋白」,就是無法溶入水中、但卻能以「食鹽水」萃取出的「餾分」。目前已經知道這是一種可溶於鹽水的蛋白質。雖然佔比極低,僅有 3 %,不過球蛋白擁有 α-澱粉酶、β-澱粉酶、蛋白酶(protease)等許多對於植物維持生命活動極為重要的酵素

  • 麥膠蛋白

使用比食鹽水極性更強的「酒精溶液」萃取出的餾分,稱為麥膠蛋白(gliadin)。這種蛋白質具有黏性,置於斜面上會如泥流般滑動。麥膠蛋白與下面提到的麥穀蛋白(glutenin)都與小麥麵粉麵團展現的黏彈性有著密切的關聯。

  • 麥穀蛋白

麥穀蛋白是一種無法溶解於酒精溶液的蛋白質,不過卻可以溶在比酒精溶液更強烈的「醋酸溶液」當中。這種蛋白質與極富彈力的性質有著密切的關聯。所謂的極富彈性,就是意味著施加力道後,只要不再使力就會恢復原狀的性質。

-----廣告,請繼續往下閱讀-----

小麥麵團黏彈性的祕密

在小麥蛋白質中,佔有關鍵地位的就是極具彈性的麥穀蛋白和富有黏性的麥膠蛋白。那麼,麥穀蛋白又為何會富有彈性呢?

我們在前面曾提過,小麥是生長在沙漠高原地帶並持續進化的植物。在這樣的環境中,與水同為小麥所必須的氮應該會出現常態性缺乏的情況。不過,即使在如此嚴苛的環境,有時還是會因為降雨而以銨離子(ammonium ion)與硝酸鹽離子(nitrate ion)的形式來取得氮的供給。

雖然無法獲得大量的補充,但小麥還是會盡其所能地留下這些氮的養分並加以儲存。銨離子雖然會保持原狀,但硝酸鹽離子一旦轉換成銨離子,就會改以麩胺酸(glutamic acid)及麩醯胺酸(glutamine)這類胺基酸的形式儲存在種子當中。

含量(質量%)
麩胺酸 34.7
脯胺酸 11.8
絲胺酸 4.4
天門冬胺酸 3.7
甘胺酸 3.4
精胺酸 3.1
丙胺酸 2.6
蘇胺酸 2.4
離胺酸 1.9
芳香族胺基酸 11.0
含硫胺基酸
(branched-chain amino acid)
4.1
支鏈胺基酸
(ammonia)
13.1
3.8
合計 100

小麥麩質的胺基酸組成

麩胺酸與麩醯胺酸都是蛋白質的原料,利用這些原料所合成的蛋白質即被稱為儲藏蛋白(storage protein)。因此,小麥種子當中的蛋白質就是由麩胺酸、麩醯胺酸,以及作為誘導體的脯胺酸(proline)以極高比率所構成的。

-----廣告,請繼續往下閱讀-----

麥穀蛋白加水揉和,結構開始變化

如同圖① 所顯示的,麥穀蛋白的構造是兩條帶子於末端互相連結。因為麥殼蛋白也是一種蛋白質,所以這種「帶子」其實是由胺基酸連結成為一長串而形成的。

麥穀蛋白的構造。圖/晨星出版提供

我們在前面提過,麥殼蛋白的構成胺基酸因含有較多麩醯胺酸,所以乾燥狀態下會因麩醯胺酸彼此結合而變成兩條軌道般的形狀。此時加水揉和的話,水分就會進入這兩條軌道之間,成為圖② 那樣的小圓圈。

麥穀蛋白的構造。圖/晨星出版提供

如果再繼續加入大量水分,即會出現如同圖③ 的大圓圈。看到這張圖,大家應該就能夠感受到小麥麵粉具有的彈性了。

麥穀蛋白的構造。圖/晨星出版提供

擁有泥土般黏性的小麥麵團

另一方面,若從分子等級來觀察,可以發現麥膠蛋白呈現微小球狀,直覺上就給人似彈珠滾來滾去那種滑動的感覺,所以在目視程度時,就會有如泥土般地溢流移動。這種泥土般流動的性質稱為「黏性」。

-----廣告,請繼續往下閱讀-----

因此,麥穀蛋白的彈性與麥膠蛋白的黏性彼此混合在一起後,就形成了小麥麵粉麵團的性質。從這層意義來看,小麥麵粉麵團的物理性質也可以稱為黏彈性質。

麥殼蛋白、麥膠蛋白的每一個單位(domain,結構域)大小約僅有數奈米(奈米:10億分之1公尺),不過,這些結構域會因各種相互作用而連結起來,並且聚合(polymerization)成為目視程度尺寸的薄膜般構造。

我是一坨充分揉和的小麥麵團。圖/晨星出版提供

上圖就是將小麥麵粉與水混合並充分搓揉後的麵團狀態。這點從麵團延展性極佳,且呈現為可透光至對側的薄膜就能看得出來。

掌控空間、溫度與時間,做出專屬口感

麵團之所以延展良好,其實是來自於結構域彼此結合的相互作用,但其中原因為何正是長年研究小麥學者們的課題。目前知道的是這與名為交聯(cross-link)的結合作用有著密切的關係。

-----廣告,請繼續往下閱讀-----
因為交聯效應而聚合體化(macropolymer)示意圖。圖/晨星出版提供

因為交聯的形成屬於一種化學反應,所以也會依循化學反應的一般規則。換言之,只要充分混合拌勻,就能提高與反應相關部分的促發機率,進而開展交聯作用。這種情況就稱之為「空間效果」。

另外,我們也可以說溫度較高時亦較容易進行化學反應。這種情況被稱為溫度效果。還有,花費較多時間也能使化學反應持續進展。這個情況則稱之為時間效果。

空間效果、溫度效果,以及時間效果這三大原則,對於思考麩質的形成與控制是很有幫助的。

舉例來說,烤點心時,如果充分揉和麵團,就會做出脆硬口感的餅乾,但若只是稍加搓揉,就會成為鬆軟口感的點心。不同揉製方法帶來不同口感,應該就是交聯作用的空間效果。此外,製作烏龍麵時,也是有個充分揉和後放上一晚靜置醒麵的作業,這個程序的重點應該就是交聯作用的時間效果了。

——本文摘自《麵的科學:麵粉如何創造豐富的口感、香氣和美味》,2020 年 3 月,晨星出版

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
晨星出版
12 篇文章 ・ 3 位粉絲

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
1

文字

分享

0
7
1
破解猴痘病毒感染機制及風險,天花疫苗也可以抵禦!
研之有物│中央研究院_96
・2023/04/11 ・5505字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/林承勳
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

又一「國際關注公共衛生緊急事件」

2022 年的猴痘病毒大概是除了新型冠狀病毒以外,最被社會關注的病毒之一,在這波的全球感染趨勢下,臺灣疾病管制署 2022 年 10 月 9 日公布,國內出現第 4 例猴痘境外移入確定病例。我們該繼續擔心猴痘病毒嗎?中央研究院研之有物團隊專訪院內分子生物研究所張雯研究員,請她解析痘病毒進入宿主細胞的機制,以及猴痘病毒的感染風險。

2022 年的猴痘疫情是繼 2020 年新冠肺炎疫情之後的「國際關注公共衛生緊急事件」。圖/iStock

根據世界衛生組織(World Health Organization, WHO)統計,自 2022 年 5 月英國出現首例猴痘(Monkeypox,或稱 Mpox)個案之後,迄 10 月為止,全球已通報超過 7 萬確診病例​​。[註1]

WHO 也在 7 月 23 日正式宣布,猴痘是繼 2020 年新冠肺炎疫情之後,又一「國際關注公共衛生緊急事件」(Public Health Emergency of International Concern,PHEIC),呼籲各國應該對此波病毒傳染加以重視。

-----廣告,請繼續往下閱讀-----

猴痘病毒是什麼?這類型的痘病毒如何感染人類?讓我們接著看下去吧!

  • 註1:為避免汙名化,2022 年 11 月 WHO 開始鼓勵使用「Mpox」作為「Monkeypox」的同義詞。

自 2022 年起,全球頻繁出現人傳人

猴痘病毒在分類學上,屬於痘病毒科 (Poxviridae),正痘病毒屬(Orthopoxvirus)。該病毒於 1958 年首次從實驗用猴的皮膚病灶中被分離,故命名為「猴痘」病毒。雖然它可以感染猴子,但是寄主範圍廣泛,尚包括齧齒動物如甘比亞袋鼠與其他靈長類動物。

猴痘病毒的真正野外宿主尚未有定論,可能為小型哺乳類。猴痘病毒透過這些中間宿主傳播給人類,屬於人畜共通傳染病。

病毒由野生動物傳播給人類的方式,通常透過直接接觸,像是碰觸到受病毒感染動物的血液、體液或黏膜;食用受感染動物也有感染風險。

-----廣告,請繼續往下閱讀-----

在過去,猴痘的傳播幾乎都侷限在非洲大陸,直到 2003 年美國爆出 40~50 例之感染案例。經追查後發現,感染源頭為走私進口之非洲寵物鼠,將病毒傳染給當地土撥鼠及人類。值得一提的是,此次感染人類之猴痘病毒株毒性較弱,無人死亡,整個疫情在半年內就平息了,而且鮮少出現人傳人的案例。

在非洲流行的猴痘病毒可分為中非和西非兩個分支,中非分支比西非分支病毒更容易傳播,且致死率更高,可達 10%。然而,因為疫情僅限於非洲,即使致死率高也鮮少受到國際關注。

自 2022 年 5 月以來,造成全球頻繁出現人傳人的猴痘病毒,經定序確認屬於西非分支,致死率約為 1%。此次疫情人與人之間的傳播多半是經由密切接觸,像是身體接觸時沾染到感染者分泌物、黏膜,或是皮膚水泡破裂流出的體液等等。另外也有機會經由口鼻噴出的飛沫,或是日常用品如衣物表面傳播病毒。

傳統上,感染猴痘後會出現發燒、畏寒、頭痛、淋巴腺腫大等典型症狀,並在發病後起疹子,自患部蔓延至身體其他部位,繼而發展成水泡、膿疱等。

-----廣告,請繼續往下閱讀-----

不過,美國疾病管制與預防中心指出,2022 年疫情的病患多半由於性接觸造成傳染,因此出現較不典型的症狀,像是疹子最早出現在生殖器或肛門周圍,且不一定會擴散至身體其他部位,發燒等症狀也比較不明顯,因此不易辨別、常常誤診成其他傳染病。目前臺灣衛生福利部疾病管制署,已把猴痘列為第二類法定傳染病,不敢輕忽大意。

感染猴痘的可能症狀。圖/研之有物(資料來源|iStock

天花疫苗也可以抵禦猴痘

說到猴痘病毒,便不得不提到同樣是正痘病毒屬,且惡名昭彰的近親:天花病毒(Variola Virus)。感染天花病毒產生的症狀跟猴痘類似,但更為嚴重。歷史上幾次天花大流行,至少帶走三億人的性命。不過在十八世紀,愛德華,金納(Edward Jenner)醫師倡導以牛痘病毒(Vaccinia Virus)製成的天花疫苗,已經於二十世紀成功的將天花病毒趕盡殺絕,目前僅有美、俄兩國的中央疾管機構仍保存些許天花病毒。

天花疫情之所以能被完全清除於人類社會,一個很重要的原因是因為其沒有人類以外的其他宿主。

天花病毒只會在人類之間散佈;當疫苗逐漸普及,民眾逐漸獲得抵抗力之後,天花病毒就無法生存。至於近期快速散播的猴痘病毒則不同,由於寄主範圍較廣,可感染多種野生嚙齒及靈長類等動物,導致猴痘病毒較不易完全根除。

針對此一波猴痘疫情,張雯指出,雖然病毒基因組上已經出現多個鹼基的變異,但不必然產生功能性影響。此外,因為痘病毒表面有多種相似度高之抗原,接種天花疫苗產生之免疫細胞仍具有可辨認猴痘病毒之能力,產生具有中和活性之抗體來保護個體。目前的第三代天花疫苗對猴痘仍具有相當的防禦能力,民眾毋需過於恐慌。

-----廣告,請繼續往下閱讀-----

為什麼用牛痘病毒製作的天花疫苗可以抵禦猴痘病毒?

原因在於牛痘、猴痘與天花病毒親緣關係接近,不僅病毒表面有同源性高的蛋白質用以進入寄主細胞,三者入侵細胞的機制也類似。長期研究牛痘病毒進入細胞機制的張雯認為,目前的研究成果可以協助科學家了解猴痘病毒的生活史。

關鍵在於表面鞘膜蛋白

對於痘病毒進入細胞的機制,以牛痘病毒當作模式物種研究的張雯指出,有感染力的痘病毒具有兩種形式,成熟病毒(Mature Virus,MV)及細胞外病毒(Extracellular Virus,EV)。兩者均帶鞘膜,但 95% 以上細胞內產生的病毒為成熟病毒。

成熟病毒藉由鞘膜上的四種鞘膜蛋白質,分別是:H3、D8、A26 及 A27,以附著在細胞表面的醣胺聚醣(Glycosaminoglycans)。接著病毒會聚集於細胞表面脂質筏(Lipid rafts)與細胞受體蛋白質 Intergrin β1 以及 CD98 結合,誘導宿主細胞內的訊息活化,產生細胞肌動蛋白質的聚合作用(Actin polymerization),促成液飲作用 ( Fluid phase endocytosis ) 將病毒吞入細胞內。

-----廣告,請繼續往下閱讀-----
牛痘病毒有兩種感染顆粒,一種是成熟病毒(Mature Virus,MV),數量佔 95% 以上;另一種是細胞外病毒(Extracellular Virus,EV),數量只佔 5% 以下。圖/研之有物(資料來源|張雯)
牛痘病毒的成熟病毒顆粒進入宿主細胞的機制。
圖/研之有物(資料來源|張雯)

牛痘成熟病毒被液飲作用產生的囊泡所包裹進入細胞質,接下來囊泡內環境會逐漸酸化,而酸性會誘導病毒鞘膜蛋白質 A26 結構改變,使得病毒融合蛋白質活化,促使病毒鞘膜與囊泡膜融合,脫去鞘膜的病毒內核進入細胞質內,開始新一波的基因複製及病毒組裝。

大部分 DNA 病毒是進入到細胞核,因為合成 DNA 所需之核苷酸原料在宿主的細胞核裡面;但痘病毒卻不是,反而在細胞質裡進行它的生活史。

張雯指出,痘病毒具它自身專用之 RNA 及 DNA 聚合酶,連基因轉錄及基因複製的過程都不假手宿主細胞之聚合酶。

牛痘病毒的感染顆粒進入宿主細胞的動態影像,紅色為成熟病毒顆粒(MV)、綠色為細胞外病毒顆粒(EV)。註:可開啟「循環播放」功能方便觀看。資料來源/張雯

從單層到雙層膜

牛痘病毒進到宿主細胞後,早期反應基因(Early gene)會立刻開始表現,產生早期病毒蛋白質,包括中期轉錄因子和 DNA 聚合酶以 DNA 複製;病毒會接續產生其他中後期的蛋白質,並且修飾內質網,把遺傳物質與蛋白質組裝成新的成熟病毒顆粒,完成牛痘病毒的生活史。

細胞產生之 MV 是非常穩定的病毒狀態,製造出來後會留在細胞質內,待細胞死亡破裂才會釋出。然而,少部分的 MV 會被運輸到寄主細胞的高基氏體進行「加工」,多包兩層高基氏體的膜,形成三層膜的病毒顆粒(Wrapped Virus,WV),並藉著細胞的微管移動到細胞邊緣。

-----廣告,請繼續往下閱讀-----

接著,三層膜的 WV 病毒會透過「內向外」的細胞膜融合,脫去最外層的膜,剩下兩層膜之 EV 便裸露在寄主細胞膜的「外面」,伺機尋找下一個細胞。EV 與 MV 不同,在環境中極不穩定,也因其鞘膜特性的不同,兩層膜的 EV 較脆弱,一旦附著在細胞表面後,其第一層外膜產生撕裂,露出第二層膜,不需經由胞飲過程及酸性環境的催化,此時 EV 可以直接與細胞表面之細胞膜進行膜融合,完成感染過程。

A26 蛋白質影響感染途徑

「成熟病毒 MV 藉胞飲作用後的酸性環境觸發病毒膜與囊泡膜融合,跟 EV 病毒在中性條件下直接與細胞膜融合,這兩種模式最大的差異,就取決於病毒表面是否有 A26 鞘膜蛋白質。」

張雯指出,A26 的作用就是抑制病毒膜融合的進行,而 A26 鞘膜蛋白質只存在 MV 表面,卻不在 EV 表面。A26 蛋白質組裝在病毒顆粒上,抑制膜融合,以維持 MV 病毒的穩定。 直到病毒感染細胞後,它的抑制功能會在囊泡形成的酸性環境下被解除,膜融合才得以順利進行,將病毒內核送入細胞質中。

不只是牛痘,天花跟 2022 年流行的猴痘病毒表面都有 A26 鞘膜蛋白,藉由解開鞘膜蛋白質如何調控病毒入侵細胞的機制,或許可以在未來變成圍堵猴痘病毒的籌碼。

-----廣告,請繼續往下閱讀-----

表面抗原蛋白多,不必擔心免疫逃脫

目前已報導的猴痘病毒有多達 50 處基因突變,而突變帶來的效果還有待進一步研究,但張雯卻不那麼擔心會有免疫逃脫的狀況出現。張雯指出,已經有實驗證明天花疫苗可以預防猴痘病毒,不論是先前提到一層膜或兩層膜的痘病毒狀態,被疫苗激活的人體免疫細胞都有能力辨認。

「新冠肺炎只有一個棘蛋白當作抗原,要是一出現突變就很麻煩;但猴痘病毒不一樣。」張雯解釋說,猴痘病毒表面的鞘膜蛋白例如 H3、D8、A27、L1 及 B5 都具有多樣的抗原區域,可刺激強大的免疫反應,產生各式各樣中和抗體。當中和抗體辨認的病毒抗原目標大且多時,病毒就很容易被發現、殲滅,即使少許突變也無法讓病毒逃脫其餘中和抗體的辨識。

因此,張雯表示,對付猴痘病毒用現有的第三代天花疫苗就夠了!「其實不論哪一代天花疫苗,刺激免疫力的能力都夠好,差別主要在於疫苗本身的安全性。」張雯強調,因為天花在 1980 以後就已經滅絕,沒有必要實施接種。各國現有的天花疫苗庫存是為了少數高危險群工作者之防護,或是防範天花病毒作為生化武器之用途,存量不夠多,短時間內無法供應大量民眾施打,所以猴痘疫情才會在爆發初期就引起恐慌。

如今猴痘病毒在特定群體中傳播只是暫時的表象,張雯指出,猴痘病毒傳播主要是靠接觸傳染,而且無關性別、性傾向或是否有發生性關係,只要有近距離的「肢體接觸」或污染物接觸都有可能沾到病毒而感染。各國有關當局應盡快鎖定確診個案的接觸者,以及接觸者的親朋好友們,讓他們優先施打疫苗,並追蹤成效。動作越快就越能有效圍堵疫情。

張雯解釋,新冠病毒僅有一個棘蛋白當作抗原,而猴痘病毒表面鞘膜蛋白有 H3、D8、A27、L1 及 B5 等多個蛋白質,可以提供中和抗體諸多可以辨認的抗原區域。圖/研之有物

阻斷病毒進入本土生態鏈是當務之急

過去各國科學家花費許多心思研究天花病毒,讓 WHO 存有足夠的天花相關資料,一舉成功用疫苗滅絕天花病毒。這也是至今人類醫療史上唯一成功滅絕病毒的案例。以此為基礎,想要防治相近的猴痘病毒並非難事。張雯也不認為短期內猴痘疫情會一發不可收拾。

回顧 2022 年,有很多個案是因從事性行為產生的密切接觸而被傳染,「當然固定性伴侶是可以減少病毒傳播的機會」張雯說。然而,過度簡化個案特徵與傳染途徑,再加上現任 WHO 秘書長譚德賽的發言,以及媒體大肆渲染下,容易誤導民眾以為猴痘是只會在男同性戀間傳播的性病。

「就跟當初 1980 年代的愛滋病一樣,一開始社會大眾以為只有同性戀社群才會被感染;猴痘也要多注意,不然也會污名化少數社群,帶給他們很大的傷害。」張雯再次強調,猴痘病毒會在人類全身流竄,不只侷限於性器官。

想要知道猴痘病毒在全球感染趨勢,張雯建議臺灣民眾可以追蹤有公信力的媒體跟網站,如 WHO 網站;由於美國猴痘病例約佔全球病例之半,美國疾病管制與預防中心也時常更新相關資訊。而臺灣目前只有 4 例境外移入,且都被快速攔截,應該還沒機會讓病毒散佈到其他人或動物身上造成本土感染,故暫時不用恐慌。

不過,由於猴痘病毒還會感染人以外的動物,為了預防未來出現本土感染,當前之務即是要注意並阻斷外來病毒進入當地寄主生物之生態鏈中。

延伸閱讀

  1. Ahmed, S. F., Sohail, M. S., Quadeer, A. A., & McKay, M. R. (2022). Vaccinia-virus-based vaccines are expected to elicit highly cross-reactive immunity to the 2022 Monkeypox virusViruses, 14(9), 1960. 
  2. Alakunle, E. F., & Okeke, M. I. (2022). Monkeypox virus: A neglected zoonotic pathogen spreads globallyNature Reviews Microbiology, 20(9), 507–508.
  3. Isidro, J., Borges, V., Pinto, M., Sobral, D., Santos, J. D., Nunes, A., . . . Gomes, J. P. (2022). Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of Monkeypox virusNature Medicine, 28(8), 1569-1572.
  4. Tomori, O., & Ogoina, D. (2022). Monkeypox: The consequences of neglecting a disease, anywhereScience, 377(6612), 1261–1263. 
  5. World Health Organization. (n.d.). Monkeypox. World Health Organization. Retrieved December 28, 2022, from https://www.who.int/news-room/fact-sheets/detail/monkeypox
  6. Fenner, F. (1993). Smallpox: Emergence, Global Spread, and Eradication.History and Philosophy of the Life Sciences, 15(3), 397–420. 
  7. Foster, S. O., Brink, E. W., Hutchins, D. L., Pifer, J. M., Lourie, B., Moser, C. R., . . . Foege, W. H. (1972). Human monkeypoxBulletin of the World Health Organization, 46(5), 569–576.
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3652 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

3

6
1

文字

分享

3
6
1
如何 3D 列印不會崩壞的蛋糕?
胡中行_96
・2023/03/30 ・1892字 ・閱讀時間約 3 分鐘

「那無疑是我從沒嚐過的味道」,論文的第一兼通訊作者 Jonathan David Blutinger 回想起初期的失敗,委婉地承認:「其實不難吃,只是與眾不同。我們畢竟不是米其林大廚。」[1]所幸皇天不負苦心人,在多次修正後,美國哥倫比亞大學的團隊,終於做出原料一樣,但是不再坍塌的蛋糕,並於 2023 年 3 月的《npj 食品科學》(npj Science of Food)期刊上分享食譜。[2]

3D列 印蛋糕的失敗百態。圖/參考資料 2,Supplementary Figure 1(CC BY 4.0)

3D 列印蛋糕的食譜

研究團隊的終極目標,是希望將來任何人均能用簡單的軟體烹飪,3D 列印再雷射加熱,創造經濟、健康且美味的餐點。他們選擇的食材相當普遍,全部都從美國紐約的 Appletree Market 超商購買。[2]

材料

Skippy 花生醬、J.M. Smucker 草莓果醬、Nutella 榛果巧克力醬、Betty Crocker 糖霜、Krasdale櫻桃淋醬、拿叉子搗爛的香蕉泥;以及用食物調理機攪 2 分鐘製成的全麥餅乾糊(8 塊全麥餅乾、2 湯匙的牛油和 4 茶匙的水)。[2]

步驟

(1)冷藏材料,使其變得濃稠,以穩定結構。[2]

-----廣告,請繼續往下閱讀-----

(2)把各種材料灌入分別的 7 支針筒(30ml;14 gauge)。[2]

(圖/參考資料 2,Supplementary Figure 3(CC BY 4.0))

(3)將針筒裝進特製的 3D 食物印表機。[2]

(圖/參考資料 2,Supplementary Figure 2(CC BY 4.0))

(4)把壓克力餐盤擺在 3D 印表機下,盛接針筒擠出的條狀物。其直徑約 1.5 毫米,會逐漸累積出蛋糕的半成品。[2]

(5)論文有寫到運用藍光和紅外線,為蛋糕加熱。不過,實驗方法的段落,僅提及 3D 印表機附設的藍光雷射二極體(blue laser diode),也就是下圖中黑色的長方體。[2]

-----廣告,請繼續往下閱讀-----
圖/參考資料 2,Supplementary Figure 4(Left;CC BY 4.0)
3D 列印蛋糕從失敗到成功的各個版本。影/參考資料 2,Supplementary Video 1(CC BY 4.0)

從上面的影片,可見早期幾個版本的蛋糕,非常容易崩垮。[2]研究團隊於是依據物質受力變形時,展現的黏性和彈性特質,即黏彈性(viscoelasticity),將食材分為「結構」與「填料」兩類,並在軟體中改變設計:[2, 3]用結構性強的全麥餅乾糊,作為蛋糕各層的形狀基礎,又以花生醬和榛果巧克力醬輔助支撐,再填入其他相對柔軟的原料。最後,他們調整 3D 印表機的針筒高度,並減緩列印的速度。如此擠出來的流體,尾端便不會蜷曲。能避免繩捲效應(coiling effect或rope-coil effect),破壞蛋糕表面的平整。要不然有時會出現本文開頭的圖組中,最末一塊蛋糕那種毛躁的外貌。[2]

a. 列印成功的蛋糕;b. 切開看內餡;c. 蛋糕設計;d. (1)全麥餅乾糊、(2)花生醬、(3)草莓果醬、(4)榛果巧克力醬、(5)香蕉泥、(6)櫻桃淋醬和(7)糖霜。圖/參考資料 2,Figure 1(CC BY 4.0)

3D 列印食品的推廣

目前 3D 列印食物尚未普及,此蛋糕的成形有如曇花一現。這一方面是基於科技新穎,懂得操作的人還少;另方面則因為這種印表機索價不菲,不是誰都玩得起。如果要商業化,研究團隊認為得採取 Gillette 刮鬍刀和 Nespresso 咖啡機的經營模式:壓低主要產品本身的價格,後續再從耗材獲利。換句話說,廠商賣出廉價的 3D 食物印表機,之後消費者就會以零買或長期訂購的模式,購買列印用的食譜和食物匣。食物匣的內容物,發展空間多元。除了碎肉和花生醬等泥狀物;也能推出醬油、橄欖油等液體;食鹽與胡椒之類的顆粒;還有百里香或香芹這類碎片等,任何可食用的東西。[2]

此外,在薄利多銷和產品開發的同時,也要提升大眾的接受度。偏好天然食材,或是不信任食品產業,都是對 3D 食物列印存有疑慮的原因。研究團隊提出的解方,是宣傳它的好處,例如:精準調配營養,不浪費材料;降低能源耗損;以及客製化的食譜等。[2]當然,似乎也就避而不談犧牲纖維質,以求列印順暢等問題。[1]總之,他們描繪出科技烹飪的美好願景,並且排除萬難,要讓飲食邁向全新時代。倘若有天上述的市場成熟,產品賣相比論文中的蛋糕誘人,您會願意品嚐嗎?

  

-----廣告,請繼續往下閱讀-----

致謝

特別感謝許凱勝先生協助確認技術細節。

  1. Sample I. (22 MAR 2023) ‘Have your cake and print it: the 3D culinary revolution is coming’. The Guardian.
  2. Blutinger, J.D., Cooper, C.C., Karthik, S. et al. (2023) ‘The future of software-controlled cooking’. npj Science of Food, 7, 6.
  3. Gan H, LAM Y. (2008). ‘Viscoelasticity’. In: Li, D. (eds) Encyclopedia of Microfluidics and Nanofluidics. Springer, Boston, MA.
-----廣告,請繼續往下閱讀-----
所有討論 3
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。