0

7
5

文字

分享

0
7
5

面對痛苦的遺傳性疾病時,我們選擇道德還是解決苦痛?——《竄改基因:改寫人類未來的 CRISPR 和基因編輯》

貓頭鷹出版社_96
・2022/04/02 ・2247字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

對生殖細胞進行基因編輯,這件事最主要的爭議在於有人擔心如此一來會製造出基因體變強的超級人類,他們變得更高、更快、更吸引人。

其實,對於這些特徵的遺傳基礎,我們所知相當有限。但我們確實知道,要用這種方式來強化人類是非常困難的,因為這些特徵大部分是許多遺傳變異相互影響產生的結果,對於最後呈現的樣貌,每一個遺傳變異都有些許貢獻。要對這些遺傳變異進行足夠的編輯致使特徵產生差異,是做不到的。

基因編輯本身的複雜性和所需要的成本,也說明我們不太可能把這項技術用在讓父母確定他們的小孩可以有藍色眼睛搭配金色頭髮,或黑色皮膚和薑黃色頭髮,或者任何想要的特徵組合。

基因編輯本身的複雜性和高成本,因此不太可能把這項技術用在讓父母選擇小孩的外貌。圖/Pexels

不過,人類基因體中也有些單一且獨立的遺傳變異,會對個體產生可預測性極高的巨大影響,而且這些影響有高度的病理性質。這才是對生殖細胞進行基因編輯的爭議所在。

折磨人的遺傳疾病——勒-奈二氏症

勒-奈二氏症是一種遺傳疾病,患者的症狀既嚴重又嚇人,幾乎到了不可思議的程度。罹患這種疾病的男孩(幾乎只有男孩會受到這種疾病影響),要忍受嚴重的關節疼痛,腎臟功能也不正常。

-----廣告,請繼續往下閱讀-----

這是因為有大量尿酸沉積在患者身體各個部位,就跟成人常罹患的痛風一樣。痛風病人常說,那種痛楚是你所能想像得到的疼痛裡,最椎心刺骨的一種。現在,各位想像一下,罹患勒-奈二氏症的男孩得要承受這種折磨。

令人難過的是,這還不是最慘的狀況,勒-奈二氏症的病童會發展出許多帶有傷害性的神經行為,其中最惱人的就是自殘行為,包括四肢和嘴脣的大面積咬傷。為了預防這種狀況,大約有百分之七十五的病人,身體多數時間是受到約束的,而且這通常是出自於他們自己的要求。

勒-奈二氏症幾乎只有男孩會受到影響,病童會發展出許多帶有傷害性的神經行為。圖/Pexels

勒-奈二氏症的病童很少活過二十歲,最常見的死因是尿酸沉積導致腎功能障礙。腎功能障礙還算容易處理的問題,但這也給病童的家人和臨床醫生帶來令人心碎的道德困境。對許多勒-奈二氏症的病人來說,活著就得忍受身體極大的痛楚,那麼,處理腎臟問題來延長他們的壽命,是合乎道德倫理的做法嗎?

矯正基因遺傳缺陷所遇到的困境

就算我們擁有正在發展的基因編輯技術,要矯正病童腦中的遺傳缺陷依舊相當困難。因為人腦有一種特殊屏障,可以阻止身體其他部位的「汙染源」進入,所以藥物和其他製劑要進入腦部組織可謂難如登天。

-----廣告,請繼續往下閱讀-----

各類腦細胞當中,神經元很可能是我們真正會執行基因編輯的對象,但神經元是一種不會分裂的細胞,遇到這種細胞,基因編輯的效率往往會下降。而且,人腦大約有一千億個神經元,這又是另一個大問題。

再者,我們無法確知神經傷害發生多久之後,就會變成不可逆的傷害,因此我們不知道有多少時間空檔可以用來執行基因編輯。

基因編輯的爭議在於有人擔心會製造出基因體變強的超級人類。圖/Pixabay

基因編輯技術遇到的道德問題

假設我們已經知道一對夫妻有可能生下罹患勒-奈二氏症的孩子,如果能夠盡可能地及早干預,讓症狀無從發生,這樣不是比較好嗎?

理想情況下,醫療干預措施會在生命最早期,當生命還是單一個細胞的時候就介入。精卵結合形成受精卵,既然這一顆單細胞受精卵最後會分化成人體的七十兆個細胞,那麼,何不直接矯正受精卵的突變序列就好了?

-----廣告,請繼續往下閱讀-----

這樣的方法並非只能應用在勒-奈二氏症。杭丁頓氏舞蹈症患者擁有一個會引發致命性神經退化的突變,雖然有些患者在童年時期就發病,但常見的發病時間在成年晚期。

到了這個時候,患者通常已經生育後代,他們除了知道自己正面對非常可怕,令人極度沮喪的退化現象,還會知道自己的每個孩子都有百分之五十的機率會遺傳到這顆基因手榴彈。

杭丁頓氏舞蹈症的發病時間多在成年晚期,面對疾病的同時還會擔心自己的孩子有機率遺傳到這顆基因手榴彈。圖/Pexels

當臨床醫生一知道某個家族有杭丁頓氏舞蹈症的病史,就對受精卵進行基因編輯,確保這個突變不會繼續傳遞下去,這不是很好嗎?每一個經過編輯,又重新植入母體的受精卵,都可以發育成一個嶄新個體,基因編輯可以阻止這個令人絕望的狀況在家族譜系裡繼續蔓延。

透過基因編輯,我們甚至有可能在恐怖的疾病發生之前就加以阻止,在這樣的世界裡,我們面臨的道德困境會有所轉變嗎?在道德層面上,現在已經不再需要證明這種做法的正當性了嗎?現在,我們的處境是要去證明不作為的正當性嗎?

-----廣告,請繼續往下閱讀-----

——本文摘自《竄改基因:改寫人類未來的CRISPR和基因編輯》,2022 年 1 月,貓頭鷹出版社

文章難易度
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
腎臟長水泡!最常見的腎臟遺傳疾病——多囊腎,及早治療延緩惡化
careonline_96
・2023/04/06 ・2102字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

「醫師,我想檢查腎功能。」王先生說。

「有不舒服嗎?」醫師問。

「因為我們家族有幾位成員罹患腎臟病,蠻年輕就開始洗腎,聽說是多囊腎。」

「噢,的確要注意這個問題喔。」

-----廣告,請繼續往下閱讀-----

多囊腎是最常見的腎臟遺傳疾病,可分為體顯性以及體隱性遺傳,其中以體顯性多囊性腎臟病(Autosomal Dominant Polycystic Kidney Disease,ADPKD)為多數,體顯性遺傳的意思是若父母其中之一為患者,則子女會有 50% 機會會發病。

體顯性遺傳最為熟知的基因缺陷以 PKD1 及 PKD2 為主,85% 的多囊腎患者以 PKD1 基因缺陷為主。多囊腎會使腎臟慢慢出現囊腫,囊腫裡面會充滿組織液,為了方便理解,解釋的時候會把囊腫稱為「水泡」。張立建醫師表示,隨著時間水泡會越來越多、越來越大,並佔據腎臟的體積,取代正常的腎臟組織,使腎功能漸漸變差。

多囊腎患者的腎臟會有非常多、大小不一的水泡。張立建醫師說明 PKD1 基因缺陷的患者大概在 40 至 50 歲的時候就會進入慢性腎臟病,平均約在 54 歲時開始洗腎。因此要提早發現、好好控制,才能延緩洗腎的時間。

張立建醫師解釋,多囊腎的症狀表現可以分成腎臟內的症狀和腎臟外的症狀,腎臟內的症狀主要是腎臟的水泡會越長越大,可能會壓迫腹內器官,故隨之而來會有腹痛、腹脹、腰痛及背痛等症狀。若對集尿系統造成壓迫,更可能出現泌尿道感染,除了泌尿道感染,水泡太大更可能有破裂、出血,而導致血尿之情形。

-----廣告,請繼續往下閱讀-----

腎臟外的症狀是因為多囊腎患者的其他器官也可能產生水泡,例如肝臟出現很多水泡,而影響肝臟功能。張立建醫師說,還可能會有腦動脈瘤,或在心臟出現心律不整、瓣膜疾病。而高血壓是多囊腎病人造成腎臟惡化、發生心血管事件與死亡的重要因素。研究發現,高血壓常於腎功能衰退前便已發生,而腎功能衰退亦會加重高血壓的狀況。

「診斷出多囊腎時,部分患者會認為只是水泡而已,就沒放在心上。」張立建醫師說,「我們都會苦口婆心地勸說,讓他們理解多囊腎會造成許多問題,不只是進展到需要洗腎的地步,還有其他腎臟外的症狀,所以一定要定期追蹤、積極治療。」

及早治療幫助保存腎功能

過去沒有治療多囊腎的藥物,大概只能請患者多喝水,減少鹽分攝取量、注意蛋白質攝取量,並定期追蹤腎功能。張立建醫師表示,但是只靠飲食調整的成效有限,患者幾乎都會在 40、50 歲就開始洗腎。

目前已經有多囊腎口服藥物可用,能夠延緩腎臟功能的惡化。張立建醫師解釋,研究發現,腎臟會形成囊泡主要與細胞的水通道表現有關,使用抑制水通道的藥物,就會使腎臟囊泡不再持續變大,也會減少囊泡的生成,避免壓迫正常腎臟組織,所以有機會讓多囊腎病程延緩,盡量保存功能。

-----廣告,請繼續往下閱讀-----

及早使用多囊腎口服治療藥物,能幫患者保存更多腎臟功能。研究顯示如果從慢性腎臟病第 2 期開始治療,約可將洗腎時間延緩 7 年;如果從慢性腎臟病第 3 期開始治療,約可將洗腎時間延緩 4 年。越早使用藥物則延長洗腎效果越好。

使用多囊腎口服治療藥物後,會減少水分從腎臟重新吸收的作用,尿量會增加,而必須補充水分,張立建醫師說,另外也要注意電解質、肝功能及尿酸,所以會請病人每個月回診追蹤。

由於多囊腎常伴隨多種併發症,患者會需要各專科的協助。張立建醫師表示,為了提供更完善的照顧,並提升大家對於多囊腎的認識,國軍台中總醫院腎臟內科有成立多囊腎特別門診,整合腎臟科、心臟科、泌尿科、腸胃科、神經外科、放射科等,並與國衛院黃道揚醫師醫師合作進行基因檢測,幫助患者及早確定診斷,並接受合適的治療,在門診亦可提供病患遺傳及優生諮詢。

多囊腎日常保養這樣做

張立建醫師呼籲,多囊腎患者容易出現高血壓的狀況,因此得注意血壓的控制,養成每天量血壓的習慣。在飲食習關上,建議減少鹽分的攝取並適當的增加水分攝取。慢性腎臟病患者的蛋白質攝取量要按照腎臟功能調整,當腎功能較差時,建議減少蛋白質攝取量至每天每公斤體重 0.6 至 0.8 公克,除了這些飲食建議外,也要盡量避免服用非類固醇類消炎止痛藥,以避免腎功能進一步的受傷害。

-----廣告,請繼續往下閱讀-----
careonline_96
480 篇文章 ・ 273 位粉絲
台灣最大醫療入口網站

0

4
0

文字

分享

0
4
0
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)
PanSci_96
・2023/01/30 ・2348字 ・閱讀時間約 4 分鐘

在 2022 年裡,我們見證了低軌通訊衛星在戰爭中的作用、Omicron 肆虐與次世代疫苗、韋伯太空望遠鏡捕捉系外生命印記、銀河中心黑洞初次現身、人類精準回擊小行星、台灣 CAR-T 首例、特斯拉的平價人形機器人、與超強的 LaMDA 跟 ChatGPT AI 語言模型!

2023 年能更刺激嗎?有哪些值得我們關注的科學大事呢?

我們綜合整理了 Nature、Science、Scientific American、NewScientist、富比世雜誌、經濟學人雜誌,結合泛科學的觀察與期待程度,提出這份「2023 最值得關注十大科學事件」;今年的科學界將會熱鬧非凡,令人目不暇給!

No.10 病原體通緝名單

2022 年 11 月,法國科學家在 bioRxiv 上發表了從西伯利亞永凍土中復活的多種病毒;這些「殭屍病毒」中最古老的已經有 48500 歲,在溫度升高後,這些病毒都復甦了過來……。雖然這批古老病毒只能感染變形蟲,但也暗示著,冰層之下存在更多正在休眠、極可能對哺乳動物或人類造成危險的病毒。

-----廣告,請繼續往下閱讀-----

隨著氣溫與海溫升高,這些不定時病毒炸彈正在醞釀著。

世界衛生組織將在今年發布修訂後的「重點病原體清單」,至少 300 位科學家嚴謹審查超過 25 個病毒與細菌家族的各種證據,針對目前還未知、但可能造成全球疫情的未知疾病 Disease X 做出預測,擬出一份優先名單。被列入名單的病原體通緝犯將會被重點研究調查,以利未來開發疫苗、治療與診斷技術。

被列入優先名單的病原體將會被重點研究調查。圖/Envato Elements

No.9 新一代 mRNA 疫苗

乘著在 COVID-19 大流行間快速成熟的 mRNA 疫苗研發平台,許多疫苗正蓄勢待發。

BNT 在 2023 年初針對瘧疾、肺結核和生殖器皰疹的 mRNA 疫苗開始了首次人體實驗;也與輝瑞合作,研發能降低帶狀皰疹發病率的疫苗。另一家 mRNA 大廠莫德納,也在研發能預防生殖器皰疹和帶狀皰疹病毒疫苗。

-----廣告,請繼續往下閱讀-----

除此之外,莫德納開發的黑色素瘤 mRNA 疫苗與默克的藥物合併療法,在去年底公布中期臨床試驗結果,顯示能降低 44% 的死亡率及復發風險,臨床試驗也將在 2023 年進入最後階段。

這些將在 2023 年揭曉的成果,將拓展人類使用 mRNA 疫苗對抗疾病的手段。

新一代 mRNA 疫苗正蓄勢待發。圖/Envato Elements

No.8 CRISPR 療法獲批准

由於之前的臨床試驗結果很不錯,CRISPR 基因編輯療法極有可能會在今年首次正式通過批准!

這種 exagamlogene autotemcel(exa-cel)療法,是由美國波士頓的 Vertex Pharmaceuticals 和英國劍橋的 CRISPR Therapeutics 公司共同開發。用超簡化的方式來説,治療方法就是先收集一個人自己的幹細胞,接著用 CRISPR-Cas9 編輯修正幹細胞中有缺陷的基因,最後再把這些細胞輸回人體。

-----廣告,請繼續往下閱讀-----

Vertex 公司預計會在 3 月向美國 FDA 申請批准,讓 exa-cel 療法可以用於治療 β-地中海貧血或鐮狀細胞病的患者。

然而,隨著療法上市,相關的討論預期也將甚囂塵上……。

CRISPR 基因編輯療法極有可能在今年正式通過批准。圖/Envato Elements

No.7 阿茲海默有藥醫

美國 FDA 將在年初宣布,Eisai 製藥公司和 Biogen 生技公司開發的 lecanemab,是否可以用來治療阿茲海默患者。

該藥物就像一台大腦專用的掃地機器人,為單克隆抗體,可以清除大腦中積累的 β 澱粉樣蛋白;在包含了 1785 名早期阿茲海默患者的臨床試驗中顯示,比起安慰劑,能減緩認知能力下降的速度約 27%。不過,有些科學家認為這效果只能說是還好,也有些擔心藥物不夠安全。

-----廣告,請繼續往下閱讀-----

無獨有偶,另一款由美國的 Anavex Life Sciences 開發的阿茲海默藥物 blarcamesine,目前也正在臨床試驗階段;它能啟動一種可提高神經元穩定性及相互連接能力的蛋白質,就像是幫神經元升級了連線速度與品質,估計在今年會持續帶來新消息。

blarcamesine 能幫神經元升級連線速度與品質。圖/Envato Elements

No.6 迷幻療法

2023 年,也極可能立下迷幻藥被用於醫療用途的里程碑。

多個相關臨床研究都進展到第三期,例如為 PTSD 創傷後症候群設計的新療法,結合了心理治療與 MDMA 亞甲二氧甲基苯丙胺,也就是所謂的搖頭丸,在臨床三期中,67% 的患者不再被診斷有 PTSD。

而來自迷幻蘑菇的裸蓋菇素,則被用來治療難治型憂鬱症,其臨床二期結果令人鼓舞。233 名難治型憂鬱症患者分成三組,在服用不同劑量裸蓋菇素後,每一組的憂鬱症量表分數都降低;而劑量最重的那組,其降幅最顯著。

-----廣告,請繼續往下閱讀-----

最後是 K 他命,竟然成為對抗酒精使用障礙的療法!酒精使用障礙包括酗酒、酒精依賴、成癮等,86% 的臨床試驗病人,在接受新療法後六個月,持續戒除酒精。

然而,也有科學家警告這些樂觀訊息中有炒作成份,就讓我們持續關注吧!

迷幻藥能有效治療病情!?圖/Envato Elements

看到這你可能會想,第六到十名怎麼都是跟醫療健康有關的大事件呢?別急!在下一篇中,我們接著介紹更精采的第五到第一名!

也歡迎大家跟我們分享,你知道的、即將在 2023 年發生的科學大事件!

-----廣告,請繼續往下閱讀-----
期待在 2023 年即將發生的科學大事件!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1226 篇文章 ・ 2330 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。