0

5
5

文字

分享

0
5
5

【2020 諾貝爾化學獎】基因剪刀 CRISPR:它如何改寫人類的生命密碼?

諾貝爾化學獎譯文_96
・2022/01/05 ・5593字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

基因剪刀:一個改寫生命密碼的工具

艾曼紐爾.夏本提爾(Emmanuelle Charpentier)與珍妮佛.道納(Jennifer Doudna)榮獲了 2020 年諾貝爾化學獎的桂冠,主要是因為她們發現了基因技術中最強大的工具之一:CRISPR/Cas9 基因剪刀。研究人員可以非常精準地使用它們改變動物、植物和微生物的 DNA(去氧核糖核酸)。這個技術徹底改變了分子生命科學,為植物育種帶來了新機會、有助於創新的癌症療法、並可能使治癒遺傳性疾病的夢想成真。

2020 年諾貝爾化學獎得主艾曼紐爾.夏本提爾(Emmanuelle Charpentier)與珍妮佛.道納(Jennifer Doudna)。圖/諾貝爾化學獎專題系列

科學的吸引力之一是它難以預測——你永遠無法預知一個想法或問題會將你引至何處。有時候好奇的心會遇到死胡同,有時則會遇到棘手的迷宮,需要花費多年的時間在其中探索。但是一次又一次地,她意識到自己是第一個凝視著一個未知的可能性從地平線上升起的人。

這個被稱為 CRISPR/Cas9 而具有驚人潛力的基因編輯器,就是這樣的一個意外發現。當夏本提爾和道納開始研究一個鏈球菌屬細菌的免疫系統時,一個想法是她們可能開發出一種新的抗生素。相反的,她們卻發現了一個分子工具,可用於精準的切割基因物質,使她們可以輕易地改變生命的密碼。

一個影響所有人的強大工具

在這個發現後僅僅八年,這些基因剪刀就重塑了生命科學。生物化學家與細胞生物學家現在可以輕易地研究不同基因的功能,以及它們在疾病進展中的可能角色。在植物育種中,研究人員可以賦予植物特定的性質,例如在溫暖的氣候下具有抗旱能力。在醫學上,這個基因編輯器正在為癌症提供新的療法,以及運用在企圖治癒遺傳性疾病的首批研究中。

實在有太多的例子是關於 CRISPR/Cas9 如何的使用,其中還包括不道德的應用方法。與所有強大的技術一樣,這些基因剪刀需要被管控,有關這部分,後文會有更多說明。

在 2011 年波多黎各的一家咖啡館裡,夏本提爾和道納都不知道她們的第一次會面,將是一次改變人生的相遇。我們將首先介紹夏本提爾,她是最初建議雙方合作的人。

夏本提爾著迷於病原菌

有人曾稱讚夏本提爾的積極、專心和慎密,另有些人說她總是在尋找意外的發現。她自己喜歡引用路易.巴斯德(Louis Pasteur)的名言:「機會總是善待那些有準備的心靈」。追求新發現以及對自由和獨立的渴望,支配著她走的道路。包括在巴黎巴斯德研究所攻讀博士學位在內,她曾待過五個不同的國家,七個不同的城市,以及在十個不同的機構工作。

她的研究環境和方法雖發生了變化,但是她的大部分研究都有一個共同分母:病原菌(pathogenic bacteria)。它們的侵略性為什麼那麼高?它們如何發展出抵擋抗生素的能力?是否可以找到能阻止其進展的新療法?

2002 年,夏本提爾在維也納大學成立自己的研究小組時,她專注於對人類造成危害最大的細菌之一:釀膿鏈球菌(Streptococcus pyogenes)。它每年感染數以百萬的人,經常引起易於治療的感染,例如扁桃腺炎(tonsillitis)和膿皰症(impetigo),但是它也可能導致危及生命的敗血症,並破壞身體的軟組織,而得到「食肉者」的稱號。

為了更進一步地了解釀膿鏈球菌,夏本提爾首先徹底研究了這種細菌如何調控其基因,這決定是發現基因剪刀的第一步——但是在我們進一步跟隨她走上這條路之前,我們將先了解更多有關道納的資訊,因為在夏本提爾對釀膿鏈球菌進行詳細研究的當兒,道納第一次知曉了一個縮寫,她認為其發音聽起來就像是英文的 crisper

使用基因剪刀,研究人員能編輯所有生物的基因體。圖/諾貝爾化學獎專題系列

科學——如偵探故事一般的探險

即便是一個在夏威夷長大的孩子,道納也強烈渴望了解各種事物。一天,她的父親把詹姆斯.華生(James Watson)寫的書《雙螺旋》放在她的床上。這是個具有偵探風格的故事,描述了華生和弗朗西斯.克里克(Francis Crick)如何解開了 DNA 分子的結構。那是個與她在學校教科書中所讀過完全不同的故事,她被其中的科學過程所擄獲,體會到科學不僅僅是一堆事實而已。

但是當她真正開始解決科學謎團時,她的注意力並非放在 DNA 上,而是它的同胞分子:RNA(核糖核酸)。當我們在 2006 年看著她時,她正在加州大學伯克萊分校領導著一個研究小組,已經擁有了 20 年的 RNA 研究經驗,具有開發突破性研究的靈敏嗅覺,並獲得非常成功的研究聲譽,最近剛進入了一個令人興奮的新領域:RNA 干擾(RNA interference)。

多年來研究人員一直認為他們了解 RNA 的基本功能,但他們突然發現許多小型 RNA(small RNA)參與了細胞中的基因活性調節。道納參與的 RNA 干擾研究,導致她在 2006 年接到一通來自不同部門的一位同事的電話。

攜帶古老免疫系統的細菌

她的同事是微生物學家,告訴了道納一個新發現:研究人員比較各種極為不同的細菌以及古細菌(一種微生物)的基因物質時,出人意料地,他們發現保存完好的 DNA 重複序列,相同的密碼一再重複出現,但是在重複段落之間有著一組獨特的不同序列(圖 2),就像一本書中各個獨特的句子之間,重複著相同的單字。

這些重複序列的陣列稱為「群聚且有規律間隔的短回文重複序列」,縮寫為 CRISPR。有趣的是,CRISPR 中獨特的非重複序列似乎與各種病毒的基因密碼匹配,所以目前的想法為:這是古老的免疫系統的一部分,可以保護細菌和古細菌免受病毒侵害。其假說為如果細菌受到病毒感染而成功地存活,它就會將一部分病毒基因密碼加入其基因體(genome),作為對感染的記憶。

她的同事說,還沒有人知道這一切是如何運作的,但懷疑這種細菌用來中和病毒的機制,類似於道納研究的課題:RNA 干擾。

道納繪出了一個複雜的機器

這個消息極不尋常但更令人振奮,如果細菌確實具有一個古老的免疫系統,那麼這極為重要。道納有著一種栩栩如生的分子計謀感覺,她開始學習有關 CRISPR 系統的所有知識。

研究人員證明除了 CRISPR 序列外,還發現了一些特殊基因,他們將其稱為 CRISPR-關聯者(CRISPR-associated),簡稱為 Cas。有趣的是,道納發現這些基因的編碼,與已知專門用於鬆解和切割 DNA 的蛋白質之基因非常相似。那麼 Cas 蛋白質具有相同的功能嗎?它們會切割病毒 DNA 嗎?

她讓她的研究小組開始工作,幾年後,她們成功地揭示了幾種不同 Cas 蛋白質的功能。同時,少數幾個其它大學的研究小組,也正在研究新發現的 CRISPR/Cas 系統。他們所繪出的圖像顯示細菌的免疫系統可以採取非常不同的形式,道納所研究的 CRISPR/Cas 系統屬於第 1 類;那是一個複雜的機器,需要許多不同的 Cas 蛋白質來清除病毒。第 2 類系統相當簡單,因為它們需要較少的蛋白質。在世界的另一端,夏本提爾剛剛遇到了這樣的系統,現在就讓我們的故事回到她身邊。

CRISPR 系統中一片新而未知的拼圖塊

當我們的故事離開夏本提爾時,她正住在維也納,但在 2009 年,她獲得了很好的研究機會而搬到了在瑞典北部的於默奧大學(Umeå University)。有人警告她要搬到世界上如此偏遠的地區不是個好決定,但是漫長而黑暗的冬天使她工作時充滿了平和與寧靜。

這正是她需要的。她正好也對調控基因的小型 RNA 感興趣,並與在柏林的研究人員合作,詳細研究了釀膿鏈球菌中發現的一些小型 RNA。研究的結果讓她花了許多時間思考,因為該細菌中一種大量存在的小型 RNA 是一個新的變種,該 RNA 的基因密碼與該細菌基因體中奇特的 CRISPR 序列非常類似。

兩者之間的相似性讓夏本提爾懷疑它們是有關聯的,仔細分析它們的基因密碼還顯示,未知的小型 RNA 的一部分與重複的 CRISPR 相互匹配,就像找到兩塊完全密合的拼圖塊一樣(圖 2)。

夏本提爾從未研究過 CRISPR,但她的研究小組為了釐清釀膿鏈球菌中的 CRISPR 系統,啟動了一些徹底的微生物學偵探工作。這個系統屬於已知的第 2 類,僅需一個 Cas 蛋白質:Cas9,即可裂解病毒 DNA。夏本提爾發現,被稱為謄本活化 crispr RNA(tracrRNA)的新 RNA 分子,也具有決定性功能;基因體中的 CRISPR 序列所製造出來的長段 RNA,需要 tracrRNA 讓它成熟為活性形式(圖 2)。

CRISPR/Cas9 基因剪刀擊退病毒的機制。圖/諾貝爾化學獎專題系列

經過深入而有目標性的實驗,夏本提爾於 2011 年 3 月發表了 tracrRNA 的發現,她知道自己正尾隨著某個精采的東西。她有多年的微生物學經驗,但為了持續研究 CRISPR/Cas9 的系統,她希望能與生物化學家合作,道納則是當然的選擇。因此在當年春天,夏本提爾受邀參加在波多黎各舉行的會議報告她的發現時,她企圖結識這位非常有經驗的伯克萊研究人員。

波多黎各咖啡館中改變人生的會面

碰巧的是,她們在會議的第二天在一家咖啡館見了面,道納的同事介紹了她們認識。第二天,夏本提爾提議她們應該一起探索這個首都的舊城區。當她們沿著鵝卵石鋪就的街道漫步時,開始談到彼此的研究,夏本提爾想知道道納是否對合作感興趣?她有意參與釀膿鏈球菌簡單的第 2 類系統中,Cas9 功能的研究嗎?

道納很感興趣,她們和同事們通過線上會議擬定了該研究的計劃。她們懷疑 CRISPR RNA 是辨識病毒 DNA 所必需的,而 Cas9 是切斷 DNA 分子的剪刀。但是當她們在生物體外進行測試時,什麼都沒有發生,DNA 分子仍保持完整。為什麼?實驗條件有問題嗎?還是說 Cas9 具有完全不同的功能?

經過大量的腦力激盪和無數失敗的實驗之後,她們的研究人員終於添加了 tracrRNA 進行測試,原先他們認為僅在 CRISPR RNA 被切割成活性形式後,才需要 tracrRNA(圖 2),但是一旦 Cas9 可以使用 tracrRNA,大家一直期待的事情真的發生了:DNA 分子被切割成兩部分。

大自然透過進化解決問題的方法經常使研究人員感到驚訝,但這次卻是非同尋常的,鏈球菌所發展出的抵禦病毒武器,既簡單又有效,甚至可謂傑出。基因剪刀的歷史可能就此結束:夏本提爾和道納曾經在一種對人類造成巨大苦難的細菌中,發現了一種細菌的基本機制。光是這發現就已令人驚奇,但機會總是善待那些有準備的心靈。

劃時代的實驗

研究小組人員決定嘗試簡化基因剪刀,利用對 tracrRNA 和 CRISPR RNA 的新知識,他們設計出方法將兩者融合成一個分子,命名為「嚮導 RNA」(guide RNA)。利用這種簡化的基因剪刀變體,他們接著開始進行劃時代的實驗:研究是否可以控制這種基因工具,從而於研究人員指定的位置切割 DNA。

此時研究人員知道已經接近了重大突破,他們使用一個已經在道納實驗室的冰櫃中存放的基因,並選擇了五個不同的基因切割位置,然後更改剪刀的 CRISPR 部分,使其密碼與進行切割位置的密碼匹配(圖 3),結果是勢不可擋的將 DNA 分子切割在正確的位置。

基因剪刀改變了生命科學

夏本提爾和道納在 2012 年發表 CRISPR/Cas9 基因剪刀的發現後不久,這個工具被多個研究小組展示可用於修飾小鼠和人類細胞中的基因體,導致爆炸性的發展。先前,改變細胞、植物或生物體中的基因非常耗時,有時甚至是不可能的。使用這種基因剪刀,研究人員原則上可以在他們想用的任何基因體中進行切割。接著可以很容易利用細胞的天然 DNA 修復系統,從而改寫生命密碼(圖 3)。

CRISPR/Cas9 基因剪刀能夠更加精準地修改細胞 DNA。圖/諾貝爾化學獎專題系列

由於這種基因工具非常易於使用,現在廣泛的應用於基礎研究中。它可用於更改細胞和實驗動物的 DNA,以了解不同基因的功能和相互的作用,例如在疾病過程中的角色。

基因剪刀也已成為植物育種的標準工具,以前研究人員修改植物基因體使用的方法,通常需要添加抗生素耐藥性基因,但種植這種農作物時,其抗生素耐藥性可能會擴散給周圍微生物。多虧了基因剪刀,研究人員不再需要使用這些較舊的方法,因為他們現在可以對基因體進行非常精確的更改。許多其它應用中,他們還編輯了使水稻吸收土壤中重金屬的基因,使得改良的水稻品種具有較低的鎘和砷的含量。研究人員還開發了在溫暖的氣候中更能抵抗乾旱的農作物,並且可以抵抗昆蟲和害蟲,否則將不得不使用農藥。

遺傳疾病治癒的希望

在醫學上,基因剪刀為癌症的新免疫療法做出了貢獻,實驗正在企圖讓夢想實現——治癒遺傳疾病。研究人員已經在進行臨床試驗以研究是否可以使用 CRISPR/Cas9 來治療一些血液疾病,例如鐮形血球貧血症和 beta-地中海型貧血症,以及遺傳性眼疾。

他們也在開發修復大型器官中基因的方法,例如大腦和肌肉。動物實驗顯示,經過特殊設計的病毒可以將基因剪刀導入需要的細胞,作為治療毀滅性遺傳疾病的模型,例如肌肉失養症,脊髓肌肉萎縮和杭丁頓舞蹈症。但是該技術仍需要進一步改善,使之能在人體上進行測試。

基因剪刀的能力需要監控

與其所有優點並存的,基因剪刀也可能被濫用。例如,可以使用此工具創造基因修飾過的胚胎。但是,多年來有法律及法規控制基因工程的應用,其中包括禁止會讓變化遺傳給後代的人類基因體修改方式。另外,涉及人類和動物的實驗,必須經過道德委員會的審查和批准才得執行。

可以肯定的是:這些基因剪刀影響著我們所有人。我們將面臨新的倫理問題,但是此一新的工具很可能有助於解決當今人類面臨的許多挑戰。通過她們的發現,夏本提爾和道納開發了一種化學工具,將生命科學帶入了一個新時代。她們使我們注視著無法想像的廣闊前景,並且,在我們探索這片新領域的過程中,一定會創造出新的和意想不到的發現。

延伸閱讀

文章難易度

0

3
0

文字

分享

0
3
0
原來這裡也有數學?病毒的形狀、DNA 的結構都與數學有關!——《生物世界的數學遊戲》
天下文化_96
・2022/10/25 ・2015字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

二十面體與小兒麻痺病毒

菸草嵌紋病毒是螺旋柱狀體,還有一種常見的病毒形狀則是二十面體。有些科學家稱二十面體為「自然界偏好的形狀」,因為這種形狀在病毒上很是普遍,譬如天花病毒、小兒麻痺病毒、疱疹病毒,以及蕪菁黃嵌紋病毒(turnip yellow mosaic virus)。

一九八六年,荷格爾、周瑪麗及菲爾曼三人發現了小兒麻痺病毒的結構。這種病毒是由四種蛋白質單元(每一單元有六十個複本)所組成,排列出來的形狀帶有二十面體所具有的對稱性。要描述小兒麻痺病毒的結構,最簡單的方法是由一個十二面體和一個二十面體的合併來開始討論。組合成的立體看起來像一個每面都有微凹的五面體的十二面體(圖三二)。湯普生若知道這種結構,一定會很喜歡:這比放射蟲的主觀想像繪製圖還要使人信服。

足球的外型為截角二十面體。圖/維基百科

另外,這種結構是基於某種原因、某種病毒結晶學原理而存在的:正如晶格是由大量原子所形成的最小能量結構,近似球形的多面體則是由少量的相同單元所形成的最小能量結構。在規則的正立體當中,二十面體與球最為近似,但是你仍然可以利用五邊多面體和六邊多面體的混合體,來更逼近一個球。現在使用的足球就是一個例子:足球的外形基本上是二十面體,不過卻是截去了每一個角的二十面體。

在這樣一個多面體中,一定有剛好十二個面是五邊形;六邊形的面的數目,則取決於一系列特殊的代數形式,也就是所謂的「幻數」(magic number);大部分的數字都不是幻數。小於三百的幻數為 12、32、42、72、92、122、132、162 、192、212、252 及 272。這些數字在病毒的結構中扮演了特殊角色,正如費布納西數在植物結構中扮演的特殊角色。

(圖三二)小兒麻痺病毒的結構示意圖:把十二個五角錐(b 圖折疊後就是五角錐)黏在一個十二面體(a 圖是把十二個面攤開),做成一個三維的模型(如 c 圖)圖/
《生物世界的數學遊戲》。

事實上,能夠以大致規則的方式幾乎併成球面的同一蛋白質單元的數目,就是幻數。

下面這些證據,顯示病毒知道這種限制。蕪菁黃嵌紋病毒有三十二個單元,而人類多瘤性病毒、BK 病毒及兔子乳頭瘤病毒有七十二個單元。(人類多瘤性病毒與兔子乳頭瘤病毒幾乎相同,只不過互為鏡像。)

REO 病毒有九十二個單元,單純疱疹(由於第一型的感染部位大多為口腔周圍,所以也稱為口唇疱疹)病毒有一百六十二個單元,雞腺病毒有兩百五十二個單元,犬類傳染性肝炎病毒則有三百六十二(這也是幻數)個單元。

還是要靠數學

要證明數學模式對於形成地球生命(我們知道的唯一一種生命)的重要性,再沒有比 DNA 更令人信服的證據。DNA 之所以扮演這種角色,是因為本身的簡單幾何模式——雙螺旋。就某種意義而言,由於關鍵特徵不在螺旋,而是互補的鹼基配對,因此這不只是一種「合乎邏輯」的模式。

DNA 的關鍵特徵是互補的鹼基配對。圖/維基百科

演化在創造地球上的生命時所用的基礎,正是這個並存於觀念與物理定律中的模式,在這層基礎之上,其他的模式也建造了起來,特別是遺傳密碼——這種「準數學」之謎。為什麼是這種特殊的密碼? 基本上,任何密碼都可以,但捷足者先登,哪一種先被建造了,就有可能壓倒群雄,因為生命可以生生不息地繁衍。或許克里克是對的,遺傳密碼是一種「凍結的偶發事件」;或許何諾斯夫婦是對的,遺傳密碼亦來自深藏於物理定律中的深奧模式。

DNA 對於更廣義的生命(不再是這裡所談的生命)所扮演的角色有多重要?假定還有很多其他種類的分子可以複製,也可以把大量資訊編成密碼,那為什麼我們得到的是 DNA,而不是其他分子?

也許 DNA 是在宇宙各處都可運作的唯一一種,也許 DNA 是唯一能夠輕易從原始地球化學混合物質中演化出來的東西,也許 DNA 本身就是一次凍結的偶發事件——第一種脫穎而出的「可複製與編碼」的分子系統,開始時由於還沒有多少競爭,而使自己趁機占據地球,接下來又因為自己已經占據要津,使其他競爭者更加沒機會進行競爭,因而成為主宰者。

我不清楚。但我知道,如果沒有數學,我們就永遠無法探知。

——本文摘自《生物世界的數學遊戲》,2022 年 9 月,天下文化,未經同意請勿轉載。

天下文化_96
113 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

9
4

文字

分享

0
9
4
一切都為了快快長大!斑馬魚的「無合成分裂」,「表面」到你難以察覺
研之有物│中央研究院_96
・2022/10/08 ・5419字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

不用合成新 DNA 的細胞分裂——無合成分裂

細胞分裂,想來是再簡單不過的事情:一顆細胞先將遺傳物質複製為兩份,再一分為二,分配給兩顆細胞。然而,由中央研究院細胞與個體生物學研究所的陳振輝助研究員領軍,2022 年 4 月發表在《自然》(Nature)的論文,卻報告了過往未知的一種分裂方式:斑馬魚的皮膚細胞,可以直接一變二,再二變四,過程中不用合成新的 DNA!這項未來將改寫教科書的新知識,當初是如何發現、驗證,未來又有什麼衍生方向呢?中研院「研之有物」專訪陳振輝助研究員,請他和我們仔細分享斑馬魚的「表面功夫」。

陳振輝研究團隊發現斑馬魚表皮細胞有「無合成分裂」現象,研究成果於 2022 年 4 月發表在國際頂級期刊《自然》。圖為陳振輝(右)與第一作者陳潔盈(左)合影。圖/研之有物

將顏色植入斑馬魚的每一個細胞

陳振輝實驗室的研究大多著重於「再生生物學」,新研究算是「發育生物學」的領域。不過了解背後細胞行為調控的機制就會知道,這兩個領域其實是共通的。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。這個研究方法可以用來探究逆境下複雜組織的再生,也能用來研究正常狀況下動物的發育進程,因為這些過程都涉及大量細胞的動態調控。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。圖片這隻為斑馬魚的仔魚,年齡為受精之後第 8 天。(另開圖片可放大檢視)圖/陳潔盈、陳振輝

發育生物學是生物學研究的熱門領域,投入者眾,大部分的研究者都針對部分細胞或特定基因作探討,陳振輝團隊的技術讓他們能同時追蹤單一活體動物整個組織裡所有的細胞。這項技術除了用在皮膚組織(方法名為「palmskin」),陳振輝也用類似的方法探索肌肉、肝臟等各式器官的發育、再生過程。

創造色彩繽紛的細胞,原理其實很簡單,就是利用紅色、藍色、綠色的三原色不同比例的組合。具體作法是透過基因改造,將能製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學的工具,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。

舉例來說,其中一個細胞可以表現「3 個紅色螢光蛋白 + 5 個藍色螢光蛋白 + 4 個綠色螢光蛋白」,隔壁細胞可能是「1 紅 + 2 藍 + 6 綠」,鄰近細胞間便能呈現不同顏色,讓長期追蹤所有不同細胞成為可能。

將能夠製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學技術,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。圖/研之有物(資料來源/陳振輝

將調色盤植入細胞的原理看似簡單,做起來卻要耗費不少功夫,尋找適合的基因轉殖魚需要半年到一年的時間。陳振輝解釋用斑馬魚當實驗材料的優點:它們容易繁殖,生長的週期不用等太久,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像,進行系統性的量化分析。搭配讓每一顆細胞,從誕生到凋逝都無所遁形的全面「監控」影像平台,才有機會觀察到前人視而不見的細胞分裂方式。

圖片為斑馬魚的仔魚(上圖)和成魚(下圖)的透視圖,仔魚年齡為受精之後第 3~21 天。斑馬魚當實驗材料的優點是:容易繁殖,生長週期不長,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像。圖/研之有物(資料來源/J Clin Invest.

隱藏在「表面之中」的無合成分裂

斑馬魚的皮膚和人類的皮膚基本構造類似。唯一不同是人類的皮膚有角質層覆蓋,斑馬魚皮膚的外層是沒有角質化的活細胞,適合拍照觀察。斑馬魚的另一優點是在顯微鏡下活體觀察時不會傷害到魚體,麻醉後可以直接拍照,再放回水中喚醒;如此才能追蹤同一條魚從出生到長大,身上所有皮膚細胞的動態行為。

研究斑馬魚的學者很多,皮膚發育這回事可謂天天在人們的眼前發生,可是其它人為什麼都視而不見,沒有注意到陳振輝團隊發現的無合成分裂呢?事情其實沒有說起來那麼簡單。

斑馬魚皮膚剖面示意圖,從顯微鏡看到的斑馬魚細胞是最上層的表皮細胞。圖/研之有物(資料來源/陳振輝)

斑馬魚的皮膚分為上中下三層,下層的幹細胞,會分裂產生新的細胞,送到上層成為覆蓋身體最外側的皮膚細胞。其它研究人員如果見到表皮細胞的數目變多,直觀的想法會是下層的幹細胞又送上新的細胞,不會想到是上層既有已分化的細胞可以直接進行分裂。

陳振輝表示,一開始見到表皮細胞的數量增加時,直覺也認為是下層幹細胞產生的新細胞,可是連續追蹤後卻發現不是這麼回事。由於他的技術可以對斑馬魚身上 2,000 到 3,000 顆皮膚細胞進行同時監測,才意外察覺到上層已分化的細胞竟然會不用複製遺傳物質,就直接分裂成兩顆,甚至是四顆細胞!

陳振輝團隊觀察到斑馬魚表皮上層已分化的細胞可以不用複製遺傳物質,直接分裂成兩顆,甚至是四顆細胞。影/陳振輝

顛覆認知:不用合成 DNA 的細胞分裂

外行人聽起來好像沒什麼,上述發現其實開拓了細胞分裂研究的新領域。精子和卵子這類生殖細胞(germline cell),在複製遺傳物質以後會經過 2 次分裂,形成 4 顆細胞,也就是減數分裂(meiosis)。構成身體的體細胞(somatic cell)則會先複製內部的遺傳物質,再分裂 1 次成兩顆細胞,稱為有絲分裂(mitosis)。

還有較少見的狀況,如 DNA 複製後細胞不分裂,變成多套遺傳物質的 1 顆細胞(endoreplication);或是多個細胞融合在一起,成為 1 顆多核細胞(cell-cell fusion,例如骨骼肌細胞)。

然而不管怎麼分裂,過去研究沒有發現不用複製 DNA 就能分裂的細胞!正常細胞分裂的過程有許多監控機制,如果細胞的遺傳物質沒有完整複製,一般情況細胞應該會啟動相關的監控機制,阻止分裂過程的進行。癌症細胞不受控制的分裂,就是相關機制沒有正常運作。

斑馬魚表皮細胞竟然能在沒有複製遺傳物質的情況下,避免細胞凋亡的命運,持續分裂,是一個很特別的例外。

斑馬魚從仔魚到成魚的發育過程中,表皮細胞可以在沒有複製遺傳物質的情況下持續分裂。圖/研之有物

論文投稿到《自然》期刊後,四位同儕審查者一致給予正面評價,但是顛覆認知的新發現仍受到不少質疑,需要陳振輝團隊進行許多額外的實驗來回答。

有沒有觀察失誤的可能?

陳振輝團隊同時標記下層、上層的細胞,證實進行分裂的細胞確實位於上層。為了證明遺傳物質沒有複製,他們進一步測量細胞內 DNA 的量,包覆 DNA 的組蛋白(histone)的量,以及施加阻止 DNA 複製的藥劑。

結果顯示分裂後的細胞,遺傳物質的含量確實有等比下降,分裂過程不受阻止 DNA 複製藥劑的影響。顯然細胞沒有合成新的 DNA 就直接分開,陳振輝稱之為「無合成分裂」(asynthetic fission)。

所以,究竟是怎麼分裂的?

顯微鏡下看來似乎沒有一定的章法,有些表皮細胞會分裂 2 次成 4 顆細胞,有些分裂 1 次成 2 顆細胞,還有些不會分裂,維持 1 顆細胞;也發現有少數細胞可以逆轉分裂過程,形成雙核細胞。

陳振輝團隊現有的研究技術,尚無法辨明胞器的分配,以及每一條染色體的分配模式;團隊預計使用單細胞定序(single cell DNA sequencing),在無合成分裂後,分別定序每一顆細胞分配到的染色體組成,以釐清細胞的遺傳物質是否有特定的拆分方式。

斑馬魚表皮上的無合成分裂(影片箭頭處),還有很多細節尚待研究。陳振輝團隊預計要釐清在無合成分裂之後,細胞的遺傳物質是否有特定的拆分方式。影/陳振輝

一切都是為了節省資源!努力長大的表皮細胞

無合成分裂對斑馬魚有什麼意義呢?斑馬魚由受精卵孵化後,仔魚在前 8 天不用吃東西,成長速度緩慢;第 8 天起開始進食,體型也像吹氣球般迅速膨脹,第 14 天時成長速度達到最快。觀察發現從第 8 天 到 21 天,皮膚細胞會發生無合成分裂,團隊推測此一分裂現象與身體表面積的快速延展息息相關。

斑馬魚的仔魚從受精卵孵化之後的第 8 天到第 21 天,表皮細胞會發生無合成分裂,陳振輝團隊推測此一分裂現象與身體表面積的快速延展息息相關。
圖/研之有物(資料來源/Nature

僅管省略掉複製遺傳物質的階段,細胞進行無合成分裂所花費的時間,卻比一般細胞分裂稍慢,所以其優點並非單純的縮短時間,應該是節省資源。斑馬魚仔魚身體的表面積在特定時間迅速增加,體表需要皮膚細胞的完整覆蓋,團隊發現細胞進行 1 次無合成分裂,表面積能增加 26%,兩次能達到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。

陳振輝團隊發現,斑馬魚表皮細胞進行 1 次無合成分裂,表面積能增加 26%,兩次則能增加到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。
圖/研之有物(資料來源/陳振輝)

斑馬魚如何啟動無合成分裂呢?目前仍不太清楚,團隊發現其過程受到表面張力變化的影響。皮膚細胞有感應張力變化的特定離子通道,利用藥物影響這些離子通道的活性,無合成分裂也會受到影響,詳細作用機制仍有待更多的研究。

生活數量的密度也會影響斑馬魚長大

另一項十分有趣的發現是,無合成分裂和仔魚生活的密度有關。斑馬魚從仔魚長到成體,最終的體型都差不多,但是生長過程則有很大的差異,個體成長速度有快有慢。假如將許多仔魚養在一起,處於高密度的生活環境,個別仔魚的生長速度會較慢。

奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加又要維持皮膚細胞的完整覆蓋,會導致更多的無合成分裂。斑馬魚如何感知、在生理上反應周遭環境鄰居密度的變化,是另一個有趣的研究方向。

斑馬魚若處於高密度的生活環境,仔魚的生長速度會較慢。奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加,導致更多的無合成分裂。圖/研之有物(資料來源/陳振輝)

進行無合成分裂的細胞缺乏完整的遺傳物質,還能算是有生命的活細胞嗎?陳振輝提醒我們,多細胞生物的生理機能由各式各樣的細胞一起維持,某些特化的細胞還沒有細胞核。例如紅血球的成熟會經過脫核的過程,完全沒有細胞核的紅血球有重要的生理功能也可以存活超過 100 天。在斑馬魚體表進行無合成分裂的皮膚細胞,或許也有它們短暫卻不可或缺的使命。

有可能其它生物的細胞也會無合成分裂嗎?

無合成分裂目前只在斑馬魚表皮的發育過程中觀察到,其它細胞、其它生物、其它情境下是否也存在呢?事實上陳振輝自己也很好奇。

以人體來舉例,體表的皮膚,口腔內膜、消化道組織,時時刻刻都需要大量的表皮細胞覆蓋,而且耗損甚鉅,有不斷補充的需求。這些必須持續維持完整覆蓋表面的情境,或許無合成分裂也參與在其中。

然而,無合成分裂不容易在活體動物直接觀察。例如小鼠的模式,就算能引進三原色調色盤的細胞標誌技術,也不像斑馬魚仔魚那般透明容易拍照。話說回來,知道某個現象有可能發生,就是發現的第一步。假如其它細胞或是生物也存在無合成分裂,在陳振輝團隊邁出第一步以後,未來一定有人能克服相關的技術門檻來進行研究。

發現斑馬魚表皮細胞的無合成分裂,像是開啟一扇新的大門,可以通往過去想像不到的研究方向。會有醫學應用的可能嗎?像癌症是細胞的不正常分裂,任何細胞分裂機制的基礎研究,應該有機會對癌症的治療有所啟發。陳振輝同意這是潛在的研究方向之一,但是他也強調從基礎研究到醫學應用,是很漫長的一段路,科學家能做的就是一步一步踏實前進。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。圖/研之有物
研之有物│中央研究院_96
253 篇文章 ・ 2219 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
0

文字

分享

0
2
0
【2005 諾貝爾化學獎】歧化 – 一個更換伴侶的舞蹈
諾貝爾化學獎譯文_96
・2022/09/13 ・5122字 ・閱讀時間約 10 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

今年的諾貝爾化學獎由三位化學家所共同獲得,他們是法國的 Yves Chauvin,以及兩位美國的學者 Robert H. Grubbs 及 Richard R. Schrock,得獎的原因在表彰他們發展歧化(metathesis)反應在有機合成上的運用所造成的卓越貢獻。得獎者的成就已經在化學工業上成為一項重要的方法,並在合成化合物上開啟了新的機會而將使工業上製造藥物、塑膠以及其它材料的生產更為方便,這些物質的價格會因此降低而且減少對環境的衝擊。

歧化 — 一個更換伴侶的舞蹈

什麼是歧化?

在化學的反應中,原子之間的鍵結會斷裂而新的鍵結會生成。今年諾貝爾化學獎的焦點是稱為"歧化"的反應,這個名詞具有"改變位置"的意義。如(圖1)所示,在烯(一種含有碳-碳雙鍵的化合物)的歧化反應中,形成雙鍵的兩個碳會與另外一組雙鍵的兩個碳交換伴侶,形成另一個新的組合。在所示的反應中,一個丙烯的分子將其中的一個 CH2 基團與另一分子的丙烯中之 CH3CH 交換,結果就產生了丁烯及乙烯。這個反應需要使用一個催化劑(催化劑是一個能使反應加速進行但卻不會成為產物的一部份的分子)才會發生。

(圖1)兩個丙烯藉著催化劑的幫助進行烯的歧化反應,產生兩個新的烯化物即丁烯和乙烯。

其實化學家早就知道可以透過這種反應來製造新的化合物,只是他們並不瞭解催化劑在這個反應中扮演的角色為何。Yves Chauvin 提出的反應機制在對這個反應的認知上跨出了一大步,因為他解釋了催化劑是如何的運作。此時,研究者獲得了一個新的挑戰機會,那就是如何的去創造一個新的且更有效的催化劑。緊接著,Robert H. Grubbs 及 Richard R. Schrock 的基礎研究進場,由於他們的貢獻,才有今日那些非常有用的催化劑可供使用。

有機化合物 — 豐富的多樣性

碳元素能與碳元素以及其它的元素如氫、氧、氯和硫形成很強的鍵結,碳原子能以單鍵、雙鍵或三鍵的方式與其它的原子結合,可得到直鏈或分岔的結構,又可生成具有各種型態和大小的環狀結構。這個領域的化學稱為有機化學,因為在地球上生命的存在都是基於碳的這種多樣性。

眾多的有機化合物中,目前其實只有一小部份被研究過,但即使如此,我們現在已經可以得到各種新的藥物、材料、塗料等等,這是幾年前所無法想像的。

有機合成

所謂的有機合成就是將不同的化合物以特定的方式反應而製造出其它的化合物;透過有機合成,我們可以從已知的化合物原料製造出新的化合物。許多的工業必需利用有機合成,例如製藥和生技的工業,以及纖維和特用化學品的工業。在(圖2)中,一個在癌症的研究中所需的化合物 A 需要用另一個化合物 B 來合成,而 B 又需要從別的分子來合成。在化合物 B 的結構中具有一個由碳原子所組成的長鏈,其中有一個碳原子被氧原子取代。在合成化合物 A 時,這個長鏈被轉變成了一個大環的結構,這個環狀的結構正是抗癌的活性所必需。

為了製造這個大環,催化性的歧化反應正好派上用場,而其使用的催化劑正是這次的諾貝爾獎得主之一所開發出來的。由化合物 B 的結構中之長鏈兩端的雙鍵(圖中圈出的部分),透過歧化反應可以製造出兩個新的雙鍵,其中一個雙鍵用在結合長鏈的兩端而形成大環,而另一個雙鍵則存在於另一個副產物乙烯當中。如果要用別的方法來形成這個大環,將需要非常複雜而冗長的步驟。

(圖2) 運用一個 Grubbs 催化劑進行的合成。在此透過歧化反應將化合物 B 中的長鏈結合成化合物 A 中的大環。化合物 A 被用在癌症的研究上,其中環狀的結構正是抗癌的活性所必需。

歧化反應是如何發現的

歧化反應的發現可回朔至 1950 年代,正如同許多有機化學反應的發現一般,它源自於工業界,有好些個專利描述了催化性的烯聚合反應,其中的一篇專利是由美國杜邦公司的 H. S. Eleuterio 在 1957 年所提出的,它描述了得到不飽和的碳鏈(鏈上具有許多雙鍵)的方法;在此之前,由乙烯聚合成聚乙烯只會得到飽和的碳鏈(鏈上不具雙鍵)。這個出人意外的發現造成了深遠的影響。

在同年,另一份專利顯示,當使用一個由三異丁基鋁(triisobutyl aluminum)與氧化鉬(molybdenum oxide)依附在氧化鋁上的催化系統時,丙烯可轉變成丁烯及乙烯,這個在(圖1)所示的反應被稱為菲利浦公司的三烯製程(Phillips triolefin process)。這兩個專利都成功的在工業界中使用。

在許多年之後,這兩個發現的關聯性才被固特異輪胎及橡膠公司的 N. Calderon 發現,他指出,在上述的兩種製程中所發生的是同一種型態的反應,並稱之為烯的歧化反應(olefin metathesis),只不過在分子的層次,其中的催化劑之結構及其運作的機制在當時仍屬未知,因而由此所啟動之精采的催化劑獵捕行動,只能在黑暗中透過隨意擲擊四處碰觸的方式盲目的摸索。

Chauvin 的機制

越來越多的化學家開始注意到到歧化反應可能提供給有機合成的高度潛力,不過可能沒有人料想到它會成為如此的重要。雖然有許多的研究者提出各種歧化反應如何發生的可能機制,但真正的突破要等到 1970 年 Yves Chauvin 所發表的一份研究報告,他和他的學生 Jean-Louis Herrison 指出其中的催化劑是一個金屬碳烯(metal carbene),這種化合物具有一個金屬與碳形成的雙鍵。在之後的文獻中,金屬碳烯也被稱為金屬亞烷基(metal alkylidine)。在更早些年 E. O. Fisher(1973年諾貝爾化學獎)也發現過一些其它的金屬碳烯。Chauvin 也提出了一個嶄新的機制來解釋這個金屬化合物在反應中扮演何種功能。他們所進行的一些新的實驗結果完全符合這個新機制的運作,而無法用之前所提出的各種機制來解釋。在(圖3)(a )中,一個金屬亞甲基做為催化劑,造成兩個雙鍵上的亞烷基之交換,導致兩個新的雙鍵生成(圖中金屬 M 上所用的中括號代表金屬除了與碳之間有一個雙鍵之外其上還有其它的基團)。

(圖3) (a)由金屬亞甲基做為催化劑的烯歧化反應。產物是兩個新的烯化物:乙烯及一個含有兩個 R’ 基團的烯化物,這兩個 R’ 基團分別接在雙鍵的兩個碳上,曲折線代表它們可以在雙鍵的同邊或反邊。 (b)Chauvin 提出的烯歧化反應機制。在這個催化的循環中,會生成一個含有三個碳和一個金屬的四元環。

(圖3)(b)所示為此反應的機制,在反應的第一階段,金屬亞甲基與一個烯形成一個四元環,這個環含有一個金屬和三個碳,相互以單鍵結合。在下一個階段,其中的兩個單鍵斷裂並形成一個新的烯(即乙烯)和一個新的金屬亞烷基。在第三步驟,這個新的金屬亞烷基又與原先的烯結合成一個新的四元環。在最後的步驟中,這個含有金屬的四元環裂解產生歧化的產物並同時重新得回原先的金屬亞甲基,這個重新得回的金屬亞甲基又繼續投入另一個歧化反應的循環當中。這個反應的最終結果就是兩個烯的分子交換了它們的亞烷基,也就是進行了歧化反應(圖3)(a)。Chauvin 的機制一舉解釋了所有早先文獻中的結果,他的機制也得到了 Robert H. Grubbs、Thomas J. Katz 以及 Richard R. Schrock 等研究團隊的實驗之強烈支持,現已廣為大家所接受。

(圖4)一個有趣的歧化之舞。

上面所描述的 Chauvin 機制可以視為一種舞蹈(圖4),其中催化劑與烯這兩組在舞蹈中交換舞伴。金屬和他的舞伴雙手相牽,當碰到烯隊時這兩組人馬結合成一個圈圈跳舞,隔了一會兒,他們與原先的同伴鬆手然後與新的伴侶湊成一對共舞。現在新形成的金屬隊又開始尋找新的烯隊,再次組成圈圈跳舞,換句話說,金屬隊成為一個分歧化的媒介者。

研發新的催化劑

到此時更多的化學家開始體認到,如果能找到更有效而可靠的催化劑,將可以使得這個反應在有機合成上成為一個極為重要的方法。早先所使用的催化劑結構並不明確,對空氣及濕氣極為敏感,穩定度很差而只能短暫的存在。一個好的催化劑必須是穩定的,並具有確定的結構,其化學活性要能針對需要而做調整,此外它們必須具有選擇性,也就是說只會與雙鍵反應而不會作用到分子上的其它部位。Chauvin 的研究結果顯示了有效率的催化劑可以如何的建立,但問題是在所有結構很明確的已知金屬亞烷基中,沒有一個可以成功的運用在烯的歧化反應上。雖然有好些位化學家在研發歧化反應的催化劑及其運用,並且也有重要的貢獻,不過,在此研究領域中關鍵性的進展則出自於 Robert H. Grubbs 及 Richard R. Schrock 的團隊。

Schrock 的第一個實用的催化劑

Schrock 在 1970 年代初期開始研究新的金屬亞烷基錯合物,但是到底哪一種金屬最適合製造出最有效的催化劑呢?他嘗試了含有鉭(tantalum)、鎢及鉬的催化劑,逐漸的掌握了哪些金屬可以使用以及它們如何的運作。對 Schrock 而言,鎢及鉬很快的顯示出是最適當的金屬,雖然用這些金屬合成了一些催化劑,但對於在金屬上到底要放上什麼基團才能製造出穩定而活性又高的催化劑仍不確定。在 1990 年,Schrock 的團隊終於得到突破而發表了一系列活性又高而結構又很明確的含鉬之催化劑(圖5)。

(圖5)一個 Schrock 的含鉬催化劑。藉著選擇適當的基團接在金屬上可以得到極高的化學活性。在此 i-Pr 代表異丙基,Ph 代表苯基。

由於他的發現,化學家開始體認到烯的歧化反應可以普遍的運用在有機合成上,歧化反應越來越受到那些活躍的有機合成化學家們的注意,他們發現歧化反應可以取代許多傳統的合成方法,而在同時也提供了一種嶄新的方式來合成有機化合物。在(圖5)中所示的含鉬催化劑雖然對氧氣及濕氣是很敏感的,但只要透過適當的處理方式,不失為一個在有機合成上威力強大的工具。

一種由 Grubbs 所研發的通用催化劑

另一個突破則發生在 1992 年,Robert Grubbs 的研究團隊報導了他們所發現的一個含釕(ruthenium)的催化劑,它在空氣中是穩定的,表現出很高的化學選擇性,但是化學活性較 Schrock 的催化劑為低,這個新的催化劑可以在醇、水及有機酸的存在下催化歧化反應(參考圖2),在此之後 Grubbs 進一步的改進了他的催化劑,在(圖6)中所示的是幾個很有效而又容易合成的催化劑中的一個。

(圖6) 一個由 Grubbs 開發的含釕的催化劑。在此 Cy 代表環己基。

Grubbs 的催化劑已成為在普通的實驗室中,被普遍使用在歧化反應上,而且功能明確的催化劑。在(圖6)中所示的催化劑被稱為 Grubbs 催化劑,並成為一個被其它新的催化劑用來比對的標準。Grubbs 催化劑的通用性導致其後在有機合成上新的展望。Grubbs 對催化劑的設計是基於詳細的反應機制研究,他持續的開發以釕為基礎的催化劑,朝著製造合成上最具威力的催化劑而努力,這些合成包括了具有特殊性質的聚合物。

運用以及影響

這幾位諾貝爾獎得主所發展的合成方法,已經在學術研究上迅速的成為普遍使用的工具。為了製造新化合物所設計的工業製程,在這方面也有熱烈的發展,利用催化性的歧化反應可以縮短合成的步驟,得到更高的產率及更少的廢物,這導致更乾淨而對環境衝擊較小的製程。這種反應開啟了更多的機會去探索更多樣性的有機分子。除了他們之外,許多其他的研究者也提供了重要的貢獻,並持續的為了解決特定的問題例如合成複雜的天然物及其類似物,而開發新的歧化反應催化劑。

歧化反應在製藥工業、生技工業及食品工業上具有極大的商業潛力;新的催化劑亦可廣泛的運用在聚合物的合成上,雖然截至目前許多最有用的聚合物仍然是用傳統的方式來合成,但最近在聚合物合成的研究顯示,某些歧化反應催化劑在合成具有特殊性質的聚合物方面具有光明的前景。

雖然 Schrock 與 Grubbs 所發展的催化劑問世不過短短數年,但是他們所發展的應用性之深入的確是令人驚訝,這包括了昆蟲費洛蒙、除草劑、聚合物和燃料的添加劑、具有特殊性質的聚合物以及各種在藥物發展上很有潛力的各種分子之合成。有關一些可以對付各種人體疾病所發展的各種分子尤其值得一提,因為許多的研究者正投入於製造可能的藥物來治療各種狀況,例如細菌感染、C 型肝炎、癌症、阿茲海默症、唐氏症、骨質疏鬆、風濕、發炎、纖維症、HIV/AIDS、偏頭痛等等,歧化反應也因此成為一項重要的武器來尋找新的藥物以治療這世界上許多主要的疾病。

參考資料

蔡蘊明譯自諾貝爾化學獎委員會公佈給大眾的參考資料:

http://nobelprize.org/chemistry/laureates/2005/info.html

若要參考更深入的說明請見:

http://nobelprize.org/chemistry/laureates/2005/adv.html

諾貝爾化學獎譯文_96
15 篇文章 ・ 20 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列