0

0
0

文字

分享

0
0
0

【Gene思書齋】小麥肚完全真相

Gene Ng_96
・2014/09/16 ・2630字 ・閱讀時間約 5 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

這本《小麥完全真相:歐美千萬人甩開糖尿病、心臟病、肥胖、氣喘、皮膚過敏的去小麥飲食法》Wheat Belly: Lose the Wheat, Lose the Weight, and Find Your Path Back to Health)在出版中文版前,我就曉得它在Amazon.com非常暢銷,而且佳評很多,有4.4顆星的高評價。不過,美國肥胖問題極為嚴重,迄今沒人能提出具體有效的解決方案,所以根本是場大混戰,如果不是大混帳的話…

所以一些把肥胖和健康問題推給單一食物的書,想當然爾會很暢銷,畢竟在現在物資富裕的社會,少吃一種食物並不會真的怎麼樣。基本上,美國預防性心血管醫師威廉‧戴維斯(William Davis, MD)在《小麥完全真相》中,就是要告訴我們,原來全球最受歡迎的穀物小麥,竟也是最具破壞力的膳食成分。

在討論這本書的內容前,請容許我分享自己的經驗。我長期罹患胃疾,除了潰瘍過,過去長期處於胃食道逆流和胃脹氣的狀態,有時候吃醫生開的處方藥不夠,自己還得吞幾顆制酸劑。有天吃飯時遇到也長期罹患胃疾的朋友,她問我早餐都吃啥,我過去早餐大多吃麵包,她驚訝我居然還選擇吃麵包,因為麵包會刺激胃酸分泌等等,我回去後便改吃燕麥片,沒想到沒幾天,胃食道逆流和脹氣的狀況大幅改善,雖然還不至於不藥而癒,但生活品質確實改善很多,所以我現在除非不得已,就不再吃任何麵包了。

回到這本《小麥完全真相》,戴維斯醫師就會說,看吧,這就是小麥的錯XD 他在書中指證歷歷地指控小麥和肥胖、糖尿病、心臟病、胃食道逆流、大腸激躁症、破壞腸道的乳糜瀉、氣喘、不明原因皮疹、類風濕性關節炎、多種神經失調症,甚至精神分裂症等等文明病有關。

-----廣告,請繼續往下閱讀-----

小麥作為世界最主要的糧食,怎麼可能會讓人生病呢?《小麥完全真相》指出,那是因為經過幾十年的雜交、配種、基因改造,食品加工業者能夠以最低成本生產更大量、更不怕乾旱的小麥,方便做成各種食品。但是現代小麥的結構卻因此被完全改變, 包含更多麩質蛋白質、營養價值幾乎蕩然無存。雖然美國人日益重視健康而改吃全麥麵包等,可是《小麥完全真相》卻指出,全麥麵包的GI值(升糖指數)甚至比白麵包跟蔗糖都高。

《小麥完全真相》中提到的「基因改造」(genetically modified),並非指基因工程改造,而是傳統育種法改造的,是可以用「基因改造」一詞,雖然這個名詞一般專指「基因工程改造」 (genetically engineered)的作物,因為小麥的基因工程改造作物還未上市,所以大家請勿讓模糊定義的名詞給誤導,以為問題出在基因工程上。

戴維斯醫師認為現代小麥是罪魁禍首,他在書中表示,他親自做實驗,發現原始的小麥麵粉做的麵包和一般麵粉做的相比,不會讓他不舒服,可是這位醫師卻留下一 個敗筆,那就是要親自做實驗當然可以,實驗對象的數量也先不成問題,可是醫學實驗要做雙盲(double-blind)的啊,要不然誰曉得是不是心理作用?

我們現在用的麵粉主要仰賴進口,大多和美國人一般使用的一樣。我從前在美國念博士班時,就在轟趴時問來自俄國的老闆,幹嘛不弄點俄羅斯菜來讓大家嘗嘗,他回說難度太高,因為俄國用的麵粉和美國的不一樣,他們弄不出家鄉口味Orz 我才曉得原來麵粉是有差別的XD

-----廣告,請繼續往下閱讀-----

《小麥完全真相》把問題都推給小麥,不是沒有道理,只要我們清楚美國人的麵粉製品主要是啥,就能夠瞭解為何戒掉小麥對他們健康大有助益,因為基本上美國大部分小麥麵粉製品,除了主食為主的麵包,其他的就是貝果、蛋糕、馬芬、披薩、椒鹽捲餅、餅乾、鬆餅等等高熱量的高度加工食品,其實美國人吃的麵條並不算多,大多數小麥麵粉製品都是隨手隨時可吃的這些食物。如果要完全不吃小麥製品,幾乎就不太能吃大部分垃圾食物了,你說健康還能不改善嗎?

所以台灣的國情和美國大不同,這是讀者應該清楚瞭解的,我們吃到的小麥麵粉製品,大多數以「麵」的形式,如麵條、餃子皮,或者北方的「餅」如蔥油餅、蛋餅等,還有饅頭、麵包的形式為主。我雖然吃麵包容易胃不舒服,可是吃麵條等卻似乎沒出過狀況,可能是有沒有醱酵還是有差吧?加上,西方人雖以小麥為主食, 不過說也奇怪,對麩質過敏的人,據說比以米飯為主食的亞洲人還多,至少美國超市就有還「無麩質」的食品。書中提到差不多接近1%美國人對麩質嚴重過敏,吃了小麥製品會導致乳糜瀉(coeliac disease)。

另一個問題就來了,因為美國不少人麩質過敏,以盛行率來看,大概有兩百多萬人會對麩質過敏,所以行醫期間遇上幾打,也不是問題。而這個麩質過敏又不分男女老少,有人吃了幾十年麵包,到了中年才出狀況,所以他在書中一再提出的案例,我相信都是真實的個案,只是這些吃小麥製品出狀況的病人,究竟佔他的病人的百分之多少,就不得而知了。有多少人戒吃了小麥製品,健康問題仍未獲得改善的,又是個問題了。

從各處書評來看,《小麥完全真相》的原文版應該引用了大量的學術論文(雖然在科學寫作上有欠周詳)。可是很可惜的,中文版為了成本吧,就把引用文獻全刪光了,所以我也想在此再度呼籲各大出版社編輯和老闆,決定不要印出參考文獻可以,可是起碼在網站上留一份電子檔嘛,要不然我們要查證(這個名詞對台灣媒體顯然是很陌生的XD)就會遇上困難(10/09補充:天下雜誌出版社已回應了此訴求,現在參考文獻頁面的電子檔已放上網站供讀者下載,感謝天下雜誌編輯們的用心 :))

-----廣告,請繼續往下閱讀-----

就以我的經驗來說,如果你有上述文明病的困擾,你當然歡迎試試戒斷小麥製品,改吃「原態」的食物,如糙米、地瓜等等,而少吃精製的麵包、餅乾、白麵條等等,照著書中附的食譜做菜也可能會給你新的樂趣,可是切勿把《小麥完全真相》的內容完全照單全收。

相關網誌:

All about teaching…: 現代小麥是怪獸嗎?我讀「小麥完全真相」

 

本文原刊登於The Sky of Gene

-----廣告,請繼續往下閱讀-----
文章難易度
Gene Ng_96
295 篇文章 ・ 32 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
一直流鼻水不一定是過敏!眼鼻喉不癢,可能是「非過敏性鼻炎」
careonline_96
・2024/07/31 ・1751字 ・閱讀時間約 3 分鐘

這天辦公室裡出現了這樣的對話:

「哎呀,你怎麼一直流鼻水、擤鼻涕啊?」

「我也不知道,可能是過敏吧!」

「可是我聽說,如果一年到頭都鼻水流不停,可能跟過敏沒關係,屬於『非過敏性鼻炎』喔。」

一直流鼻涕,到底與過敏有沒有關係,今天我們就來了解「非過敏性鼻炎」與「過敏性鼻炎」。

首先,我們先來看看一個簡易的區分表格。

看到這裡,你覺得自己的狀況比較符合哪一邊呢?

接下來,我們分別更深入地看看兩個狀況。

■ 非過敏性鼻炎

「非過敏性鼻炎」的症狀與過敏性鼻炎很類似,患者會鼻子塞塞的,容易流鼻水,擤鼻涕,喉嚨有卡一些黏液,會咳嗽。與「過敏性鼻炎」較為不同的是,多數患者並不覺得鼻子癢、眼睛癢、或喉嚨癢。

另外一個比較特別的是,「非過敏性鼻炎」的症狀在一年四季都可能出現,不像「過敏性鼻炎」較容易在特殊的季節出現症狀。還有,如果你發現自己小時候其實還好,但長大之後卻變得容易鼻塞、擤鼻涕,就比較可能是「非過敏性鼻炎」。

那為什麼會出現「非過敏性鼻炎」呢?學者注意到非過敏性鼻炎患者的鼻腔內,其血管是擴張腫脹的,鼻黏膜看來紅腫並充斥著黏液。會造成鼻腔血管腫脹的原因包括了:

◇ 空氣中的刺激物

聞到煙味、強烈的氣味、香水味,都可能會刺激鼻腔的血管腫脹充血。

◇ 藥物

阿斯匹靈、非類固醇消炎藥、或部分治療高血壓的藥物,會導致非過敏性鼻炎的症狀

◇ 天氣變化

鼻腔內血管會因為空氣中的溫度或濕度變化而變得更腫脹,而導致了非過敏性鼻炎的症狀

◇ 食物

吃的很辣,吃的很燙,或是喝酒,會比較容易讓鼻腔血管腫脹

找到引發自己「非過敏性鼻炎」的原因是很重要的,如果你常常發作「非過敏性鼻炎」的話,就要找找看是否是接觸到上述的幾種狀況,並試著避免這樣的情形,減少讓鼻腔黏膜血管變得腫脹,才不會常常鼻塞、流鼻水、擤鼻涕。

■ 過敏性鼻炎

「過敏性鼻炎」的症狀包括了鼻塞、流鼻水、擤鼻涕、和鼻子癢,甚至還會喉嚨癢、眼睛癢,頭痛,或睡眠障礙。

造成「過敏性鼻炎」的過敏原包括了:

  • 花粉
  • 黴菌孢子
  • 寵物皮屑
  • 塵蟎
  • 灰塵

由於花粉是個常見的過敏原,因此,充滿花和種子的春天是「過敏性鼻炎」發作的常見季節。不過每個人所在區域不同,過敏的原因也不同,也有可能在其他季節出現鼻塞、流鼻水的症狀,但患者會發現「每年到這個時候,我就會開始出現症狀」。

我們可以用抽血檢查或皮膚測試確認過敏原。若確認為「過敏性鼻炎」,常會需要用抗組織胺藥物改善症狀。

無論是「過敏性鼻炎」或「非過敏性鼻炎」,最重要的都是找到容易誘發自己症狀的原因,並盡量調整生活狀況,配合使用醫師開立的藥物,就能減少因為鼻炎而影響生活品質。

討論功能關閉中。

careonline_96
494 篇文章 ・ 275 位粉絲
台灣最大醫療入口網站