我很快就會回來談腦部,不過先說明另一種機器學習形式的例子,這種形式結合了神經網絡和一個新方法。電腦科學家大方的用神經科學的名詞來稱呼這類策略:增強原理(principle of reinforcement),最早有系統進行這方面研究的是偉大的俄羅斯生理學家帕夫洛夫(Pavlov),哈佛大學的史金納(B. F. Skinner)等後繼者發掘了其中的細節。電腦科學家稱這種這種演算法為「增強學習」(reinforcement learning)。「增強」的意思是某種行為會得到報償,如果電腦受到了報償,就會重複那種行為。這個過程讓正確的行為比較容易受到重覆,在神經網絡中的突觸會受到加強,你可以說這是一種反向傳播。增強學習與感知學習很像,只不過電腦會自己製造教師。
增強學習已經精通了一項極為艱難的技術:下西洋棋,以及更為困難的圍棋。現在電腦的棋力超強,完全勝過人類,而且他們還是自己教自己下棋。我想到的一個演算法是 Alpha Zero,在二○一八年耶誕節前夕於《自然》雜誌上發表研究結果。研究人員只教 Alpha Zero 圍棋的規則:棋盤的模樣、下棋的方式等,之後演算法會自己和自己下西洋棋或是圍棋。這種作法聽起來違背直覺,重點在於每個「自己」並不知道另一個「自己」的思考內容,只知道對方下的棋步。也沒有教師,只有一些事先輸入的規則,讓電腦知道下的棋步是好是壞,以及判定輸贏的標準。四個小時後,電腦就具備了世界級的水準。
這真是非常了不起的成就,而且不只可以讓 Alpha Zero 下各種棋類,還可以讓它做別的事情。谷歌人工智慧團隊的大衛.希爾瓦(David Silver)展示了 Alpha Zero 利用遙控器操縱玩具直升機進行飛行特技,看到那個直升機進行筒狀翻滾飛行(barrel roll),真的讓人確信它有能力。
但是 Alpha Zero 真的比我的孫子聰明嗎?差得遠了(除非我孫子和它較量西洋棋)。電腦對於任務定義的範圍非常狹隘,而且體積要比我孫子的腦大多了,也不能光靠巧克力夾心餅乾就能運作。史密森尼學會(Smithsonian)的吳凱薩琳(Katherine Wu)估計,Alpha Zero 硬體運作功率約為一百萬瓦,我孫子的腦只需二十瓦。會在這裡提到神經網絡和增強學習,是因為這兩者都屬於概念驗證(Alpha Zero 內部採用了神經網絡),證明了這種邏輯運算的結果雖然距離腦還差得遠,但的確比較接近腦。
人類的腦部是否也採用了類似深度神經網絡或是 Alpha Zero 所運作的方式?當然有,只是慢得不得了。人腦這種電腦是演化經由無數時光打造而成,其中的突觸和連結都縮小到極致。如果由一堆計算晶片組成的笨重電腦能夠辦得到,人腦也可以。
我們很容易想到技術零件、工程藍圖…等,但海德格說,技術的本質並不是那些技術的種種(The essence of technology is by no means anything technological)。海德格更認為,傳統用來說明「技術物之所是」的分析,並不足以說明技術的本質。在亞里斯多德的觀點中,一個銀製聖杯之所以是現在這個樣貌,可以拆解成四個因素:材質是銀(質料因)、杯子的樣式(形式因)、由工匠製作(動力因)、用於宗教儀式(目的因)。但在海德格看來,四因說充其量只是近因,真正的問題在於,究竟是「什麼」讓這四個因素剛好聚集在一起並造就了這個聖杯?
就「真正」Art 的定義來說,技術物的原文 Artifact 的意義完全屬實:製造出來的事實(arti-fact)。前面說過,真正的技術也是藝術,是 Bringing-Forth,帶出事物最美好的一面,亦即實現它「真實」的樣子。Arti(製造出來)的事物不一定是假的。我們之所以很常用 Arti 來暗示虛假,是因為身處現代社會的我們,已經太習慣 Challenging-Forth 意義下的 Artifact。同樣地,AI 裡的 Arti 本身就屬於高科技,所以從海德格的角度來說,AI 不可能也不應該是藝術的創作者,更不可能能名列藝術家,除非 AI 能以傳統 Bringing-Forth 的方式來創作——但顯然不太可能。
Netflix 影集 「Love, Death, Robots」中的「Zima Blue」。圖/Mohamed Aziz
我們不難感覺到,海德格對於技術和藝術的看法有一定程度的封閉性。當海德格追問「本質」問題並試圖回答時,也就不得不排除那些在他看來不是本質的東西。這種對於 Art 的嚴格規定,似乎和當代藝術所強調的開放性與可能性相互扞格。多數藝術家總是在嘗試新的手法、新的材料;雖有藝術家試圖回到過去的工匠精神,但這畢竟不是多數。許多時候藝術仍被視為揭露真理/真實(truth)的途徑(之一),但我們幾乎不可能回到那種浪漫的 Bringing-Forth 的實踐與時代。如果現代技術真如海德格所說,是人類與現代世界的牢籠,那麼海德格的論述與觀點本身,似乎也成為藝術的牢籠,將藝術關閉在一定的界線之內。
當代技術哲學中荷蘭學派的核心人物是 Peter-Paul Verbeek,其著作 What Things Do(2005)爬梳並評析了過往幾位技術哲學家的論述,海德格佔據重要篇幅。Verbeek 認為,海德格對於技術本質的探問,實際上是從技術本身「向後退」,將技術還原到技術之所是的條件(condition)。這種觀點並非沒有道理,但後果往往指向悲觀的結局:人類被技術所限制。這種觀點也忽略了一個難以否認的事實:雖然技術可能帶來災難與危害,但更多時候技術往往提供人類與社會許多的自由與可能。Verbeek 強調,與其向後追問技術是什麼,不如「向前進」,探問「技術做什麼」——這也正是書名的由來。
一旦我們把藝術創作的單位從「人類」換成「人類+技術」,那麼拿著畫筆或雕刻刀來創作可以稱為藝術活動,使用演算法來創作亦然——兩者都是「創作體」的行為。從這個角度來看,問 AI 能否成為藝術家,似乎不具意義。人類是藝術家,但人類從未不透過技術來創作(即使拿著樹枝在地上畫圖,手上的樹枝也算是技術);同樣地,AI 當然可以是藝術家,但它即使是號稱自學的機器學習,也不曾脫離人類的編程與資料輸入。
當然,我們可能會問:「人類+畫筆」可以展現創意,但一個靠著演算法運作的 AI 加上人類,能夠展現任何創意嗎?這個問題的預設其實是:創意意味著某種出乎意料或不期而遇,但數學無法給予我們這些,畢竟它是可計算並預測的。這正是許多人對演算法作品的質疑。然而,事實上並非如此,很多時候 AI 會丟出超乎編程人員預期之外的結果,有時候編程人員甚至無法在事後提出相關且合理的解釋。這正是許多論者視 AI 為危險的原因,然而,這種「危險」卻恰好反過來說明了 AI 也可以充滿創意。
另一方面,技術中介論表明,「什麼是道德」會隨著技術而改變,那麼「什麼是藝術」又未嘗不是?《觀察者的技術》一書,足以說明這種現象。作者 Jonathan Crary 認為,藝術史經常把藝術家看成是觀看方式的定義者,用藝術作品來引領大衆的視覺,但實際情況其實相反,是因為大眾的觀看方式早已轉變,才使得某些形式的作品得已被視為藝術。更重要的是,這種轉變與技術的發展互為表裡。
透過 Crary,我們可以看到,技術的發展確實改變了藝術的內涵。一方面,過往不被描繪的印象變成可以描繪的主題,甚至成為所謂現代藝術的發端;另外一方面,當所見比所是更加重要時候,視覺的各種可能性被完全打開,使得什麼是藝術有了更大的發揮空間。就像當年有人爭論印象派根本算不是好的藝術作品、有人大力質問攝影能否列為藝術,我們如今也在推敲 AI 或演算法的作品算能否算是藝術。這些正是藝術邊界因為技術而悄悄改變的明證。
藝術與技術的相互敞開
AI 可以創作藝術嗎?演算法的作品可以被稱為藝術嗎?這些問題,技術哲學可以提供一點想法。如果從傳統的技術哲學(海德格)來看,答案是否定的。由於海德格認為現代技術的 Challenging-Forth 是一種糟糕的 Revealing,有違技術與藝術系出同源的 Bringing-Forth,並且反對現代科技所隱含的數學性與計算性,使得我們不得不導向AI或演算法和藝術相互排斥的結論。然而,這種觀點限縮了藝術的開放性,也忽略了藝術不斷挑戰自我邊界的各種實踐。