就像這篇新論文中講述的那樣。AlphaGo Zero 是無監督學習的產物,而它的雙胞胎兄弟 Master 則用了監督學習的方法。在訓練了 72 小時後 AlphaGo Zero 就能打敗戰勝李世乭的 AlphaGo Lee,相比較 AlphaGo Lee 訓練了幾個月。而 40 天後,它能以 89:11 的成積,將戰勝了所有人類高手的 Master 甩在後面。
圖靈的白板假設雖然無法用在人身上,但是 AlphaGo Zero 證明了,一個白板 AI 能夠被訓練成超越人類的圍棋高手。
强化學習
强化學習(Reinforcement Learning)是一種模仿人類學習方式的模型,它的基本方法是:要是機器得到了好的结果就能得到獎勵,要是得到差的结果就得到懲罰。AlphaGo Zero 並没有像之前的兄弟姐妹一樣被教育了人類的圍棋知識。它只是和不同版本的自己下棋,然後用勝者的思路来訓練新的版本,如此不斷重複。
-----廣告,請繼續往下閱讀-----
通過這一方法,AlphaGo Zero 完全自己摸索出了開局,收官,定式等以前人類已知的圍棋知識,也摸索出了新的定势。
算法和性能
如何高效合理得利用計算資源?這是算法要解决的一個重要問题。AlphaGo Lee 使用了 48 個 TPU,更早版本的 AlphaGo Fan 使用了 176 個 GPU,而 Master 和 AlphaGo Zero 僅僅用了 4 個 TPU,也就是說一台電腦足夠!
AlphaGo Zero 在 72小時内就能超越 AlphaGo Lee 也表明,優秀的算法不僅僅能降低能耗,也能極大提高效率。另外這也說明,圍棋問題的複雜度並不需要動用大規模的計算能力,那只是浪費。
AlphaGo Zero 的算法有兩處核心優化:將策略網路(計算下子的概率)和值網路(計算勝率)這兩個神經網路结合,其實在第一篇 AlphaGo 的論文中,這兩種網路已經使用了類似的架構。另外,引入了深度殘差網路(DeepResidual Network),比起之前的多層神經網路效果更好。
關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。
今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。
IBM 的深藍超級電腦 1997 年在曼哈頓西城的一棟高樓裡擊敗世界頂尖的西洋棋高手,為電腦科學建立了一座里程碑,受到全球新聞界的廣為報導。但是若是與首爾的這場人機大戰相比,卻是小巫見大巫。在韓國——更別提日本與中國——圍棋是民族性的消遣活動。有超過二億人會觀看 AlphaGo 與李世乭的對弈,觀眾比超級盃多上一倍。
在總共五局對戰前夕的記者會上,李世乭誇口他能輕鬆獲勝:四比一或五比零。大部分的圍棋棋手也都有同感,雖然 AlphaGo 徹底擊敗樊麾,顯示這部機器是真正的贏家,但是樊麾的棋力遠不及李世乭。根據用來評估遊戲對戰能力的 ELO 等級制度,李世乭完全是在不同的等級。但是哈薩比斯卻認為這場人機大戰會有截然不同的結果。