Loading [MathJax]/extensions/tex2jax.js

0

6
6

文字

分享

0
6
6

【2020 諾貝爾化學獎】基因剪刀 CRISPR:它如何改寫人類的生命密碼?

諾貝爾化學獎譯文_96
・2022/01/05 ・5593字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

基因剪刀:一個改寫生命密碼的工具

艾曼紐爾.夏本提爾(Emmanuelle Charpentier)與珍妮佛.道納(Jennifer Doudna)榮獲了 2020 年諾貝爾化學獎的桂冠,主要是因為她們發現了基因技術中最強大的工具之一:CRISPR/Cas9 基因剪刀。研究人員可以非常精準地使用它們改變動物、植物和微生物的 DNA(去氧核糖核酸)。這個技術徹底改變了分子生命科學,為植物育種帶來了新機會、有助於創新的癌症療法、並可能使治癒遺傳性疾病的夢想成真。

2020 年諾貝爾化學獎得主艾曼紐爾.夏本提爾(Emmanuelle Charpentier)與珍妮佛.道納(Jennifer Doudna)。圖/諾貝爾化學獎專題系列

科學的吸引力之一是它難以預測——你永遠無法預知一個想法或問題會將你引至何處。有時候好奇的心會遇到死胡同,有時則會遇到棘手的迷宮,需要花費多年的時間在其中探索。但是一次又一次地,她意識到自己是第一個凝視著一個未知的可能性從地平線上升起的人。

這個被稱為 CRISPR/Cas9 而具有驚人潛力的基因編輯器,就是這樣的一個意外發現。當夏本提爾和道納開始研究一個鏈球菌屬細菌的免疫系統時,一個想法是她們可能開發出一種新的抗生素。相反的,她們卻發現了一個分子工具,可用於精準的切割基因物質,使她們可以輕易地改變生命的密碼。

一個影響所有人的強大工具

在這個發現後僅僅八年,這些基因剪刀就重塑了生命科學。生物化學家與細胞生物學家現在可以輕易地研究不同基因的功能,以及它們在疾病進展中的可能角色。在植物育種中,研究人員可以賦予植物特定的性質,例如在溫暖的氣候下具有抗旱能力。在醫學上,這個基因編輯器正在為癌症提供新的療法,以及運用在企圖治癒遺傳性疾病的首批研究中。

-----廣告,請繼續往下閱讀-----

實在有太多的例子是關於 CRISPR/Cas9 如何的使用,其中還包括不道德的應用方法。與所有強大的技術一樣,這些基因剪刀需要被管控,有關這部分,後文會有更多說明。

在 2011 年波多黎各的一家咖啡館裡,夏本提爾和道納都不知道她們的第一次會面,將是一次改變人生的相遇。我們將首先介紹夏本提爾,她是最初建議雙方合作的人。

夏本提爾著迷於病原菌

有人曾稱讚夏本提爾的積極、專心和慎密,另有些人說她總是在尋找意外的發現。她自己喜歡引用路易.巴斯德(Louis Pasteur)的名言:「機會總是善待那些有準備的心靈」。追求新發現以及對自由和獨立的渴望,支配著她走的道路。包括在巴黎巴斯德研究所攻讀博士學位在內,她曾待過五個不同的國家,七個不同的城市,以及在十個不同的機構工作。

她的研究環境和方法雖發生了變化,但是她的大部分研究都有一個共同分母:病原菌(pathogenic bacteria)。它們的侵略性為什麼那麼高?它們如何發展出抵擋抗生素的能力?是否可以找到能阻止其進展的新療法?

-----廣告,請繼續往下閱讀-----

2002 年,夏本提爾在維也納大學成立自己的研究小組時,她專注於對人類造成危害最大的細菌之一:釀膿鏈球菌(Streptococcus pyogenes)。它每年感染數以百萬的人,經常引起易於治療的感染,例如扁桃腺炎(tonsillitis)和膿皰症(impetigo),但是它也可能導致危及生命的敗血症,並破壞身體的軟組織,而得到「食肉者」的稱號。

為了更進一步地了解釀膿鏈球菌,夏本提爾首先徹底研究了這種細菌如何調控其基因,這決定是發現基因剪刀的第一步——但是在我們進一步跟隨她走上這條路之前,我們將先了解更多有關道納的資訊,因為在夏本提爾對釀膿鏈球菌進行詳細研究的當兒,道納第一次知曉了一個縮寫,她認為其發音聽起來就像是英文的 crisper

使用基因剪刀,研究人員能編輯所有生物的基因體。圖/諾貝爾化學獎專題系列

科學——如偵探故事一般的探險

即便是一個在夏威夷長大的孩子,道納也強烈渴望了解各種事物。一天,她的父親把詹姆斯.華生(James Watson)寫的書《雙螺旋》放在她的床上。這是個具有偵探風格的故事,描述了華生和弗朗西斯.克里克(Francis Crick)如何解開了 DNA 分子的結構。那是個與她在學校教科書中所讀過完全不同的故事,她被其中的科學過程所擄獲,體會到科學不僅僅是一堆事實而已。

但是當她真正開始解決科學謎團時,她的注意力並非放在 DNA 上,而是它的同胞分子:RNA(核糖核酸)。當我們在 2006 年看著她時,她正在加州大學伯克萊分校領導著一個研究小組,已經擁有了 20 年的 RNA 研究經驗,具有開發突破性研究的靈敏嗅覺,並獲得非常成功的研究聲譽,最近剛進入了一個令人興奮的新領域:RNA 干擾(RNA interference)。

-----廣告,請繼續往下閱讀-----

多年來研究人員一直認為他們了解 RNA 的基本功能,但他們突然發現許多小型 RNA(small RNA)參與了細胞中的基因活性調節。道納參與的 RNA 干擾研究,導致她在 2006 年接到一通來自不同部門的一位同事的電話。

攜帶古老免疫系統的細菌

她的同事是微生物學家,告訴了道納一個新發現:研究人員比較各種極為不同的細菌以及古細菌(一種微生物)的基因物質時,出人意料地,他們發現保存完好的 DNA 重複序列,相同的密碼一再重複出現,但是在重複段落之間有著一組獨特的不同序列(圖 2),就像一本書中各個獨特的句子之間,重複著相同的單字。

這些重複序列的陣列稱為「群聚且有規律間隔的短回文重複序列」,縮寫為 CRISPR。有趣的是,CRISPR 中獨特的非重複序列似乎與各種病毒的基因密碼匹配,所以目前的想法為:這是古老的免疫系統的一部分,可以保護細菌和古細菌免受病毒侵害。其假說為如果細菌受到病毒感染而成功地存活,它就會將一部分病毒基因密碼加入其基因體(genome),作為對感染的記憶。

她的同事說,還沒有人知道這一切是如何運作的,但懷疑這種細菌用來中和病毒的機制,類似於道納研究的課題:RNA 干擾。

-----廣告,請繼續往下閱讀-----

道納繪出了一個複雜的機器

這個消息極不尋常但更令人振奮,如果細菌確實具有一個古老的免疫系統,那麼這極為重要。道納有著一種栩栩如生的分子計謀感覺,她開始學習有關 CRISPR 系統的所有知識。

研究人員證明除了 CRISPR 序列外,還發現了一些特殊基因,他們將其稱為 CRISPR-關聯者(CRISPR-associated),簡稱為 Cas。有趣的是,道納發現這些基因的編碼,與已知專門用於鬆解和切割 DNA 的蛋白質之基因非常相似。那麼 Cas 蛋白質具有相同的功能嗎?它們會切割病毒 DNA 嗎?

她讓她的研究小組開始工作,幾年後,她們成功地揭示了幾種不同 Cas 蛋白質的功能。同時,少數幾個其它大學的研究小組,也正在研究新發現的 CRISPR/Cas 系統。他們所繪出的圖像顯示細菌的免疫系統可以採取非常不同的形式,道納所研究的 CRISPR/Cas 系統屬於第 1 類;那是一個複雜的機器,需要許多不同的 Cas 蛋白質來清除病毒。第 2 類系統相當簡單,因為它們需要較少的蛋白質。在世界的另一端,夏本提爾剛剛遇到了這樣的系統,現在就讓我們的故事回到她身邊。

CRISPR 系統中一片新而未知的拼圖塊

當我們的故事離開夏本提爾時,她正住在維也納,但在 2009 年,她獲得了很好的研究機會而搬到了在瑞典北部的於默奧大學(Umeå University)。有人警告她要搬到世界上如此偏遠的地區不是個好決定,但是漫長而黑暗的冬天使她工作時充滿了平和與寧靜。

-----廣告,請繼續往下閱讀-----

這正是她需要的。她正好也對調控基因的小型 RNA 感興趣,並與在柏林的研究人員合作,詳細研究了釀膿鏈球菌中發現的一些小型 RNA。研究的結果讓她花了許多時間思考,因為該細菌中一種大量存在的小型 RNA 是一個新的變種,該 RNA 的基因密碼與該細菌基因體中奇特的 CRISPR 序列非常類似。

兩者之間的相似性讓夏本提爾懷疑它們是有關聯的,仔細分析它們的基因密碼還顯示,未知的小型 RNA 的一部分與重複的 CRISPR 相互匹配,就像找到兩塊完全密合的拼圖塊一樣(圖 2)。

夏本提爾從未研究過 CRISPR,但她的研究小組為了釐清釀膿鏈球菌中的 CRISPR 系統,啟動了一些徹底的微生物學偵探工作。這個系統屬於已知的第 2 類,僅需一個 Cas 蛋白質:Cas9,即可裂解病毒 DNA。夏本提爾發現,被稱為謄本活化 crispr RNA(tracrRNA)的新 RNA 分子,也具有決定性功能;基因體中的 CRISPR 序列所製造出來的長段 RNA,需要 tracrRNA 讓它成熟為活性形式(圖 2)。

CRISPR/Cas9 基因剪刀擊退病毒的機制。圖/諾貝爾化學獎專題系列

經過深入而有目標性的實驗,夏本提爾於 2011 年 3 月發表了 tracrRNA 的發現,她知道自己正尾隨著某個精采的東西。她有多年的微生物學經驗,但為了持續研究 CRISPR/Cas9 的系統,她希望能與生物化學家合作,道納則是當然的選擇。因此在當年春天,夏本提爾受邀參加在波多黎各舉行的會議報告她的發現時,她企圖結識這位非常有經驗的伯克萊研究人員。

-----廣告,請繼續往下閱讀-----

波多黎各咖啡館中改變人生的會面

碰巧的是,她們在會議的第二天在一家咖啡館見了面,道納的同事介紹了她們認識。第二天,夏本提爾提議她們應該一起探索這個首都的舊城區。當她們沿著鵝卵石鋪就的街道漫步時,開始談到彼此的研究,夏本提爾想知道道納是否對合作感興趣?她有意參與釀膿鏈球菌簡單的第 2 類系統中,Cas9 功能的研究嗎?

道納很感興趣,她們和同事們通過線上會議擬定了該研究的計劃。她們懷疑 CRISPR RNA 是辨識病毒 DNA 所必需的,而 Cas9 是切斷 DNA 分子的剪刀。但是當她們在生物體外進行測試時,什麼都沒有發生,DNA 分子仍保持完整。為什麼?實驗條件有問題嗎?還是說 Cas9 具有完全不同的功能?

經過大量的腦力激盪和無數失敗的實驗之後,她們的研究人員終於添加了 tracrRNA 進行測試,原先他們認為僅在 CRISPR RNA 被切割成活性形式後,才需要 tracrRNA(圖 2),但是一旦 Cas9 可以使用 tracrRNA,大家一直期待的事情真的發生了:DNA 分子被切割成兩部分。

大自然透過進化解決問題的方法經常使研究人員感到驚訝,但這次卻是非同尋常的,鏈球菌所發展出的抵禦病毒武器,既簡單又有效,甚至可謂傑出。基因剪刀的歷史可能就此結束:夏本提爾和道納曾經在一種對人類造成巨大苦難的細菌中,發現了一種細菌的基本機制。光是這發現就已令人驚奇,但機會總是善待那些有準備的心靈。

-----廣告,請繼續往下閱讀-----

劃時代的實驗

研究小組人員決定嘗試簡化基因剪刀,利用對 tracrRNA 和 CRISPR RNA 的新知識,他們設計出方法將兩者融合成一個分子,命名為「嚮導 RNA」(guide RNA)。利用這種簡化的基因剪刀變體,他們接著開始進行劃時代的實驗:研究是否可以控制這種基因工具,從而於研究人員指定的位置切割 DNA。

此時研究人員知道已經接近了重大突破,他們使用一個已經在道納實驗室的冰櫃中存放的基因,並選擇了五個不同的基因切割位置,然後更改剪刀的 CRISPR 部分,使其密碼與進行切割位置的密碼匹配(圖 3),結果是勢不可擋的將 DNA 分子切割在正確的位置。

基因剪刀改變了生命科學

夏本提爾和道納在 2012 年發表 CRISPR/Cas9 基因剪刀的發現後不久,這個工具被多個研究小組展示可用於修飾小鼠和人類細胞中的基因體,導致爆炸性的發展。先前,改變細胞、植物或生物體中的基因非常耗時,有時甚至是不可能的。使用這種基因剪刀,研究人員原則上可以在他們想用的任何基因體中進行切割。接著可以很容易利用細胞的天然 DNA 修復系統,從而改寫生命密碼(圖 3)。

CRISPR/Cas9 基因剪刀能夠更加精準地修改細胞 DNA。圖/諾貝爾化學獎專題系列

由於這種基因工具非常易於使用,現在廣泛的應用於基礎研究中。它可用於更改細胞和實驗動物的 DNA,以了解不同基因的功能和相互的作用,例如在疾病過程中的角色。

基因剪刀也已成為植物育種的標準工具,以前研究人員修改植物基因體使用的方法,通常需要添加抗生素耐藥性基因,但種植這種農作物時,其抗生素耐藥性可能會擴散給周圍微生物。多虧了基因剪刀,研究人員不再需要使用這些較舊的方法,因為他們現在可以對基因體進行非常精確的更改。許多其它應用中,他們還編輯了使水稻吸收土壤中重金屬的基因,使得改良的水稻品種具有較低的鎘和砷的含量。研究人員還開發了在溫暖的氣候中更能抵抗乾旱的農作物,並且可以抵抗昆蟲和害蟲,否則將不得不使用農藥。

遺傳疾病治癒的希望

在醫學上,基因剪刀為癌症的新免疫療法做出了貢獻,實驗正在企圖讓夢想實現——治癒遺傳疾病。研究人員已經在進行臨床試驗以研究是否可以使用 CRISPR/Cas9 來治療一些血液疾病,例如鐮形血球貧血症和 beta-地中海型貧血症,以及遺傳性眼疾。

他們也在開發修復大型器官中基因的方法,例如大腦和肌肉。動物實驗顯示,經過特殊設計的病毒可以將基因剪刀導入需要的細胞,作為治療毀滅性遺傳疾病的模型,例如肌肉失養症,脊髓肌肉萎縮和杭丁頓舞蹈症。但是該技術仍需要進一步改善,使之能在人體上進行測試。

基因剪刀的能力需要監控

與其所有優點並存的,基因剪刀也可能被濫用。例如,可以使用此工具創造基因修飾過的胚胎。但是,多年來有法律及法規控制基因工程的應用,其中包括禁止會讓變化遺傳給後代的人類基因體修改方式。另外,涉及人類和動物的實驗,必須經過道德委員會的審查和批准才得執行。

可以肯定的是:這些基因剪刀影響著我們所有人。我們將面臨新的倫理問題,但是此一新的工具很可能有助於解決當今人類面臨的許多挑戰。通過她們的發現,夏本提爾和道納開發了一種化學工具,將生命科學帶入了一個新時代。她們使我們注視著無法想像的廣闊前景,並且,在我們探索這片新領域的過程中,一定會創造出新的和意想不到的發現。

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從遺傳學角度剖析:女性能在體育場上超越男性嗎?——《運動基因》
行路出版_96
・2024/08/10 ・3712字 ・閱讀時間約 7 分鐘

科學期刊的預言:女性能追趕甚至超越男性?

我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。

但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。

1996 年亞特蘭大奧運前,一千位美國人中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。 圖/envato

《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」

2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。

-----廣告,請繼續往下閱讀-----

2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。

難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?

20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。

運動能力的基因密碼:性別差異的生物學根源

我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。

-----廣告,請繼續往下閱讀-----

不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?

男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。

我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。

-----廣告,請繼續往下閱讀-----

男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,會選擇性地啟動發育成男性的基因。 圖/envato

文化與訓練的影響:投擲項目中的性別差距

為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。

普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。

受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。

-----廣告,請繼續往下閱讀-----

在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。

不論距離,男子組前十名的跑步速度普遍比女子組快約 11%。圖/enavato

投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。

預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。

數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?

-----廣告,請繼續往下閱讀-----

註釋

  1.  各報上氣不接下氣地報導 800 公尺女子選手紛紛倒在跑道上。正如運動雜誌《跑步時代》(Running Times)2012 年的一篇文章指出的,實情是只有一個女子選手在終點線倒下,其餘三名都打破了先前的世界紀錄。據稱人在現場的《紐約郵報》記者寫道,「11 位淒慘的女性」當中有 5 人沒有跑完,5 人在跑過終點線後倒下。《跑步時代》報導說,參賽的女運動員只有 9 個,而且全部跑完。
  2. 過去普遍認為,隨著比賽距離拉長,女子賽跑選手會超越男子選手。這是克里斯多福.麥杜格(Christopher McDougall)在《天生就會跑》這本很吸引人的書裡談到的主題,但不完全正確。成績非常優秀的跑者之間的 11% 差距,在最長距離和最短距離同樣穩固存在。儘管如此,南非生理學家卻發現,當一男一女的馬拉松完賽時間不相上下,那個男士在距離短於馬拉松的比賽中通常會贏過那個女士,但如果競賽距離加長到 64 公里,女士就會跑贏。他們報告說,這是因為男性通常比較高又比較重,比賽距離越長,這就會變成很大的缺點。然而在世界頂尖超馬選手當中,男女體型差異比一般群體中的差異小,而 11% 的成績差距,也存在於超級長距離的最優秀男女選手之間。

——本文摘自 大衛・艾普斯坦(David Epstein)運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

1

1
1

文字

分享

1
1
1
被垃圾科學耽誤的人生:哈沃德的冤獄與平反——《法庭上的偽科學》
商周出版_96
・2024/01/04 ・4615字 ・閱讀時間約 9 分鐘

紐約市沃斯街四十號,無辜計畫

哈沃德的故事:因被冤枉身陷囹圄三十四年

基思.艾倫.哈沃德可以說是一名倖存者。他被維吉尼亞州錯誤定罪,但是逃過死刑執行。而且還是兩次。梅克倫堡矯正中心在一九八四年爆發了所謂的「大逃亡」(The Great Escape)1,那是有六名死囚越獄的空前維安漏洞,哈沃德面對其後的嚴密禁閉也倖存了下來。哈沃德面臨過殘酷的獄警、僅存的希望全被澆熄、父母的死訊,他的身分也被侵蝕到只能淪為 1125797 號罪犯,但是他倖存了下來。

他在維吉尼亞州刑罰體系中所有最嚴酷的監獄裡倖存下來了,先是梅克倫堡,接著是奧古斯塔(Augusta),然後又在蘇塞克斯二監(Sussex II)待了十年,還有現在的諾托韋,他在諾托韋那樣環境惡劣的監獄醫務室裡進行了重大的腸道手術,並且活了下來。雖然很勉強。

圖/unsplash

在被錯誤監禁的三十四年裡,哈沃德排的這條等待救援的隊伍從未向前移動。大量監禁讓他身邊的囚犯如雨後春筍般湧現,因此這條隊伍只會越排越長。他最初因為傑西.佩隆的入室謀殺案和對他妻子特蕾莎.佩隆的性虐待案而被關到梅克倫堡時,維吉尼亞州每十萬名居民中有大約一百五十人遭到監禁。

當我們發現特蕾莎用過的性侵採證套組、把它送去做 DNA 檢驗時,維吉尼亞州的監禁率已經超過每十萬名居民有四百五十多名囚犯,每十萬名黑人居民則是超過兩千四百人。2在那個看不見的國度裡,到底住著多少無辜的 1125797 號囚犯,我們不會知道。但是統計顯示,在維吉尼亞州和全國有數千名無辜的人被關在牢裡;他們大部分人都永遠不會再拿回他們的名字了。

-----廣告,請繼續往下閱讀-----
圖/unsplash

維吉尼亞州剝奪了哈沃德生命中的每一個里程碑。他沒能結婚,沒有小孩,沒有做過除海軍之外的其他職業。他在二十幾歲之後,除了監獄檔案的照片,就只有一張自己的照片。他具有指標意義的生日,三十歲……四十歲……五十歲……六十歲,都是在鐵牢裡度過的,他只是沒死而已。

事情一開始不是這樣的。他也曾經奮鬥過。他從獄中出庭為自己辯護一事,曾經讓他的有罪判決遭到撤銷。為他贏來一次重新審判的機會、再一次讓真相大白的機會。但是當陪審團第二次做出有罪判決、上訴法院也維持這個裁決時,哈沃德體內的鬥志突然被掏空了。他決定放棄,讓餘生都在監獄裡度過。就像他有一次對我說的:「我就待在牢裡等死算了。」

重新審判:不可靠的咬痕證據

就訴訟而言,二○一六年發現了性侵採證套組,州也同意進行檢驗,這使得前進的道路變得清晰。哈沃德和史蒂夫.錢尼不同,他不需要維吉尼亞州法院或是其他法院承認咬痕證據完全不可靠。他不需要新法律或是定罪完善小組就可以重返法庭。也不需要當初把哈沃德的牙齒和特蕾莎.佩隆大腿上的咬痕「配對」的六名牙醫取消他們的證詞。

圖/unsplash

哈沃德很幸運:他有 DNA 。檢測開始之後,就會像是一顆小圓石被丟出來,滾下山坡引起 被壓住的真相一波又一波的雪崩。其規模之大,會讓哈沃德甚至不需要重回法庭。

-----廣告,請繼續往下閱讀-----

他幾乎立刻就被排除在可能的嫌疑人之外,也就是說所有檢驗項目,包括性侵採證套組、凶手蓋在特蕾莎頭上的尿布,以及她被性侵時的沙發墊,上面的生物證據都不可能是他的。

我的辦公室裡傳來更多歡呼聲。這種感覺不同於最初發現物證箱時的那種驚喜。是好消息,但也是預期中的結果。無辜計畫法律團隊的每個人都相信基思.哈沃德是清白的,也都知道他是清白的。

圖/unsplash

之前在訴訟中移交的文件就已經證明了:刑事專家不實宣稱在犯罪現場收集到的血清證據,根據在 DNA 之前的血型技術無法確定。其實在審判之前就可以將哈沃德排除在取樣之外了。後來他又被排除在 DNA 證據之外,就是理所當然的了。

接著,我們得知 DNA 分析人員可以從保存的生物樣本中發展出完整的基因輪廓。這表示除了可以排除哈沃德是 DNA 的來源,甚至還有可能得知到底是誰的 DNA ;不同於史蒂夫.錢尼案中的 DNA 已經受到毀損,只能夠做到排除錢尼。

-----廣告,請繼續往下閱讀-----
圖/unsplash

從每一件證據中提取的 DNA 輪廓都沒有更新的資訊。它們都來自同一名男性,既不是基思.哈沃德,也不是特蕾莎的丈夫傑西。反而是一名陌生人把他的 DNA 留在整個犯罪現場。發現證據的位置和特蕾莎的證詞完全一致,因此顯得更有說服力,這份證據也與哈沃德自己的陳述一致;哈沃德說他從來沒有進過佩隆家。

證人誤認是錯誤定罪一大主因?

這在大多數州就足以推翻有罪判決了。但也還是有可能出現荒謬的「沒被起訴的共同射精者」理論。不過,這個案件中有一名受害者還活著。特蕾莎強忍著痛苦和性侵她的人共度了三小時。她知道那天晚上只有一個入侵者。一名殺了她丈夫的凶手。一個「咬了她的人」。

圖/unsplash

早在 DNA 排除哈沃德之前,特蕾莎本人就為哈沃德的清白提供了最有說服力的證據:她拒絕指認哈沃德。哈沃德是因為咬了他的女朋友而被逮捕,而且還戴著手銬,在這樣容易誤認的情境中,特蕾莎都沒有指認哈沃德就是毀了她家庭的那名水手。

她的這個立場在兩次審判中都沒有絲毫動搖。許多犯罪受害者很可能會接受暗示,或是不論有意或無意,急著指認被警方確信是凶手的那個人。的確,證人指認時的誤認,通常是因為警方的建議而導致的無心之過,是錯誤定罪的一大主因。

-----廣告,請繼續往下閱讀-----

除了咬痕,另外的唯一證據就是駐衛指認了哈沃德。然而,即使在當時,他的證詞也是勉強得來而且不可靠的,我們得知在取得他的證詞時,用了可以「強化」記憶的祕密催眠,因此顯然缺乏可信度。

圖/unsplash

即使用催眠誘導的指認可以相信,不過駐衛也只是說在襲擊案發生當晚,他有看到哈沃德回到基地。是的,他是說那個人穿了血跡斑斑的制服,不過那人其實不是基思.哈沃德,而且在當時的紐波特紐斯,喝醉酒的水手在酒吧跟人打架,然後滿身是血回到船上,也不是什麼罕見的事。歸根究柢,不論證人指認的這番話具有多少分量,它都不代表哈沃德那天晚上有進入佩隆家。只有洛威爾.萊文和阿爾文.凱吉的專家證人證詞明確說出了這一點。而 DNA 也證明了兩位牙醫是錯的。

真正的兇手到底是誰!?

哈沃德的案件已經走向崩解。真正的證據(affirmative evidence)不是指向他有罪,而是指向另一個第三人。無論在哪一州,這個「新發現」的證據應該都對推翻任何一個有罪判決綽綽有餘了,但是維吉尼亞州和大多數州都不一樣。維吉尼亞州是全美國對無罪主張最有敵意的州之一。被判無期徒刑的囚犯很少有活著走出來的。要讓無辜者重獲自由,通常前提是必須破案。

然後「聯合 DNA 索引系統」(CODIS)就找到他了:在訴訟中喊出了「將軍!」

-----廣告,請繼續往下閱讀-----
圖/unsplash

根據美國的 DNA 數據庫「聯合 DNA 索引系統」,確定性侵取證套組、沙發墊和尿布上的 DNA 是來自一名叫做傑里.克羅蒂的人。在這起性侵謀殺案發生時,克羅蒂是卡爾文森號航空母艦的一名水手,這艘航空母艦當時停泊在紐波特紐斯的船塢。

基思.哈沃德也在這艘船上服役。克羅蒂和哈沃德長得有點像,他曾經因為綁架罪而在俄亥俄州的監獄服刑,並在十年前死於獄中。在哈沃德入獄期間,他還犯下其他暴力犯罪,但是都沒有像一九八二年對佩隆一家的暴行那樣殘忍;當然,除非克羅蒂還犯了其他沒有被偵破的案件,或是被以為已經破案的犯罪。

全美國對無罪主張最有敵意的州?

媒體壓力再次升高。但不是像一九八二年那樣,當時行凶的水手逍遙法外,因此有兩名美國參議員敦促要盡速逮捕他;這次的壓力是要推翻多年前因為媒體推波助瀾而造成的有罪判決。

圖/unsplash

弗蘭克.格林(Frank Green)是《里奇蒙時報》(Richmond Times-Dispatch)的記者,他長期以來都對維吉尼亞州對無辜者的敵意有批判性觀察,他詳細報導了哈沃德的故事,從聲請推翻他的有罪判決的那一刻起。連諾托韋裡面的囚犯都注意到了。

-----廣告,請繼續往下閱讀-----

哈沃德在監獄裡的朋友們都為他打氣。他們開始從監獄圖書館的報紙上剪下與哈沃德案件有關的新聞剪報,並保留給他。隨著哈沃德的案件從一團混亂的垃圾科學訴訟,轉變成教科書等級的 DNA 平反案件,格林的報導刊登位置也越來越靠近頭版。當哈沃德的聲請在等待維吉尼亞州最高法院的決定時,他成了頭版新聞,而當 DNA 檢驗證明哈沃德是無辜的時候,他直接登上頭條。

圖/unsplash

既然已經在「聯合 DNA 索引系統」找到符合者了,但凡有一點基本的正當程序概念,都會覺得繼續監禁哈沃德是不可接受的。他顯然是無辜的。任何殘存的反對意見都消失無蹤了。

總檢察長在一場匆忙召開的新聞發布會上,公開承認哈沃德是無罪的,並要求該州高等法院盡速對其聲請做出裁決。維吉尼亞州最高法院在第二天就宣布基思.哈沃德是一個無辜的人。

——本文摘自《法庭上的偽科學》,2023 年 12 月,出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

原文注釋

  1. Bill McKelway, “From the Archives: How the 1984 Escape from Virginia’s Death Row Happened,” Richmond Times-Dispatch, May 30, 2009,瀏覽日期二○二一年七月五日,richmond.com/from-the-archives/from-the-archives-how-the-1984-escapefrom-virginias-death-row-happened/article_19ea1684-9af2-5d24-86ab-5875eaf2068c.html。 ↩︎
  2. Prison Policy Initiative, Virginia profile,瀏覽日期二○二一年七月五日,www.prisonpolicy.org/profiles/VA.html。 ↩︎
-----廣告,請繼續往下閱讀-----
所有討論 1
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。