2

12
3

文字

分享

2
12
3

科學實證「心情不佳真的會造成消化、皮膚發炎、心血管健康問題」,但為什麼?

PanSci_96
・2023/05/28 ・3177字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

你一定聽過安慰劑效應,但到底為什麼會有呢?這個謎團難倒了好幾個世代的科學家,超過百年依舊未解,直到最近,終於揭開了一部分謎底。

生醫圈非常振奮,認為一旦破解祕密,就能知道壓力為什麼會讓人生病!更棒的是,還有機會打造出嶄新療法,治療困擾無數人的疾病和癌症!?難道可以靠「轉念」來治病嗎?

安慰劑效應,指的是患者即使吃到或注射的不是真正的藥,對於外來病原體或體內病變的抵抗力竟然也會變好,讓身體好轉。有很長一段時間,科學家對這個現象背後的原理一無所知。

有兩個問題和解開安慰劑效應之謎有直接關係,乍聽之下都是非常不起眼的問題,可是只要多想兩三秒鐘,就會發現居然回答不出來。

-----廣告,請繼續往下閱讀-----

小感冒、腸躁症、安慰劑,藏著同一個答案

你一定有過這樣的經驗:感冒以後沒食慾、提不起勁、只想攤平在沙發上,為什麼會這樣?不就是因為病原體攻進身體裡才造成我們「覺得」不舒服嗎?但是再仔細想想,細菌或病毒根本沒有直接攻擊到腦部,那為什麼會冒出這些討厭的感覺?

再來,不少人一緊張就容易拉肚子,或是肚子痛、脹氣,也有人相反,一緊張就便祕,這些都是大腸激躁症(irritable bowel syndrome),簡稱腸躁症的常見症狀。但是,為什麼發生在大腦裡面的情緒會直接刺激遠在腹腔裡的腸子呢?

針對第一個問題,2022 年 6 月《Nature》一項研究發現,只要刺激腦部下視丘的特定區域,即使體內沒有病菌,小鼠也會發燒和食慾不振。換句話說,感染會引發免疫細胞攻擊病原體,導致體內發炎,腦部不必碰觸到病原體,只要透過血液等途徑感知到發炎的刺激,就會出現不舒服症狀。

感冒時沒食慾、提不起勁、只想攤平在沙發上。圖/Envato Elements

至於第二個,發表在 2021 年 11 月《Cell》期刊的研究指出,小鼠如果腸道曾經發炎,刺激腦島皮質(insular cortex)就可以使發炎狀態重現;也就是說,大腦會保有免疫系統活動的記憶,以後只要活化同一群神經細胞,就能在腸道重啟一樣的免疫反應。

-----廣告,請繼續往下閱讀-----

2023 年 2 月底《Nature》一篇評論文章說,科學家懷疑這種神經機制是身體為了抵抗可能發生的威脅,事先做好準備,但也會聰明反被聰明誤,在沒有原始觸發因素的時候自行啟動,例如壓力使腸躁症的症狀惡化,說不定就屬於這類情況。

這些發現透露了什麼線索呢?

病得輕重、多快復原,是腦在掌控

安慰劑效應和前面這兩個問題都指向一個方向,三個現象裡不斷出沒的——免疫系統。

科學家發現,目前所有的證據都指出,大腦和遍佈全身的神經,實際上是用一種還不太清楚的方式和免疫系統綁在一起。

-----廣告,請繼續往下閱讀-----

也可以換一種說法:喜怒哀樂的情緒及正負面心態究竟是如何和身體連結,已經發現至少有一條路徑是透過神經系統和免疫細胞的緊密互動。

2022 年 5 月底,《Nature》刊登一篇報告,介紹了美國哈佛大學醫學院的研究團隊利用「光遺傳學」和其他技術,畫出小鼠腦部和全身的白血球如何「互動」的地圖,這讓我們有機會進一步揣測人體裡發生的事。

所謂的光遺傳學,可以簡單想像成把設計好的蛋白質基因植入想要觀察的神經元細胞裡,這種蛋白質一旦照到特定波長的光就會啟動,刺激神經細胞跟著活化,這樣就可以非常精細地一次只操作單一種神經細胞,畫出解析度相當高的大腦圖譜。

身心透過神經系統和免疫細胞緊密互動。圖/Envato Elements

團隊很驚訝地發現,腦部透過兩種方式指揮免疫系統,一種是大腦控制身體動作的運動迴路(motor circuits)發出訊號刺激骨骼肌,釋出能吸引嗜中性白血球這種免疫細胞的細胞因子,誘導原本在骨髓裡的嗜中性白血球快速移動到感染或受傷的部位。另一個則是腦部的下視丘腦室旁核(paraventricular hypothalamus)會分泌特定的化學分子,命令腎上腺分泌激素,快速引導單核球和淋巴球從淋巴結、脾臟、血管等位置移動到骨髓。

-----廣告,請繼續往下閱讀-----

無獨有偶,2022 年 4 月底,德國和其他歐洲科學家組成的跨國團隊也在《Nature》上發表研究結果,直接表明動脈發生粥狀硬化的過程可能部分受腦部控制;也就是說,他們發現了神經、免疫和血液循環這三個系統是怎麼樣融合在一起的。

動脈粥狀硬化是血液裡的膽固醇堆積在血管內側,形成斑塊,在局部區域會有慢性發炎,血管也會愈來愈窄。斑塊一旦剝落就變成血栓,是造成中風、心絞痛和心肌梗塞的關鍵因素,目前還沒有醫療技術可以逆轉病人的動脈硬化。

研究團隊發現,小鼠動脈血管壁外層的神經纖維會傳訊號到腦部,也會接收腦部發來的訊號,免疫細胞會大量聚集在神經末梢周圍,人體也有類似的現象。他們以小鼠做試驗,用化學方法或手術切斷神經聯繫,免疫細胞迅速就地解散,血管斑塊的堆積速度也跟著減慢。

懂得向大腦求助

大腦能指揮身體抵抗病痛,這合理的解釋了你我大概都有過的切身之痛,那就是當滿腦子塞滿消極的情緒如壓力、焦慮的時候,特別容易生病,例如感冒、腸胃炎、皮膚癢等等。

-----廣告,請繼續往下閱讀-----

更有趣的是,反過來說,如果創造出積極的情緒,對於抵禦疾病是不是也有用呢?答案可能也是肯定的。

積極的情緒有利於對抗疾病。圖/Envato Elements

過去就有報告指出,加入支持團體和接受一些心理療法的乳癌患者,可以延長存活時間,在其他幾種癌症像是肺癌、惡性黑色素瘤、胃腸道癌症研究上也有提出類似的現象。

因此,現在世界各地有多個研究團隊正在鑽研如何善用「身」和「心」的力量,結合起來一起治好病痛。

例如癌症腫瘤會以釋放神經訊號、分泌化學物質等方式,造成患者的新陳代謝機制和睡眠大亂,美國紐約冷泉港實驗室的團隊發現刺激罹癌小鼠下視丘的特定區塊,可以把代謝和睡眠週期「喬」回來,有助於幫助癌症病人的復原過程變舒服。

-----廣告,請繼續往下閱讀-----

而以色列理工學院團隊則把焦點放在位於中腦的腹側被蓋區(Ventral Tegmental Area, VTA)。VTA 是腦部的獎勵中心,含有分泌多巴胺的細胞,和期望、動機、喜好等情緒有關,也就是讓我們會感到快樂、振奮而去做出實際行動的腦部區域。該團隊發現,刺激 VTA 可以驅動免疫系統,使小鼠肺部和皮膚的腫瘤縮小,他們現在要把成果從小鼠用到人身上。

也有一個團隊是從迷走神經(vagus nerve)下手。迷走神經是副交感神經系統的主要成員,從腦一路向下走過心、肺、胃,一直延伸到大腸,已知和調節免疫反應有關。有一家新創企業 SetPoint Medical 運用他們的技術,研發一種大小像膠囊的神經刺激裝置,植入脖子的迷走神經旁邊,可以無線充電、還可以用 iPad 的程式調整刺激強度,目標是治療類風濕性關節炎、克隆氏症(Crohn’s disease)等自體免疫疾病。

「身心一體」除了個人感受,也有生理學上的意義。圖/Envato Elements

「身心一體」,用比較感性的話來說就是:心靈受苦,身體也受苦。原來,這件事不只是主觀的個人感受,其實它有生理學上的道理。

或許,更重要的是,讓明明覺得不舒服卻一直檢查不出病因的人知道,自己的感受並非無病呻吟,也不是想逃避壓力或做錯事情,而是一體的身心真的在發出警報,或許這就是最大的安慰了。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
PanSci_96
1261 篇文章 ・ 2388 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
用科學定義左邊:當宇稱對稱被顛覆時,物理學如何重新書寫規律?
PanSci_96
・2024/12/16 ・1888字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

揭開宇宙的對稱之謎

如果有人問你:「什麼是左邊?」你可能會說:「左手那邊就是左邊。」但如果對方問:「左手是哪一隻?」你可能回答:「心臟那邊的手就是左手。」這樣的回答對人類來說很容易理解,但如果對方是一個從未見過人類的外星人,該怎麼解釋呢?

這個問題看似簡單,實際上涉及了物理學中的深奧話題。1956 年,三位華人科學家楊振寧、李政道和吳健雄,通過實驗揭示了一個驚人的事實:我們的宇宙對「左」與「右」其實並不完全對稱。這一發現推翻了人類長期以來對對稱性的認識。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

宇稱對稱性:鏡子中的世界會一樣嗎?

要了解這個發現,我們需要先認識「宇稱」的概念。宇稱(Parity)是物理學中用來描述對稱性的一種方法。它的意思是,如果我們把空間中的座標 (x, y, z) 反轉成 (-x, -y, -z),自然界的規律應該還是一樣的。例如,當一顆蘋果從樹上掉下來,我們用鏡子看時,蘋果還是會掉向地面,而不是飛向天空。這說明鏡像中的世界和真實世界是對稱的。

很長一段時間裡,科學家認為這種對稱性適用於所有自然現象,無論是在宏觀還是微觀世界。然而,到了 1950 年代,一些基本粒子的行為挑戰了這種觀點。

-----廣告,請繼續往下閱讀-----

宇稱不守恆:弱交互作用的例外

在物理學中,有四種基本交互作用:重力、電磁力、強交互作用和弱交互作用。弱交互作用是描述粒子衰變的力量,比如中子會通過弱交互作用衰變成質子、電子和一個反微中子。

1956 年,楊振寧和李政道提出一個大膽的假設:在弱交互作用中,宇稱對稱性可能並不成立。他們指出,雖然大多數物理現象在鏡像中是對稱的,但弱交互作用的某些過程可能偏好「左手性」。

楊振寧與李政道提出一個大膽的假設,指出在弱交互作用中可能破壞宇稱對稱性。圖/envato

為了驗證這個假設,他們邀請吳健雄設計了一個關鍵實驗,這就是後來著名的「吳氏實驗」。

吳氏實驗:揭示宇宙偏愛左手性

吳健雄選擇使用鈷-60 原子的 β 衰變作為實驗對象。鈷-60 是一種不穩定的同位素,會釋放出電子和反微中子。她將這些原子冷卻到極低溫,並用強磁場讓它們的自旋方向統一。

-----廣告,請繼續往下閱讀-----

實驗的關鍵是觀察電子的發射方向。如果宇稱守恆,那麼電子應該會均勻地向各個方向發射。然而,吳健雄的實驗結果卻顯示,電子有明顯的偏向,總是傾向於與原子自旋方向相反的方向發射。

這一結果證明,在弱交互作用中,鏡像世界與真實世界並不對稱,宇稱不守恆。而且,它表明自然界偏好「左手性」,或者說弱交互作用是一個「左撇子」。

為什麼這個發現重要?

宇稱不守恆的發現改變了我們對宇宙基本規律的理解。物理學家過去認為自然界的規律應該是完全對稱的,但這一發現表明,在某些情況下,對稱性會被打破。

這項研究還引發了更多的問題。例如,為什麼宇宙會偏愛「左手性」?是否還有其他交互作用也會破壞對稱性?隨後的研究顯示,如果將宇稱(P 對稱)和電荷共軛(C 對稱)結合在一起,則可以恢復某種對稱性,這被稱為「CP 對稱」。

-----廣告,請繼續往下閱讀-----

然而,1964 年的實驗又發現,CP 對稱在某些情況下也會被打破,這進一步推動了對基本物理規律的研究。特別是 CP 對稱破壞可能與宇宙中物質多於反物質的原因有關,這是當代物理學的一個重要課題。

CP 對稱破壞揭示了宇宙偏愛「左手性」與物質多於反物質的可能原因。圖/envato

用科學解釋左與右

回到最初的問題:如果我們需要向外星人解釋「左邊」的概念,該怎麼做呢?現在我們知道,可以通過像吳氏實驗這樣的方法,用弱交互作用來區分左與右。簡單地說,只要觀察粒子的衰變方向,就能定義出哪一邊是「左」。

這個發現讓我們更深入地理解了自然界的基本規律。它不僅是一次物理學的重大突破,也讓我們重新認識到宇宙的奇妙與複雜。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
AI 蛋白質設計革命:2024 諾貝爾化學獎背後的醫學奇蹟
PanSci_96
・2024/12/15 ・2175字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

2024 年諾貝爾化學獎,因為 AI 在蛋白質結構預測上的突破而備受矚目。Google DeepMind 的創辦人之一哈薩比斯(Demis Hassabis)與他的團隊,因開發出能預測蛋白質摺疊的 AlphaFold 系列獲得一半獎金。而另一半獎金則頒給了化學家大衛·貝克(David Baker),他開發出另一套令人驚嘆的工具,甚至突破了 AlphaFold 的極限。這些成就不僅為科學界帶來革命性的改變,更可能大幅加速藥物開發與疾病治療的進程。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

蛋白質摺疊:生命的拼圖

蛋白質作為生命的基石,其結構對其功能至關重要。當蛋白質在細胞內生成時,它由多個胺基酸分子組成的長鏈,會在極短的時間內像折紙般扭曲成特定的三維形狀。這種形狀決定了蛋白質的功能,比如構成細胞的結構、催化化學反應或傳遞訊息。

然而,預測這些複雜的三維結構曾經是生物化學界的一大挑戰。科學家們雖然能夠測量蛋白質序列(即胺基酸的排列順序),但如何從一維的序列準確推測其三維構造,卻是一個需要龐大運算能力和深刻科學理解的難題。

這個挑戰直到 2021 年 AlphaFold 2 的問世才有了質的突破。這套工具運用深度學習技術,能快速準確地預測蛋白質的摺疊方式,其精度已接近實驗室測試的水平。而今年推出的 AlphaFold 3,更進一步預測生物分子如 DNA 和 RNA 與蛋白質的交互作用,為藥物設計提供了重要基礎。

-----廣告,請繼續往下閱讀-----

不止於 AlphaFold:貝克的逆向設計

與 AlphaFold 側重於「順向」預測不同,大衛.貝克帶領的團隊採取了全然相反的路徑。他們開發的工具能夠進行「逆向」工程:不僅能根據已知序列推測結構,還能從需求出發,設計出具有特定功能的蛋白質。這種技術突破意味著,我們可以隨心所欲地設計出抗癌抗體、病毒疫苗,甚至是工業用的環保酵素。

這就像一位技藝超群的主廚,能根據客人的描述,精準還原一道複雜的菜餚,甚至能重新設計出更美味、更符合需求的版本。而貝克團隊的這套技術,則讓這樣的「創造」成為科學事實。

大衛.貝克團隊突破逆向工程技術,能夠設計具特定功能的蛋白質。圖/envato

設計蛋白質的技術演進

早在 1997 年,貝克的團隊就已經開發出 Rosetta,這是一款能模擬蛋白質摺疊的電腦工具。當時,他們利用能量假設,評估一個三維結構的穩定性。然而,由於電腦運算能力的限制,他們不得不採取取巧的方法,例如利用多序列比對(MSA)與蒙地卡羅模擬法來提升效率。這些技術雖然簡單,但在當時已經能顯著縮短運算時間。

隨著深度學習的興起,貝克團隊在 2021 年推出 RoseTTAFold,這套工具採用了三軌神經網路,讓 AI 能從多序列比對、分子距離與原子位置三方面同時學習,進一步提升預測的準確性。而今年最新的 RFdiffusion,更將擴散模型融入其中,讓 AI 不僅能預測,還能根據輸入的需求直接設計蛋白質結構。

-----廣告,請繼續往下閱讀-----

擴散模型的應用就像圖像生成工具 DALL-E 或 Midjourney,能在短時間內生成大量的可能構造,再經過篩選,留下最可能實現的設計。這讓蛋白質設計變得前所未有的靈活和高效。

AI 與疾病的正面交鋒

RFdiffusion 的問世,為生物醫學界帶來了全新的可能性。例如,研究人員已用它設計出數千個抗體,針對癌症、新冠病毒、流感等多種疾病進行測試。雖然目前成功率僅為 1%,但這已經是一個令人振奮的起點。

更重要的是,這些設計並非停留在理論層面。早在 2003 年,貝克團隊就曾成功創造出自然界不存在的蛋白質 Top7,而在 2008 年,他們更進一步設計出能催化化學反應的人造酵素。這些突破證明,人類不僅能理解生命的基本組成,更能重新定義它。

RFdiffusion 開創生物醫學新可能,從設計抗體到人造酵素,重新定義生命的組成。圖/envato

從賽場到實驗室:設計蛋白質的熱潮

除了 AlphaFold 和 RFdiffusion,近年來還出現了多場蛋白質設計競賽,例如 Align to Innovate 的酵素設計挑戰、加拿大生技公司 Liberum Bio 的病毒酶改良項目,以及 BioML Society 的 CAR-T 細胞抗原設計比賽。這些比賽吸引了來自學術界與產業界的頂尖人才,激發了無數創新應用的靈感。

-----廣告,請繼續往下閱讀-----

隨著技術的進步,AI 工具已經不再僅僅是輔助,而是成為創造新型蛋白質的核心力量。從抗體設計到工業酵素,從疫苗開發到癌症治療,AI 正在以前所未有的速度推動著科學的邊界。

未來展望:AI 是否能掌控生命密碼?

2024 年的諾貝爾化學獎不僅表彰了科學家的創新,更為人類未來與 AI 攜手揭開生命秘密描繪了一幅清晰的藍圖。隨著技術的不斷進步,我們正在從被動了解大自然的蛋白質結構,轉向主動創造適應需求的新型蛋白質。

這場革命不僅改變了醫學的面貌,也讓我們對生命本質有了更深層次的理解。未來的某一天,AI 也許真的能成為人類對抗疾病的終極武器,甚至實現哈薩比斯預言的「治癒大部分疾病」。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

20
0

文字

分享

0
20
0
白噪音為什麼是白色?認識三種讓你一覺好眠的彩色噪音
雅文兒童聽語文教基金會_96
・2024/10/23 ・2981字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/洪萱眉 雅文基金會聽語科學研究中心 助理研究員

你的日常生活也是這樣子嗎?桌上總是堆滿了待處理的資料與報告,電話聲不斷,會議一場接一場,連坐下來喘息或喝水的機會都沒有。下班後拖著疲憊的身軀回家,睡前仍在想著白天的工作與隔天的待辦事項。日復一日,這些繁瑣的事務不僅讓人感到焦慮與壓力,還影響了生活作息和睡眠品質。為了舒緩壓力、獲得一覺好眠,有些人會在睡前點精油或香氛蠟燭,營造一個舒適放鬆的環境。但你知道嗎?我們的彩色噪音也能讓我們放鬆身心,助我們一覺好眠嗎?

噪音和彩虹一樣也有顏色的區分

聽到「噪音」這個詞,通常會聯想到那些刺耳且令人心煩氣躁的聲音,例如施工時的電鑽聲或敲打聲。但其實噪音也有顏色區分,就像彩虹一樣。

一般而言,我們眼睛所見的顏色實際上是由可見光的不同頻率產生的,當光波刺激我們的眼睛並傳送到大腦時,大腦會根據其頻率和強度將其解釋為不同的顏色。例如,低頻的光波為暖色調,而高頻的光波為冷色調。而同樣的概念也可以套用在噪音上,因為噪音也有不同的強度及頻率[1-2],根據噪音的頻率範圍和強度,我們可以依此區分為白色噪音、粉紅色噪音、棕色噪音等不同類型的噪音[3-4]

一張含有 鮮豔, 光線, 螢幕擷取畫面, 藝術 的圖片

自動產生的描述
噪音顏色跟彩虹一樣,也有顏色的區分。不同顏色的噪音在頻率範圍和強度上各有不同。圖/freepik

不同類型的噪音顏色會有不同的功效

不同類型的噪音顏色都具其獨特的頻率分佈特性,其中,最常被討論的三個噪音顏色,分別為白噪音、粉紅噪音、棕色噪音:

-----廣告,請繼續往下閱讀-----
  1. 白噪音(white noise):白噪音是大家最熟悉、最常聽到的噪音顏色。我們人可聽到的聲音頻率介於 20~20,000 赫茲 ( Hz ),而白噪音在所有頻率上具有相同的強度。這與白色光由紅、綠、藍三原色均勻組成的概念相似。
    白噪音的聲音聽起來有如電視機壞掉發出沙沙聲、風扇聲、冷氣運轉聲音等[1, 5-6] 。白噪音通常用來蔽屏 ( mask ) 其他聲音,覆蓋掉環境中我們不想聽到的聲音,營造一個舒服、放鬆的環境。對於有睡眠困擾的人來說,白噪音可以幫助改善睡眠品質。Ebben、Yan、Krieger ( 2021 )針對 10 位因受環境噪音干擾而造成失眠問題的成人,執行一週白噪音的介入,並使用穿戴式睡眠測量器來記錄其睡眠狀況。結果發現,因白噪音介入會覆蓋擾人的環境噪音,這 10 位受試者他們的入睡後醒來時間(wake after sleep onset,簡稱WASO)與入眠期(sleep latency)比在介入前都有顯著降低與改善。然而,即使沒有白噪音的介入,其入睡後醒來時間(WASO)的改善成效依然能持續[7]
  2. 粉紅噪音(Pink noise):相比於白噪音,粉紅噪音的聲音聽起來較為低沉、舒緩且平衡,因為它過濾掉較多高頻的聲音且在低頻的能量上較白噪音強,聲音聽起來接近我們聽到大自然的風聲、雨聲等 [5,8]。研究指出,粉紅噪音能加強我們深度睡眠、提高記憶力[9]。Papalambros et.al(2017)探討使用不同聲音刺激(acoustic stimulation),對提升深層睡眠時間和記憶力的影響。受試者為 13 位 60-84 歲的健康的成人,結果發現,睡覺時有使用粉紅噪音介入能增加他們深層的睡眠時間,且在記憶測驗上也有顯著的提升[10]
  3. 棕色噪音 (Brown noise):又稱為紅色噪音。跟白噪音和粉紅噪音相比,棕色噪音具有更明顯的低音頻率,隨著頻率的增加而音量逐漸降低。所以聲音聽起來像是低沉的隆隆聲[11]。棕色噪音聲音類似打雷聲、大雨聲、海浪拍打聲音[9]。和白噪與粉紅噪音一樣,都能遮蔽環境中讓人干擾的聲音,並營造一個有利於放鬆、專注與睡眠的環境。有研究表明,棕色噪音會對大腦活動產生影響,與放鬆、冥想和深度睡眠有關,因此對於有減輕壓力和焦慮帶來很大的幫助[10]

噪音顏色除了讓我們放鬆、改善睡眠品質外,還是耳鳴、聽覺過敏以及新手爸媽的救星 

從上述可知,白噪音、粉紅噪音和棕色噪音不僅能改善睡眠品質、專注力以及放鬆外,其實在臨床上更被用來治療耳鳴和聽覺過敏等症狀。所謂的耳鳴,指的是在沒有外界聲音刺激的情況下,患者感覺耳中持續有嗡嗡聲。在臨床治療中,白噪音通常用作背景音,以減少患者對耳鳴的感知[12]。對於聽覺過敏患者,他們對日常生活中的聲音敏感度較高,因此粉紅噪音更適合用於治療,因為其低頻聲音的特性有助於患者長時間適應並習慣低強度聲音[12]。此外,許多新手父母使用白噪音來安撫哭鬧寶寶,因為它可以模擬寶寶在母體內聽到的模糊外界聲音,並遮蓋其他可能會驚擾寶寶的聲音,市面上的許多助眠裝置也運用了這個原理[5]

然而,儘管噪音顏色可以提升睡眠品質和專注力,長時間或過度暴露於任何類型的噪音都可能對聽力和整體健康造成負面影響。建議播放時間應限制在10至15分鐘,並給耳朵足夠的休息時間。如果打算使用彩色噪音來幫助自己入睡,應設置播放時間以避免整晚播放,避免聽力造成損傷,那就得不償失了![9, 11, 13]

一張含有 床, 人員, 室內, 安慰 的圖片

自動產生的描述
睡前使用噪音顏色幫助自己快速入眠時,應注意音量設定以及播放時間,適時的讓耳朵休息,避免造成聽力損失。圖/freepik

參考資料:

  1. Bulter, R.  & Writer, S. (2023). What Are Sonic Hues? White Noise, Brown Noise, Pink Noise, and More. https://thegatorseye.com/13787/opinion/what-are-sonic-hues-white-noise-brown-noise-pink-noise-and-more/
  1. Sound of Life。(2021)。噪音竟然助眠?白噪音、粉紅噪音是最佳床伴。取自:https://shorturl.at/abdV1
  2. 林奕榮。(2023/10/19)。噪音有顏色? 白、綠、棕、粉紅噪音都能減壓助眠。蔬福生活。取自:https://vegemap.merit-times.com/veganews_detail?id=5682 
  3. Color Energy Soup (2016/11/25)。人的眼睛為什麼能看到顏色?取自:https://color-energy-soup.com/2016/11/25/eyes-light/ 
  4. 鄭俊宇。(2021/4/16)。白噪音更能安撫寶寶?「粉紅噪音」能增強記憶力、改善睡眠。親子天下。取自:https://www.parenting.com.tw/article/5089287 
  5. Surles, T. (2023.3.13). What are white, pink and brown noises? Health Hearing. Retrieved from https://www.healthyhearing.com/report/53430-Noise-colors-white-pink-brown-tinnitus-hearing 
  6. Ebben, M. R., Yan, P., & Krieger, A. C. (2021). The effects of white noise on sleep and duration in individuals living in a high noise environment in New York City. Sleep Medicine83, 256-259.
  7. Sloan, M. (2023.3.27). Noise Colors: Which One Is Best for Sleep? Retrieved from https://www.discovermagazine.com/health/noise-colors-which-one-is-best-for-sleep 
  8. Shapiro, Z. (n.d.). Exploring the World of Color Noises: White, Pink, and Brown. Retrieved from https://audiologyisland.com/blog/exploring-the-world-of-color-noises-white-pink-and-brown/?srsltid=AfmBOordaPgtNG9s6MyfN–He9dD-BejcA5sQTj2hncTWg4MmkQi666v 
  9. Papalambros, N. A., Santostasi, G., Malkani, R. G., Braun, R., Weintraub, S., Paller, K. A., & Zee, P. C. (2017). Acoustic enhancement of sleep slow oscillations and concomitant memory improvement in older adults. Frontiers in human neuroscience11, 1-14
  10. Sedona Sky Academy (2024.5.10). Can brown noise turn off your brain ? Retrieved from https://www.sedonasky.org/blog/can-brown-noise-turn-off-your-brain
  11. American Speech-Language-Hearing Association. (n.d.). Tinnitus and Hyperacusis. (Practice Portal). Retrieved from www.asha.org/Practice-Portal/Clinical-Topics/Tinnitus-and-Hyperacusis/.
  12. Cleveland Clinic (n.d.). Brown Noise May Help You Focus and Relax. Retrieved from https://health.clevelandclinic.org/brown-noise 
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
58 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。