0

0
0

文字

分享

0
0
0

從無知到無敵:AlphaGo Zero 是怎麼辦到的?

果殼網_96
・2017/11/13 ・2402字 ・閱讀時間約 5 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

  • 作者/開明|Nature 市場專員,喜歡可愛的動物、美味的咖啡,和深度的旅行。

人工智慧棋手 AlphaGo 先後戰勝了兩位頂尖圍棋高手李世乭和柯潔。在這場猛烈風暴席捲了世界後,AlphaGo 宣布不再和人下棋。但它的製造者並没有因此停下腳步,AlphaGo 還在成長,今天 Deepmind 又在《自然》期刊上發表了關於 AlphaGo 的新論文。

圍棋中有超過 10 的 170 次方種變化,這比已知宇宙中所有的原子數量加在一起還要多,圖/by DeepMind

這篇論文中的 AlphaGo 是全新的、它不是戰勝柯潔的那個最强的 Master,但卻是它的孿生兄弟。它的名字叫 AlphaGo Zero,是AlphaGo 的最新版本。

和以前的 AlphaGo 相比,它:

  • 從零開始學習,不需要任何人類的經驗
  • 使用更少的算力得到了更好的结果
  • 發現了新的圍棋定式
  • 將策略網路和值網路合併
  • 使用了深度殘差網路
  • 白板理論(Tabula rasa)

哲學上有種觀點認為,嬰兒生下來是白板一塊,通過不斷訓練、成長獲得知識和智力。

-----廣告,請繼續往下閱讀-----

作為 AI 領域的先驅,圖靈使用了這個想法。在提出了著名的「圖靈測試」的論文中,他從嬰兒是一塊白板出發,認為只要能用機器製造一個類似小孩的 AI,然後加以訓練,就能得到一個近似成人智力,甚至超越人類智力的 AI。

現代科學了解到的事實並不是這樣,嬰兒生下來就有先天的一些能力,他們偏愛高熱量的食物,餓了就會哭鬧希望得到注意。這是 DNA 在億萬年的演化中學来的。

監督和無監督學習

計算機則完全不同,它沒有億萬年的演化,因此也没有這些先天的知識,是真正的「白板一塊」。監督學習和無監督學習(Supervised & Unsupervised Learning)是鏡子的兩面,兩者都想解决同一個問題——如何讓機器從零開始獲得智慧?

監督學習認為人要把自己的經驗教给機器。拿分辨猫猫和狗狗的 AI 來說,你需要準備幾千張照片,然後手把手教機器——哪張照片是猫,哪張照片是狗。機器會從中學習到分辨猫狗的细節,從毛髮到眼睛到耳朵,然後舉一反三得去判斷一張它從沒見過的照片是猫猫還是狗狗。

-----廣告,請繼續往下閱讀-----

而無監督學習認為機器要去自己摸索,自己發現規律。人的經驗或許能幫助機器掌握智慧,但或許人的經驗是有缺陷的,不如讓機器自己發現新的,更好的規律。人的經驗就放一邊吧。

這展示的是包含 20 個神經網路模塊的 AlphaGo Zero 版本,在訓練的不同階段進行的 3 盤左右互搏棋局的前 80 步,動畫在,圖/by DeepMind。

從無知到無敵

就像這篇新論文中講述的那樣。AlphaGo Zero 是無監督學習的產物,而它的雙胞胎兄弟 Master 則用了監督學習的方法。在訓練了 72 小時後 AlphaGo Zero 就能打敗戰勝李世乭的 AlphaGo Lee,相比較 AlphaGo Lee 訓練了幾個月。而 40 天後,它能以 89:11 的成積,將戰勝了所有人類高手的 Master 甩在後面。

圖靈的白板假設雖然無法用在人身上,但是 AlphaGo Zero 證明了,一個白板 AI 能夠被訓練成超越人類的圍棋高手。

强化學習

强化學習(Reinforcement Learning)是一種模仿人類學習方式的模型,它的基本方法是:要是機器得到了好的结果就能得到獎勵,要是得到差的结果就得到懲罰。AlphaGo Zero 並没有像之前的兄弟姐妹一樣被教育了人類的圍棋知識。它只是和不同版本的自己下棋,然後用勝者的思路来訓練新的版本,如此不斷重複。

-----廣告,請繼續往下閱讀-----
這個圖片展示的是包含 40 個神經網路模塊的 AlphaGo Zero 版本自學成才的過程。3 天超過打敗李世乭的 AlphaGO Lee,21 天超過打敗柯潔的 AlphaGo Master。自學 40 天之後就超過了所有其他的 AlphaGo 版本,動畫在這裡。圖/by DeepMind。

通過這一方法,AlphaGo Zero 完全自己摸索出了開局,收官,定式等以前人類已知的圍棋知識,也摸索出了新的定势。

算法和性能

如何高效合理得利用計算資源?這是算法要解决的一個重要問题。AlphaGo Lee 使用了 48 個 TPU,更早版本的 AlphaGo Fan 使用了 176 個 GPU,而 Master 和 AlphaGo Zero 僅僅用了 4 個 TPU,也就是說一台電腦足夠!

AlphaGo Zero 在 72小時内就能超越 AlphaGo Lee 也表明,優秀的算法不僅僅能降低能耗,也能極大提高效率。另外這也說明,圍棋問題的複雜度並不需要動用大規模的計算能力,那只是浪費。


憑借硬件性能的不斷升级和算法的不斷優化,AlphaGo 後期版本的運算效率明顯優於最初的版本,圖/by DeepMind

AlphaGo Zero 的算法有兩處核心優化:將策略網路(計算下子的概率)和值網路(計算勝率)這兩個神經網路结合,其實在第一篇 AlphaGo 的論文中,這兩種網路已經使用了類似的架構。另外,引入了深度殘差網路(DeepResidual Network),比起之前的多層神經網路效果更好。

-----廣告,請繼續往下閱讀-----

Deepmind 的歷程

DeepMind 創始人之一,德米斯・哈薩比斯(Demis Hassabis),圖/果壳网提供。

這不是 Deepmind 第一次在《自然》期刊上投稿,他們還發表過《利用深度神經網路和搜索樹的圍棋 AI》和《AI 電腦遊戲大師》等幾篇論文。

我們可以從中一窺 Deepmind 的思路,他們尋找人類還没有理解原理的遊戲,遊戲比起現實世界的問題要簡單很多。然後他們選擇了兩條路,一條道路是優化算法,另外一條道路是讓機器不受人類先入為主經驗的影響。

這兩條路交匯的终點,是那個超人的 AI。

DeepMind創始人之一,大衛・席爾瓦(David Silver),圖/果壳网提供。

結語

這是 AlphaGo 的终曲,也是一個全新的開始,相關技術將被用於造福人類,幫助科學家認識蛋白質折疊,製造出治療疑難雜症的藥物,開發新材料,以製造以出更好的產品。(編輯:明天)

-----廣告,請繼續往下閱讀-----

本文版權屬於果殼網(微信公眾號:Guokr42),原文為〈零開始,全憑自學,它用 40 天完虐 AlphaGo!〉,禁止轉載。如有需要,請聯繫sns@guokr.com

文章難易度
果殼網_96
108 篇文章 ・ 9 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

1
2

文字

分享

0
1
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

所有討論 1
PanSci_96
1225 篇文章 ・ 2319 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

38
1

文字

分享

1
38
1
回到 AlphaGo 打敗棋王的那一天,看 AI 如何顛覆世界——《AI 製造商沒說的祕密》
時報出版_96
・2023/01/30 ・4915字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

谷歌收購深度心智(DeepMind)幾週後,深度心智創辦人德米斯.哈薩比斯(Demis Hassabis)與其他幾位深度心智研究人員搭機來到北加州,與他們母公司的領袖舉行會議,並向他們展示深度學習如何破解「打磚塊」。

幕後推手——德米斯.哈薩比斯

會議結束後,哈薩比斯和谷歌創辦人賽吉.布林(Sergey Brin)聊了起來。他們聊著聊著發現有一共同的興趣:圍棋。布林表示當初他和賴利.佩吉(Larry Page)建立谷歌時,他沉迷在圍棋中,害得佩吉擔心他們根本無法成立公司。

哈薩比斯表示,如果他和他的團隊想要的話,他們能夠建造一套系統來打敗世界冠軍。「我覺得這是不可能的。」布林說道。就在這一刻,哈薩比斯下定決心要做到。

深度心智創辦人、英國人工智慧研究者——德米斯.哈薩比斯(Demis Hassabis)。圖/維基百科

「深度學習運動之父」傑弗瑞.辛頓(Geoffrey Hinton)將哈薩比斯比作羅伯.奧本海默(Robert Oppenheimer),二戰期間做出第一顆原子彈的曼哈頓計畫主持人。奧本海默是世界級的物理學家:他懂得眼前重大任務的科學原理,不過他更深諳激勵之道,他結合手下不斷擴大的科學家,將他們的力量合而為一,並且接納他們的弱點,一起為計畫目標努力。

-----廣告,請繼續往下閱讀-----

他知道如何感動男人(以及女人,包括辛頓的堂姊瓊安.辛頓),辛頓在哈薩比斯身上看到同樣的特質。「他主持 AlphaGo 就像奧本海默主持曼哈頓計畫,如果是別人來主持,他們可能就不會這麼快成功。」辛頓說。

揭開比賽序幕

深度心智的研究員們在 2014 年中曾發表一篇關於他們初期研究的論文,之後他們的研究規模大為擴大,並在第二年擊敗歐洲圍棋冠軍樊麾。此一結果震驚了全球圍棋界與人工智慧研究圈,但是 AlphaGo 對戰李世乭所造成的聲勢更是轟動。

IBM 的深藍超級電腦 1997 年在曼哈頓西城的一棟高樓裡擊敗世界頂尖的西洋棋高手,為電腦科學建立了一座里程碑,受到全球新聞界的廣為報導。但是若是與首爾的這場人機大戰相比,卻是小巫見大巫。在韓國——更別提日本與中國——圍棋是民族性的消遣活動。有超過二億人會觀看 AlphaGo 與李世乭的對弈,觀眾比超級盃多上一倍。

圍棋在中、日、韓具民族性,AlphaGo 與李世乭的對弈備受矚目。圖/維基百科

在總共五局對戰前夕的記者會上,李世乭誇口他能輕鬆獲勝:四比一或五比零。大部分的圍棋棋手也都有同感,雖然 AlphaGo 徹底擊敗樊麾,顯示這部機器是真正的贏家,但是樊麾的棋力遠不及李世乭。根據用來評估遊戲對戰能力的 ELO 等級制度,李世乭完全是在不同的等級。但是哈薩比斯卻認為這場人機大戰會有截然不同的結果。

-----廣告,請繼續往下閱讀-----

第二天下午,在展開第一局對戰的兩小時前,他與幾名記者共進午餐,他拿著一份《韓國先驅報》(Korea Herald),這是用桃色紙張印刷的韓國英文日報。他和李世乭的照片都出現在報紙的頭版上半部。他沒有想到竟會受到如此重視。

「我知道會受到關注,」這位像孩子般矮小,39 歲但已禿頂的英國人說道,「但是沒有想到會這麼多。」不過,在吃著餃子、韓式泡菜的午餐時,哈薩比斯表示他對這場棋賽「審慎樂觀」。他解釋,那些名嘴並不知道 AlphaGo 在十月的棋賽後仍在繼續苦練棋藝。

他和他的團隊初始是將三千萬步棋路輸入深度神經網路來教導機器學習圍棋,自此之後,AlphaGo 就開始不斷與自己對弈,並且記錄哪些棋路是成功的,哪些又是失敗的——其運作與實驗室用來破解雅達利老遊戲的系統類似。自擊敗樊麾以來這幾個月,AlphaGo 已和自己對弈了數百萬局;AlphaGo 持續自學圍棋,學習速度之快遠超過所有人類。

在四季飯店頂樓的賽前餐敘,谷歌董事長艾力克.施密特(Eric Schmidt)坐在哈薩比斯的對面,以他一貫冷峻的態度闡述深度學習的優點。一度有人稱他為工程師,他糾正他們,「我不是工程師,」他說道,「我是電腦科學家。」

-----廣告,請繼續往下閱讀-----
艾力克.施密特(Eric Schmidt)2001~2011 年間在 Google 擔任 CEO。圖/維基百科

他回憶他在 1970 年代研讀電腦科學時,人工智慧看來前景一片大好,但是隨著 1980 年代過去,進入 1990 年代,這樣的美景從未實現。如今,終於實現了。「這一科技,」他說道,「力量強大,引人入勝。」他表示,人工智慧不只是辨識照片的戲法,同時也代表谷歌 750 億美元的網際網路事業與其他無數的產業,包括保健產業。

機器與人類高手對決

在第一局,哈薩比斯是在私人觀賞室與走廊另一頭的 AlphaGo 控制室之間來回兩頭跑。控制室滿是個人電腦、筆記型電腦與平面顯示幕,這些設備全都與遠在太平洋彼端的谷歌數據中心內部數百台電腦相連。一支谷歌團隊在比賽前一週就已架設一條專屬的超高速光纖電纜直達控制室,以確保網際網路暢通無阻。

不過結果卻顯示控制室根本不需要進行多少操控:幾過多月的訓練之後,AlphaGo 已能完全獨力作業,不需要人為的幫助。同時,就算哈薩比斯與團隊想幫忙,也無用武之地。他們沒有一人的圍棋棋力達到大師級的水準,他們只能觀看棋局。

「我無法形容有多緊張,」深度心智研究員說道,「我們不知道該聽誰的。一邊是評論員的看法,你同時也看到 AlphaGo 的評估。所有的評論員都有不同的意見。」

-----廣告,請繼續往下閱讀-----

在第一天的棋賽,深度心智團隊與谷歌的重要人物都親眼目睹 AlphaGo 獲勝。

賽後記者會上,李世乭面對來自東、西方數百名記者與攝影師表示他感到震驚。這位 33 歲的棋士透過口譯員說道:「我沒想到 AlphaGo 下棋竟能夠如此完美。」經過逾四小時的對弈,AlphaGo 證明自己的棋力可與全球最厲害的高手匹敵,李世乭表示他被 AlphaGo 殺了個措手不及,他在第二局會改變策略。

左為代替 AlphaGo 移動棋子的深度心智台灣研究員黃士傑,右則為李世乭。圖/YouTube

神來一筆的第三十七手

第二局對弈進行一小時後,李世乭起身離開賽場,走到露台抽菸。坐在李世乭對面,代替 AlphaGo 移動棋子的是來自台灣的深度心智研究員黃士傑,他將一枚黑子落在棋盤右邊一大塊空地上單獨一枚白子的側邊下方,這是該局的第三十七手。

在角落的評論室內,西方唯一的圍棋最高段九段棋手邁克.雷蒙(Michael Redmond)忍不住多看了一眼確認,然後他告訴在線上觀看棋賽的兩百多萬英語觀眾:「我真的不知道這是高招還是爛招。」他的共同評論員克里斯.戈拉克(Chris Garlock)則表示:「我認為下錯了。」他是一本網路圍棋雜誌的資深編輯,同時也是美國圍棋協會的副會長。

-----廣告,請繼續往下閱讀-----

李世乭在幾分鐘後返回座椅,然後又緊盯著棋盤幾分鐘。他總共花了 15 分鐘才做出回應,在棋局的第一階段他有兩小時的時間,而這一手占用了他不少時間——而且此後他再也沒有找回節奏。在經過逾四小時的對弈後,他投子認輸,他連輸兩局了。

第三十七手也讓樊麾大感詫異,他在幾個月前遭到 AlphaGo 徹底擊敗,自此之後他就加入深度心智,在 AlphaGo 與李世乭對弈前擔任它的陪訓員。他從來沒有擊敗過這部人工智慧機器,但是他與 AlphaGo 的對弈也讓他對棋路的變化大開眼界。事實上,他在遭 AlphaGo 擊敗後的幾週內,與(人類)高手對弈連贏六場,他的世界排名也升至新高。

現在,他站在四季飯店七樓的評論室外面,在第三十七手落子幾分鐘後,他看出了此一怪招的威力。「這不是人類會下的棋路,我從來沒有看過有人這麼下,」他說道,「太美了。」他不斷地重複說道,太美了、太美了、太美了。

第二天上午,深度心智的研究員大衛.席瓦爾溜進控制室,他想知道 AlphaGo 如何做出第三十七手的選擇。AlphaGo 在每一局對弈中都會根據它所受過數千萬種人類落子變化的訓練,來計算人類做出此一選擇的機率,而在第三十七手,它算出的機率是萬分之一。

-----廣告,請繼續往下閱讀-----
AlphaGo 在對弈中會根據千萬種落子變化,計算出人類下此一步棋的機率。圖/YouTube

AlphaGo 知道這不是專業棋手會選擇的路數,然而它根據與自己對弈的數百萬次經驗——沒有人類參與的棋局——它仍是這麼做了;它已了解儘管人類不會選擇這一步,這一步棋仍是正確的選擇。「這是它自己發現的,」席瓦爾說道,「透過它的內省。」

這是一個既甜美又苦澀的時刻,儘管樊麾大讚此一步棋是神來之筆,但是一股鬱悶之情席捲四季飯店,甚至整個韓國。一位中國記者表示,儘管他為 AlphaGo 贏得第一局感到高興,可是現在他深感沮喪。

第二天,一位在首爾彼端經營一家新創企業育成中心的韓國人權五亨表示他也感到悲傷,這並非因為李世乭是一位韓國人,而是因為他是人類,「這是全人類的轉捩點,」權五亨說道,他的幾位同事點頭表示同意,「它讓我們了解人工智慧真的已在我們眼前——也讓我們了解到其中的危險。」

在那個週末,此一鬱悶的情緒只增不減。李世乭第三局也輸了,等於輸掉整個棋賽。坐在賽後記者會的桌子後面,李世乭懺悔之情溢於言表。「我不知道今天要說什麼,但是我首先要表達我的歉意,」他說道,「我應該拿出更好的成績,更好的結局,更好的比賽。」但是坐在李世乭身邊的哈薩比斯卻發現,自己衷心期盼這位韓國棋手在接下來的兩局中至少能贏一局。

-----廣告,請繼續往下閱讀-----

AlphaGo 認輸的那一局

在第四局的七十七手,李世乭再度陷入長考,就和第二局的情況一樣,但是這一回他考慮的時間更久。棋盤中間有一堆棋子,黑白相間,他有近二十分鐘只是緊盯著這些棋子,抓著後頸前後擺動。最後,他將他的白子落在棋盤中央的兩枚黑子之間,將棋勢一分為二,AlphaGo 方寸大亂。

在每一場對弈中,AlphaGo 都會不斷重新計算勝率,並且顯示在控制室的一台平面顯示幕上。

在李世乭落子後——第七十八手——這部機器的反擊很差,在顯示幕上的勝率立刻大降。「AlphaGo 累積到那一步之前的所有戰略都算是報銷了,」哈薩比斯說道,「它必須重新再來。」就在此刻,李世乭抬頭看著對面的黃士傑,彷彿他擊敗的是這人,不是機器。自此之後,AlphaGo 的勝率一路下跌,在近五個小時後,它投子認輸。

DeepMind 製作的 AlphaGo 與李世乭對弈紀綠片。/YouTube

兩天後,哈薩比斯穿過四季飯店的大廳,解釋 AlphaGo 為什麼會輸。AlphaGo 當時是假設沒有人類會這樣下第七十八手,它計算出來的機率是萬分之一——這是一個它熟悉的數字。

就像 AlphaGo 一樣,李世乭的棋力也達到一個新境界,他在棋賽最後一天的私人聚會場合中這樣告訴哈薩比斯。他說與機器對弈不僅讓他重燃對圍棋的熱情,同時也讓他茅塞頓開,使他有了新想法。「我已經進步了。」他告訴哈薩比斯,一如幾天前的樊麾,李世乭之後與人類高手對弈,連贏九場。

AlphaGo 與李世乭的對弈,使得人工智慧在世人眼前大爆發,它不僅是屬於人工智慧領域與科技公司,同時也是屬於市井小民的里程碑。在美國如此,在韓國與中國更是如此,因為這些國家視圍棋為人類智慧結晶的巔峰。這場棋賽彰顯出科技的力量與其終將超越人類的恐懼,同時也帶來樂觀的前景,此一科技往往會以出人意表的方式推動人類更上層樓。儘管馬斯克等人警告其中的危險性,但是這段時期人工智慧的前景一片光明。

裘蒂.英賽恩(Jordi Ensign)是佛羅里達州一位四十五歲的程式設計師,她在讀完棋賽報導後出去在身上紋了兩幅刺青,她在右臂內側紋了 AlphaGo 的第三十七手——左臂紋了李世乭的第七十八手。

——本文摘自《AI製造商沒說的祕密: 企業巨頭的搶才大戰如何改寫我們的世界?》,2022 年 8 月,時報出版,未經同意請勿轉載

所有討論 1
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。