CRISPR 最簡單也最廣泛的一項應用,是切割一段特定基因,然後讓細胞以重新把 DNA 鏈連接的方式來修復損傷。這過程很容易出錯,會留下明顯的痕跡,在 CRISPR 切割位點的附近會發生一小段的 DNA 插入或缺失 (indel)。儘管科學家無法確切控制這種 CRISPR 應用中的 DNA 修復方式,但是他們明白這類基因編輯相當有用。
利用CRISPR進行同源重組
科學家需要一種能夠鎖定目標、編輯和修正單個 DNA 字母錯誤的方法。幸運的是,細胞有一種修復機制:同源重組 (homology-directed repair),這種修復方式不會隨意連接任兩條毫不相關的 DNA 片段,而是專門連接序列相似的片段,比僅僅將破碎的 DNA 重新黏合在一起更為精確,掌控度也較高。
事實證明,細胞中的酵素就是在進行類似的剪貼操作,只是這裡的全景圖是 DNA。之前談過的那種容易出錯的修復方式是發生在染色體斷開來的情況,這時細胞會隨便把末端連接起來,就像是攝影師在拼湊少了一小塊的全景圖那樣。但是當細胞面對的是一條斷掉的染色體,以及一段與染色體斷開後兩處末端相對應的 DNA,這時細胞會選擇比較好的修復方式,這段 DNA 相當於是修復用的模版,就好比是攝影師加洗的那張照片,細胞會讓兩末端序列完美重疊,將這段 DNA 黏貼到染色體的斷裂處。
這意味著研究人員可以使用 CRISPR 鎖定基因上發生有害突變的位置或附近區段,然後用一段新的健康 DNA 序列來取代,一勞永逸解決問題。只要研究人員利用 CRISPR,加上與斷裂基因區相對應的修復模版,細胞會很樂意抓住替換備品,用來修補損害。
細胞這時要處理的斷裂 DNA 末端變成兩倍,第一個選項是全速進行末端連接修復,處理受損的末端,同時把所有斷裂處都黏合回去。然而,由於細胞中的分子會不斷任意運動,因此採行這種修復模式的機率非常低。要是兩個切點之間的 DNA 片段漂走了,細胞便會採用第二種選項,乾脆不理會遭切除的片段,直接把最兩頭的末端黏合起來。這種修復模式就跟昔日電影剪輯師從電影膠卷中刪除畫面的方式類似,他們直接在膠卷上剪兩刀(畫面的開頭和結束),扔掉不要的片段,再將新的兩端黏合起來。
第三種修復選項牽涉到把中間的 DNA 片段倒轉過來。在這種情況下,切割出來的 DNA 片段仍擠在附近,大致維持在原處,只是翻轉過來,原本的頭尾位置對調。促進末端連接修復的同一種酵素,只顧著把失落的片段重新接回去,不管那段 DNA 的方向到底對不對。
變成基因表現控制器
CRISPR 還有另一種應用方式,與基因編輯無關。這時,科學家利用的不是 CRISPR 切割 DNA 的能力,而是刻意破壞這項工具的性能。他們故意讓這把分子剪刀無法作用,把它變成遠端管理基因體的工具,CRISPR 不再去編輯 DNA、造成永久性的變動,而是改變 DNA 的解讀、轉譯和表現方式來達成目的。正如傀儡師以看不見的線來控制傀儡的動作和姿態,這種非切割型的 CRISPR 讓科學家能夠操縱細胞的行為及其產出。
對於這種操縱功能的基礎認識,實際上,早在我的實驗室進行 CRISPR-Cas9 的研究時便開始了。伊內克首次確認 Cas9 的生化功能時,明確展現出這個酵素中的哪些胺基酸能夠發揮化學作用,切割 DNA 雙螺旋的兩股。他以遺傳工程改變這些胺基酸後,創造出一種完全喪失切割 DNA 能力的 Cas9,但仍然可以與嚮導 RNA 交互作用,與相對應的 DNA 緊密結合。儘管催化的核心遭到破壞,去活化的 Cas9 仍然保留部分功能,可以在基因體中搜尋特定 DNA 序列並定位,只是不再能切割 DNA。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。