1

38
1

文字

分享

1
38
1

回到 AlphaGo 打敗棋王的那一天,看 AI 如何顛覆世界——《AI 製造商沒說的祕密》

時報出版_96
・2023/01/30 ・4915字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

谷歌收購深度心智(DeepMind)幾週後,深度心智創辦人德米斯.哈薩比斯(Demis Hassabis)與其他幾位深度心智研究人員搭機來到北加州,與他們母公司的領袖舉行會議,並向他們展示深度學習如何破解「打磚塊」。

幕後推手——德米斯.哈薩比斯

會議結束後,哈薩比斯和谷歌創辦人賽吉.布林(Sergey Brin)聊了起來。他們聊著聊著發現有一共同的興趣:圍棋。布林表示當初他和賴利.佩吉(Larry Page)建立谷歌時,他沉迷在圍棋中,害得佩吉擔心他們根本無法成立公司。

哈薩比斯表示,如果他和他的團隊想要的話,他們能夠建造一套系統來打敗世界冠軍。「我覺得這是不可能的。」布林說道。就在這一刻,哈薩比斯下定決心要做到。

深度心智創辦人、英國人工智慧研究者——德米斯.哈薩比斯(Demis Hassabis)。圖/維基百科

「深度學習運動之父」傑弗瑞.辛頓(Geoffrey Hinton)將哈薩比斯比作羅伯.奧本海默(Robert Oppenheimer),二戰期間做出第一顆原子彈的曼哈頓計畫主持人。奧本海默是世界級的物理學家:他懂得眼前重大任務的科學原理,不過他更深諳激勵之道,他結合手下不斷擴大的科學家,將他們的力量合而為一,並且接納他們的弱點,一起為計畫目標努力。

-----廣告,請繼續往下閱讀-----

他知道如何感動男人(以及女人,包括辛頓的堂姊瓊安.辛頓),辛頓在哈薩比斯身上看到同樣的特質。「他主持 AlphaGo 就像奧本海默主持曼哈頓計畫,如果是別人來主持,他們可能就不會這麼快成功。」辛頓說。

揭開比賽序幕

深度心智的研究員們在 2014 年中曾發表一篇關於他們初期研究的論文,之後他們的研究規模大為擴大,並在第二年擊敗歐洲圍棋冠軍樊麾。此一結果震驚了全球圍棋界與人工智慧研究圈,但是 AlphaGo 對戰李世乭所造成的聲勢更是轟動。

IBM 的深藍超級電腦 1997 年在曼哈頓西城的一棟高樓裡擊敗世界頂尖的西洋棋高手,為電腦科學建立了一座里程碑,受到全球新聞界的廣為報導。但是若是與首爾的這場人機大戰相比,卻是小巫見大巫。在韓國——更別提日本與中國——圍棋是民族性的消遣活動。有超過二億人會觀看 AlphaGo 與李世乭的對弈,觀眾比超級盃多上一倍。

圍棋在中、日、韓具民族性,AlphaGo 與李世乭的對弈備受矚目。圖/維基百科

在總共五局對戰前夕的記者會上,李世乭誇口他能輕鬆獲勝:四比一或五比零。大部分的圍棋棋手也都有同感,雖然 AlphaGo 徹底擊敗樊麾,顯示這部機器是真正的贏家,但是樊麾的棋力遠不及李世乭。根據用來評估遊戲對戰能力的 ELO 等級制度,李世乭完全是在不同的等級。但是哈薩比斯卻認為這場人機大戰會有截然不同的結果。

-----廣告,請繼續往下閱讀-----

第二天下午,在展開第一局對戰的兩小時前,他與幾名記者共進午餐,他拿著一份《韓國先驅報》(Korea Herald),這是用桃色紙張印刷的韓國英文日報。他和李世乭的照片都出現在報紙的頭版上半部。他沒有想到竟會受到如此重視。

「我知道會受到關注,」這位像孩子般矮小,39 歲但已禿頂的英國人說道,「但是沒有想到會這麼多。」不過,在吃著餃子、韓式泡菜的午餐時,哈薩比斯表示他對這場棋賽「審慎樂觀」。他解釋,那些名嘴並不知道 AlphaGo 在十月的棋賽後仍在繼續苦練棋藝。

他和他的團隊初始是將三千萬步棋路輸入深度神經網路來教導機器學習圍棋,自此之後,AlphaGo 就開始不斷與自己對弈,並且記錄哪些棋路是成功的,哪些又是失敗的——其運作與實驗室用來破解雅達利老遊戲的系統類似。自擊敗樊麾以來這幾個月,AlphaGo 已和自己對弈了數百萬局;AlphaGo 持續自學圍棋,學習速度之快遠超過所有人類。

在四季飯店頂樓的賽前餐敘,谷歌董事長艾力克.施密特(Eric Schmidt)坐在哈薩比斯的對面,以他一貫冷峻的態度闡述深度學習的優點。一度有人稱他為工程師,他糾正他們,「我不是工程師,」他說道,「我是電腦科學家。」

-----廣告,請繼續往下閱讀-----
艾力克.施密特(Eric Schmidt)2001~2011 年間在 Google 擔任 CEO。圖/維基百科

他回憶他在 1970 年代研讀電腦科學時,人工智慧看來前景一片大好,但是隨著 1980 年代過去,進入 1990 年代,這樣的美景從未實現。如今,終於實現了。「這一科技,」他說道,「力量強大,引人入勝。」他表示,人工智慧不只是辨識照片的戲法,同時也代表谷歌 750 億美元的網際網路事業與其他無數的產業,包括保健產業。

機器與人類高手對決

在第一局,哈薩比斯是在私人觀賞室與走廊另一頭的 AlphaGo 控制室之間來回兩頭跑。控制室滿是個人電腦、筆記型電腦與平面顯示幕,這些設備全都與遠在太平洋彼端的谷歌數據中心內部數百台電腦相連。一支谷歌團隊在比賽前一週就已架設一條專屬的超高速光纖電纜直達控制室,以確保網際網路暢通無阻。

不過結果卻顯示控制室根本不需要進行多少操控:幾過多月的訓練之後,AlphaGo 已能完全獨力作業,不需要人為的幫助。同時,就算哈薩比斯與團隊想幫忙,也無用武之地。他們沒有一人的圍棋棋力達到大師級的水準,他們只能觀看棋局。

「我無法形容有多緊張,」深度心智研究員說道,「我們不知道該聽誰的。一邊是評論員的看法,你同時也看到 AlphaGo 的評估。所有的評論員都有不同的意見。」

-----廣告,請繼續往下閱讀-----

在第一天的棋賽,深度心智團隊與谷歌的重要人物都親眼目睹 AlphaGo 獲勝。

賽後記者會上,李世乭面對來自東、西方數百名記者與攝影師表示他感到震驚。這位 33 歲的棋士透過口譯員說道:「我沒想到 AlphaGo 下棋竟能夠如此完美。」經過逾四小時的對弈,AlphaGo 證明自己的棋力可與全球最厲害的高手匹敵,李世乭表示他被 AlphaGo 殺了個措手不及,他在第二局會改變策略。

左為代替 AlphaGo 移動棋子的深度心智台灣研究員黃士傑,右則為李世乭。圖/YouTube

神來一筆的第三十七手

第二局對弈進行一小時後,李世乭起身離開賽場,走到露台抽菸。坐在李世乭對面,代替 AlphaGo 移動棋子的是來自台灣的深度心智研究員黃士傑,他將一枚黑子落在棋盤右邊一大塊空地上單獨一枚白子的側邊下方,這是該局的第三十七手。

在角落的評論室內,西方唯一的圍棋最高段九段棋手邁克.雷蒙(Michael Redmond)忍不住多看了一眼確認,然後他告訴在線上觀看棋賽的兩百多萬英語觀眾:「我真的不知道這是高招還是爛招。」他的共同評論員克里斯.戈拉克(Chris Garlock)則表示:「我認為下錯了。」他是一本網路圍棋雜誌的資深編輯,同時也是美國圍棋協會的副會長。

-----廣告,請繼續往下閱讀-----

李世乭在幾分鐘後返回座椅,然後又緊盯著棋盤幾分鐘。他總共花了 15 分鐘才做出回應,在棋局的第一階段他有兩小時的時間,而這一手占用了他不少時間——而且此後他再也沒有找回節奏。在經過逾四小時的對弈後,他投子認輸,他連輸兩局了。

第三十七手也讓樊麾大感詫異,他在幾個月前遭到 AlphaGo 徹底擊敗,自此之後他就加入深度心智,在 AlphaGo 與李世乭對弈前擔任它的陪訓員。他從來沒有擊敗過這部人工智慧機器,但是他與 AlphaGo 的對弈也讓他對棋路的變化大開眼界。事實上,他在遭 AlphaGo 擊敗後的幾週內,與(人類)高手對弈連贏六場,他的世界排名也升至新高。

現在,他站在四季飯店七樓的評論室外面,在第三十七手落子幾分鐘後,他看出了此一怪招的威力。「這不是人類會下的棋路,我從來沒有看過有人這麼下,」他說道,「太美了。」他不斷地重複說道,太美了、太美了、太美了。

第二天上午,深度心智的研究員大衛.席瓦爾溜進控制室,他想知道 AlphaGo 如何做出第三十七手的選擇。AlphaGo 在每一局對弈中都會根據它所受過數千萬種人類落子變化的訓練,來計算人類做出此一選擇的機率,而在第三十七手,它算出的機率是萬分之一。

-----廣告,請繼續往下閱讀-----
AlphaGo 在對弈中會根據千萬種落子變化,計算出人類下此一步棋的機率。圖/YouTube

AlphaGo 知道這不是專業棋手會選擇的路數,然而它根據與自己對弈的數百萬次經驗——沒有人類參與的棋局——它仍是這麼做了;它已了解儘管人類不會選擇這一步,這一步棋仍是正確的選擇。「這是它自己發現的,」席瓦爾說道,「透過它的內省。」

這是一個既甜美又苦澀的時刻,儘管樊麾大讚此一步棋是神來之筆,但是一股鬱悶之情席捲四季飯店,甚至整個韓國。一位中國記者表示,儘管他為 AlphaGo 贏得第一局感到高興,可是現在他深感沮喪。

第二天,一位在首爾彼端經營一家新創企業育成中心的韓國人權五亨表示他也感到悲傷,這並非因為李世乭是一位韓國人,而是因為他是人類,「這是全人類的轉捩點,」權五亨說道,他的幾位同事點頭表示同意,「它讓我們了解人工智慧真的已在我們眼前——也讓我們了解到其中的危險。」

在那個週末,此一鬱悶的情緒只增不減。李世乭第三局也輸了,等於輸掉整個棋賽。坐在賽後記者會的桌子後面,李世乭懺悔之情溢於言表。「我不知道今天要說什麼,但是我首先要表達我的歉意,」他說道,「我應該拿出更好的成績,更好的結局,更好的比賽。」但是坐在李世乭身邊的哈薩比斯卻發現,自己衷心期盼這位韓國棋手在接下來的兩局中至少能贏一局。

-----廣告,請繼續往下閱讀-----

AlphaGo 認輸的那一局

在第四局的七十七手,李世乭再度陷入長考,就和第二局的情況一樣,但是這一回他考慮的時間更久。棋盤中間有一堆棋子,黑白相間,他有近二十分鐘只是緊盯著這些棋子,抓著後頸前後擺動。最後,他將他的白子落在棋盤中央的兩枚黑子之間,將棋勢一分為二,AlphaGo 方寸大亂。

在每一場對弈中,AlphaGo 都會不斷重新計算勝率,並且顯示在控制室的一台平面顯示幕上。

在李世乭落子後——第七十八手——這部機器的反擊很差,在顯示幕上的勝率立刻大降。「AlphaGo 累積到那一步之前的所有戰略都算是報銷了,」哈薩比斯說道,「它必須重新再來。」就在此刻,李世乭抬頭看著對面的黃士傑,彷彿他擊敗的是這人,不是機器。自此之後,AlphaGo 的勝率一路下跌,在近五個小時後,它投子認輸。

DeepMind 製作的 AlphaGo 與李世乭對弈紀綠片。/YouTube

兩天後,哈薩比斯穿過四季飯店的大廳,解釋 AlphaGo 為什麼會輸。AlphaGo 當時是假設沒有人類會這樣下第七十八手,它計算出來的機率是萬分之一——這是一個它熟悉的數字。

就像 AlphaGo 一樣,李世乭的棋力也達到一個新境界,他在棋賽最後一天的私人聚會場合中這樣告訴哈薩比斯。他說與機器對弈不僅讓他重燃對圍棋的熱情,同時也讓他茅塞頓開,使他有了新想法。「我已經進步了。」他告訴哈薩比斯,一如幾天前的樊麾,李世乭之後與人類高手對弈,連贏九場。

AlphaGo 與李世乭的對弈,使得人工智慧在世人眼前大爆發,它不僅是屬於人工智慧領域與科技公司,同時也是屬於市井小民的里程碑。在美國如此,在韓國與中國更是如此,因為這些國家視圍棋為人類智慧結晶的巔峰。這場棋賽彰顯出科技的力量與其終將超越人類的恐懼,同時也帶來樂觀的前景,此一科技往往會以出人意表的方式推動人類更上層樓。儘管馬斯克等人警告其中的危險性,但是這段時期人工智慧的前景一片光明。

裘蒂.英賽恩(Jordi Ensign)是佛羅里達州一位四十五歲的程式設計師,她在讀完棋賽報導後出去在身上紋了兩幅刺青,她在右臂內側紋了 AlphaGo 的第三十七手——左臂紋了李世乭的第七十八手。

——本文摘自《AI製造商沒說的祕密: 企業巨頭的搶才大戰如何改寫我們的世界?》,2022 年 8 月,時報出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
從遊戲到量子計算:NVIDIA 憑什麼在 AI 世代一騎絕塵?
PanSci_96
・2025/01/09 ・2941字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

AI 與 GPU 的連結:為什麼 NVIDIA 股價一路飆?

2023 年至今,人工智慧(AI)熱潮引爆全球科技圈的競爭與創新,但最受矚目的企業,莫過於 NVIDIA。它不僅長期深耕遊戲顯示卡市場,在近年來卻因為 AI 應用需求的飆升,一舉躍居市值龍頭。原因何在?大家可能會直覺認為:「顯示卡性能強,剛好給 AI 訓練用!」事實上,真正的關鍵並非只有強悍的硬體,而是 NVIDIA 打造的軟硬體整合技術──CUDA

接下來將為你剖析 CUDA 與通用圖形處理(GPGPU)的誕生始末,以及未來 NVIDIA 持續看好的量子計算與生醫應用,一窺這家企業如何從「遊戲顯示卡大廠」蛻變為「AI 世代的領航者」。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

CPU vs. GPU:為何顯示卡能成為 AI 領跑者?

在電腦運作中,CPU(中央處理器)向來是整個系統的「大腦」,負責執行指令、邏輯判斷與多樣化的運算。但是,AI 模型訓練需要面對的是龐大的數據量與繁複的矩陣或張量運算。這些運算雖然單一步驟並不複雜,但需要進行「海量且重複性極高」的計算,CPU 難以在短時間內完成。

反觀 GPU(圖形處理器),原先是用來處理遊戲畫面渲染,內部具有 大量且相對簡單的算術邏輯單元。GPU 可以同時在多個核心中進行平行化運算,就像一座「高度自動化、流水線式」的工廠,可一次處理大量像素、頂點或是 AI 訓練所需的運算。這讓 GPU 在大量數值計算上遠遠超越了 CPU 的處理速度,也讓「顯示卡算 AI」成了新時代的主流。

-----廣告,請繼續往下閱讀-----

顯示卡不只渲染:GPGPU 與 CUDA 的誕生

早期,GPU 只被視為遊戲繪圖的利器,但 NVIDIA 的創辦人黃仁勳很快察覺到:這種多核心平行化的結構,除了渲染,也能用來處理科學運算。於是,NVIDIA 在 2007 年正式推出了名為 CUDA(Compute Unified Device Architecture) 的平台。這是一套讓開發者能以熟悉的程式語言(如 C、C++、Python)來調用 GPU 資源的軟體開發工具套件,解決了「人類要如何對 GPU 下指令」的問題。

在 CUDA 出現之前,若要把 GPU 用於渲染以外的用途,往往必須透過「著色器語言」或 OpenGL、DirectX 等繪圖 API 進行繁瑣的間接操作。對想用 GPU 加速數學或科學研究的人來說,門檻極高。然而,有了 CUDA,開發者不需理解圖像著色流程,也能輕鬆呼叫 GPU 的平行運算能力。這代表 GPU 從遊戲卡一躍成為「通用圖形處理單元」(GPGPU),徹底拓展了它在科學研究、AI、影像處理等領域的應用版圖。

AI 崛起的臨門一腳:ImageNet 大賽的關鍵一擊

如果說 CUDA 是 NVIDIA 邁向 AI 領域的踏腳石,那麼真正讓 GPU 與 AI 完美結合的轉捩點,發生在 2012 年的 ImageNet 大規模視覺辨識挑戰賽(ILSVRC)。這場由李飛飛教授創辦的影像辨識競賽中,參賽團隊需要對龐大的影像數據進行訓練、分類及辨識。就在那一年,名為「AlexNet」的深度學習模型橫空出世,利用 GPU 進行平行運算,大幅減少了訓練時間,甚至比第二名的辨識率高出將近 10 個百分點,震撼了全球 AI 研究者。

AlexNet 的成功,讓整個學界與業界都注意到 GPU 在深度學習中的強大潛力。CUDA 在此時被奉為「不二之選」,再加上後來發展的 cuDNN 等深度學習函式庫,讓開發者不必再自行編寫底層 GPU 程式碼,建立 AI 模型的難度與成本大幅降低,NVIDIA 的股價也因此搭上了 AI 波浪,一飛沖天。

-----廣告,請繼續往下閱讀-----
AlexNet 的成功凸顯 GPU 在深度學習中的潛力。圖/unsplash

為什麼只有 NVIDIA 股價衝?對手 AMD、Intel 在做什麼?

市面上有多家廠商生產 CPU 和 GPU,例如 AMD 與 Intel,但為什麼只有 NVIDIA 深受 AI 市場青睞?綜觀原因,硬體只是其一,真正不可或缺的,是 「軟硬體整合」與「龐大的開發者生態系」

硬體部分 NVIDIA 長年深耕 GPU 技術,產品線完整,且數據中心級的顯示卡在能耗與性能上具領先優勢。軟體部分 CUDA 及其相關函式庫生態,涵蓋了影像處理、科學模擬、深度學習(cuDNN)等多方面,讓開發者易於上手且高度依賴。

相比之下,雖然 AMD 也推行了 ROCm 平台、Intel 有自家解決方案,但在市場普及度與生態支持度上,依舊與 NVIDIA 有相當差距。

聰明的管理者

GPU 的優勢在於同時有成百上千個平行運算核心。當一個深度學習模型需要把數據切分成無數個小任務時,CUDA 負責將這些任務合理地排班與分配,並且在記憶體讀寫方面做出最佳化。

-----廣告,請繼續往下閱讀-----
  • 任務分類:同性質的任務集中處理,以減少切換或等待。
  • 記憶體管理:避免資料在 CPU 與 GPU 之間頻繁搬移,能大幅提升效率。
  • 函式庫支援:如 cuDNN,針對常見的神經網路操作(卷積、池化等)做進一步加速,使用者不必從零開始撰寫平行運算程式。

結果就是,研究者、工程師甚至學生,都能輕鬆把 GPU 能力用在各式各樣的 AI 模型上,訓練速度自然飛漲。

從 AI 到量子計算:NVIDIA 對未來的佈局

當 AI 波浪帶來了股價與市值的激增,NVIDIA 並沒有停下腳步。實際上,黃仁勳與團隊還在積極耕耘下一個可能顛覆性的領域──量子計算

2023 年,NVIDIA 推出 CUDA Quantum 平台,嘗試將量子處理器(QPU)與傳統 GPU / CPU 整合,以混合式演算法解決量子電腦無法單獨加速的部分。就像為 AI 量身打造的 cuDNN 一樣,NVIDIA 也對量子計算推出了相對應的開發工具,讓研究者能在 GPU 上模擬量子電路,或與量子處理器協同運算。

NVIDIA 推出 CUDA Quantum 平台,整合 GPU 與 QPU,助力混合量子運算。圖/unsplash

這項新布局,或許還需要時間觀察是否能孕育出市場級應用,但顯示 NVIDIA 對「通用運算」的野心不只停留於 AI,也想成為「量子時代」的主要推手。

-----廣告,請繼續往下閱讀-----

AI 熱潮下,NVIDIA 凭什麼坐穩王座?

回到一開始的疑問:「為什麼 AI 熱,NVIDIA 股價就一定飛?」 答案可簡化為兩點:

  1. 硬體領先 + 軟體生態:顯示卡性能強固然重要,但 CUDA 建立的開發者生態系才是關鍵。
  2. 持續布局未來:當 GPU 為 AI 提供高效能運算平台,NVIDIA 亦不斷將資源投入到量子計算、生醫領域等新興應用,為下一波浪潮預先卡位。

或許,正因為不斷探索新技術與堅持軟硬整合策略,NVIDIA 能在遊戲市場外再創一個又一個高峰。雖然 AMD、Intel 等競爭者也全力追趕,但短期內想撼動 NVIDIA 的領先地位,仍相當不易。

未來,隨著 AI 技術持續突破,晶片性能與通用運算需求只會節節攀升。「AI + CUDA + GPU」 的組合,短時間內看不出能被取代的理由。至於 NVIDIA 是否能繼續攀向更驚人的市值高峰,甚至在量子計算跑道上再拿下一座「王者寶座」,讓我們拭目以待。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
AI 破解生命密碼!AlphaFold 3 揭開蛋白質折疊的終極謎團
PanSci_96
・2024/10/07 ・1624字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

AlphaFold的誕生:人工智慧的奇蹟

2018 年,Google 旗下的 DeepMind 團隊推出了第一代 AlphaFold,這是一款基於深度學習的 AI 模型,專門用於預測蛋白質的三維結構。AlphaFold 的命名取自「fold」一詞,意為折疊,指的是蛋白質在胺基酸鏈構成後迅速摺疊成其功能所需的三維結構。

AlphaFold 的突破在於其能夠預測出蛋白質折疊的可能性,這是一個傳統計算方法無法達到的領域。第一代 AlphaFold 在國際 CASP 比賽中取得了一定的成功,雖然其預測準確度尚未達到實驗室標準,但其潛力讓科學家們充滿期待。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

為什麼蛋白質結構預測如此重要?

蛋白質是生命的基石,它們的功能取決於其複雜的三維結構。然而,僅靠實驗技術來解析蛋白質的結構既昂貴又耗時。過去科學家依賴於如 X 光晶體繞射等技術來解析蛋白質的結構,然而這種方法雖然精確,但往往需要數年時間來得出一個結論。

到目前為止,人類已知的蛋白質數據庫中,全球僅解析了大約 22 萬種蛋白質的結構,這遠遠不足以滿足生物學和醫學研究的需求。尤其是人類的許多蛋白質結構仍然未知,這成為阻礙醫學進步的一個主要瓶頸,特別是在藥物開發和疾病治療上,因此如何加速對蛋白質的結構的解析至關重要。

-----廣告,請繼續往下閱讀-----

AlphaFold 2:技術飛躍

2020 年,AlphaFold 2 橫空出世,改進了多項技術,預測準確度大幅,幾乎達到了與實驗結果相媲美的程度。這一成就震驚了全球生物學界,許多科學家開始將 AlphaFold 2 應用於實際研究中。

AlphaFold 2 的成功源自於其三大技術革新:

  • 注意力機制:模仿人類的思維模式,從大局出發,關注蛋白質結構中的每一個細節,進而提高預測的準確性。
  • 多序列比對功能:通過搜尋類似的胺基酸序列,推斷新的蛋白質結構。
  • 端到端預測模式:利用深度學習神經網路,不斷反饋預測結果,持續優化模型。
AlphaFold 2 預測準確度大幅提升。 圖/envato

AlphaFold 3:下一代 AI 的力量

隨著 AlphaFold 2 的成功,DeepMind 並未停止其腳步。2024 年 5 月,AlphaFold 3 正式推出,這標誌著 AI 技術在生物學領域的又一個里程碑。AlphaFold 3 的改進再次吸引了科學界的目光,它強化了注意力機制,並引入了擴散模型,這使其能夠更快且更準確地預測複合蛋白質的結構。

擴散模型是一項關鍵技術,它能夠生成大量的可能蛋白質結構,並快速篩選出最可能的解答。與此同時,AlphaFold 3 還內建了「減幻覺」功能,這讓其在產生結果時能夠避免過多不切實際的預測,提升了結果的可信度。

-----廣告,請繼續往下閱讀-----

AlphaFold 的實際應用:醫學與藥物開發

AlphaFold 3 的誕生,不僅是一個技術突破,還為醫學和藥物開發帶來了巨大的希望。過去,癌症治療中的標靶藥物需要經過漫長的實驗才能確定其作用原理,然而現在,通過 AlphaFold 的預測,科學家可以更加精確地針對癌細胞中的錯誤蛋白質,設計出更有效的藥物。

除此之外,AlphaFold 3 還在抗病毒藥物、抗生素以及阿茲海默症等領域展現了潛力。其能夠預測蛋白質與其他分子(如DNA、RNA)的交互作用,這使得研發新藥的過程大大加速。

AlphaFold 3 的挑戰與未來

儘管 AlphaFold 3 取得了驚人的進展,但其仍然面臨一些挑戰。首先,目前 AlphaFold 3 的模型尚未完全開源,這限制了研究人員對其內部運作的了解。為此,一些科學家已聯名要求 DeepMind 開放其程式碼,以便進行更深入的研究和應用。

不過,隨著 AlphaFold 3的逐步推廣,生物學家相信它將繼續改變生物學研究的方式。未來,這項技術有望在解決更多未解難題中發揮關鍵作用,並為醫學領域帶來更大的突破。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。