0

0
0

文字

分享

0
0
0

為什麼搞懂大象怎麼睡覺是件重要的事

活躍星系核_96
・2017/05/03 ・1901字 ・閱讀時間約 3 分鐘 ・SR值 416 ・四年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

Image 20170317 6133 ysbvhc
這算不算是世界最大的 Fitbit?

人類和動物得做幾件事以傳遞他們的基因:吃,避免被吃掉,繁殖和睡眠。缺少這些生物學上的必要條件導致死亡。但是當我們睡著了,就沒辦法執行其他的功能。因此現代科學的一個大謎題就是:為什麼我們得睡覺?

關於人類為何睡覺,科學家提出了許多答案。一個是廢物的清除,另一個是記憶整合。若想測試這些想法是否有效,有個方法是看這些想法如何適用於通常沒被研究的異國動物(如大型非洲哺乳動物)的睡眠。

過往研究表明,較大的哺乳動物睡眠往往少於較小的哺乳動物。所以體重在3000到5000公斤之間的非洲成年大象,不應該睡得太多。記錄腦電波是證明動物是否睡著的一種可接受的方法:大腦全腦活動的特徵在大腦清醒時,慢波睡眠或正在做夢(REM睡眠)時有所差異。但是,由於大部分顱骨為大額鼻竇組成,要在大象身上用外科手法幾乎是不可能的。

為了克服這一點,我們在威特沃特斯蘭德(Witwatersrand)大學的比較神經生物學小組,以及來自大象無國界加州大學洛杉磯分校的同事,改造了一種用於人類睡眠研究的活動計量儀。這使我們能夠監測兩隻野生大象母親的睡眠模式和習慣。

而研究團隊在 PLoS ONE 期刊上發表的結果之所以重要,有兩個原因。通過了解動物的睡眠,我們可以深入了解如何提高人類睡眠和生活品質。但同樣關鍵的是,理解像大象這樣的動物睡眠,有助於我們更了解它們,並提高我們的能力,發展出有益的保育和管理策略。

調查結果

我們使用的設備會輸出每分鐘的加速事件次數。它可以輕易植入皮膚下,以測量大象何時移動或不移動。在野外觀察大象之後,我們發現牠們身體最活躍的部位是象鼻。我們推斷,如果象鼻靜止五分鐘,代表大象很可能已經睡著 – 所以我們將活動計量儀植入在象鼻皮膚下。

將設備與 GPS 項圈、陀螺儀相結合,測量 x,y 和 z 平面上的身體運動,我們得到四個非常有趣的觀察結果:

  • 大象每天平均休息兩個小時;
  • 他們大部分的睡眠發生在站立的時候,但每三至四天會躺下來睡覺一次;
  • 有些晚上,他們沒有睡覺,而是行走了30公里
  • 他們睡覺和醒來的時間的環境條件與日升日落無關。

大象睡眠的秘密,告訴我們……

針對囚禁環境中的大象,現有研究發現,他們每天平均睡眠 4 至 6 小時。這是因為他們有足夠的時間睡覺。他們不必外出,尋覓食物來維繫身體所需,他們有更高品質的飲食,也沒有被捕獵的風險。

一隻大象需要每天吃約300公斤低品質的食物,因此也沒有太多時間留給睡覺。大象腦中的特點之一是下丘腦的食慾素神經元。這些神經元控制飽腹感和覺醒之間的平衡:如果你已經吃飽了,神經元就會沉默,讓你睡覺。如果沒有,他們會讓你醒來。

這種平衡和飲食品質解釋了為何越大型的哺乳動物睡眠越少,或草食動物睡眠少於肉食動物和雜食動物(如人類)。大象的數據支持此一睡眠研究中的新興理念,並幫助解釋為什麼大象睡得如此之少。

在被囚禁的環境中,大象大部分睡著的時候是躺著睡,但是他們有時也站著睡。通過陀螺儀和活動計量儀的組合數據,我們發現野生大象大多站著睡。每隔三天或四天才會躺下睡覺,為時大約一個小時。

哺乳動物在快速眼動期(REM)睡眠期間無法控制骨骼肌張力。所以對於一隻大象來說,要進入REM睡眠,就得躺下,因為沒有任何肌肉張力將非常難以保持站立,除非他們靠在一棵樹或一塊大石頭旁。

有想法認為 REM 睡眠的功能是記憶整合 – 白天的經歷會在 REM 睡眠期間被轉化為長期記憶。大象具有良好的長期記憶,但卻只在每三至四天才進入一次短短的 REM 睡眠。這意味著記憶鞏固理論可能不是 REM 睡眠功能存在的答案。

環境線索

有些夜晚,大象沒有入睡。一頭象有三個晚上都沒睡,另一頭則是兩個晚上沒睡。在這些無法入睡的日子,日落後不久,大象就遭遇打擾,也許是遇上出來狩獵的獅群,盜獵者,或是進入情緒暴烈期(Musth)的公象。在一夜之間,大象遠行約 30 公里。這種大象的行為未曾被記錄。這表明大象確實需要很大的空間,這在大象保育方面是很重要的 – 似乎小規模的保育地無法提供他們足夠的空間。

最後,大象睡覺(睡眠開始)和醒來(睡眠結束)的時間與日落和日出無關。然而,兩者都與環境的「真實感受」密切相關:像是溫度,濕度,風速和太陽輻射的混合。看來,要在對的時間入睡和醒來,環境線索是很重要的。如果我們更仔細研究,我們或許可以調整人類的睡眠環境,讓自己有更好的睡眠。

作者:威特沃特斯蘭大學比較和演化神經生物學教授保羅·馬格爾(Paul Manger)
本文最初發表在 The Conversation 上。 閱讀原文
文章難易度
活躍星系核_96
752 篇文章 ・ 100 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

1

2
1

文字

分享

1
2
1
鑑識故事系列:床若是凶器,法醫這樣自保
胡中行_96
・2022/10/17 ・1884字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

【閱覽提醒】

本文含有屍體照片,已拉燈處理,請小心閱讀~

多功能家具可以在有限的室內空間中,發揮最大效益。有些床舖底下設計了抽屜,同時兼顧使用者的睡眠與儲藏需求。如果遇上狹小到連抽屜都拉不開的臥房,掀床(ottoman storage beds[1])則是異曲同工,卻更有彈性的首選。其儲物區一樣在床板底下,打開的方式卻改成向上掀起,容易擺進擁擠的地方。[2]

善用床底的儲藏櫃,發揮小空間的最大效益。圖/Beazy on Unsplash

在義大利有一名 56 歲,高 150 公分,重 55 公斤的女性,個頭雖小,但擁有一張巨大的白色雙人掀床。她在床上堆滿衣服和毛毯,底下也放了雜物,可謂物盡其用。事發當時,她正打開床底的儲物空間。然而,之後當急救人員衝進她的臥室,把床板向上推開,從下面拖出來的不是任何私人物品,而是她的屍體。[1]

被掀床夾死的示意圖。圖/參考資料1,Figure 3(CC BY 4.0)

更確切地說,他們所見的情形是這樣的:該女子趴著,上半身被夾在掀床的底板和儲藏區之間。急救人員把她移到一旁,想要開始搶救,卻發現為時已晚。於是,她就被留在床邊的地板上,頭部朝左側轉,如同翻肚的死蛙般,彎曲的手腳向外攤開。不久,鑑識團隊趕到現場,此時女子的體溫等同室溫。臉、胸和上腹等處有定型的紫色屍斑(livor mortis、hypostasis 或 lividity[3]);而下巴與四肢硬化,為屍僵(rigor mortis)現象。因此,他們認為當急救人員抵達,女子應該早就死亡超過 24 小時。[1]

【血腥慎入!】案發現場的掀床以及被拖出來的屍體,黑色箭頭指著血跡。圖/參考資料 1,Figure 1(CC BY 4.0)

驗屍工作於三天後展開,根據報告:她的結膜充血;面部浮腫;下巴與脖子擦傷;口鼻流血;舌頭從牙齒間伸出;臉龐與雙手發紺(cyanosis),呈現青色。頸椎雖然沒有斷裂,但頸靜脈擴張,且軟組織滲血。此外,她的肺部,也鬱血和膨脹。[1]

法醫認為,女子體內的血液循環與氧氣輸送,都嚴重受到影響。從病理生理學的角度來說,干擾氧氣輸送的機制,大致分為五種:[1]

  1. 環境中的氧氣遭其他氣體取代,因而濃度下降。
  2. 從口鼻至肺泡,整個空氣流經的路徑中,任何一處受到阻礙。
  3. 脖子的血管受到壓迫,導致腦部血流減少。
  4. 細胞因氰化物中毒,無法運用氧氣新陳代謝。
  5. 結合多種機制,例如:上吊有同時壓迫呼吸道,以及阻斷血流等效果。

這名女子的創傷性窒息(traumatic asphyxia),一方面是呼吸道遭阻斷,而無法輸送氧氣到肺部;另方面又是頸部血管受外力擠壓,以致腦部缺氧,所以應該歸類為上述的第五種。[1]

全天下那麼多人睡掀床,憑什麼她這張會格外致命?首先,鑑識團隊注意到她的掀床,缺乏防止床板墜落的懸吊機關,[1] 所以手必須一直撐著,才能保持開啟。這可能也是為什麼知名家具行的網頁會強調,不要使用過重的床墊,否則裝置無法安全且正常地運作。[4] 再來,該床底儲藏空間的口緣,有一抹血跡,那大約是她被卡住的地方。這個位置離床頭,也就是開關床板的支點頗近,比較不方便施力。最後,如果房間或至少屋子裡還有其他人,她或許不會那麼晚才被發現。[1]

「有鑑於此,我們相信掀床的儲物空間,最好保持清空;不然就是要於他人在場時,才能放置物品,雖然這不太實際。…我們更強調其安全系統,要定期接受合格的人員檢查及維修…儲存與拿取東西的時候,則應該站在槓桿支點的對面。」鑑識團隊以一種家具使用說明書的口吻,為這篇個案報告作結。[1]

  

延伸閱讀

鑑識故事系列:嬰兒側睡,會猝死?

參考資料

  1. Cinquetti A, Franchetti G, Fichera G, et al. (2022) ‘Entrapment within an ottoman storage bed: an unusual accidental asphyxial death’. Forensic Science, Medicine, and Pathology, 18, pp. 176–181.
  2. Biggs C. (27 NOV 2019) ‘Small Bedroom Ideas: The Best Ways to Maximize Your Tiny Space’. The Wirecutter.
  3. Wolfe J. (2011) ‘Easing Distress When Death Is Near’. In Wolfe J, Hinds P, Sourkes B, Textbook of Interdisciplinary Pediatric Palliative Care: Expert Consult Premium Edition – Enhanced Online Features and Print. (pp. 381)
  4. KORTGARDEN:雙人掀床,kimstad淺乳白色」IKEA臺灣版官網(Accessed on 01 OCT 2022)
所有討論 1

0

1
0

文字

分享

0
1
0
大象你的鼻子怎麼伸得這麼長?因為多功能皮膚也能伸展!
Peggy Sha
・2022/08/24 ・1627字 ・閱讀時間約 3 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

「大象~大象~你的鼻子怎麼那麼長?」

在象鼻皺皺的皮膚下面,隱藏著超強伸展力。 圖/envatoelements

喬治亞理工學院(Georgia Institute of Technology)最新的研究發現,大象皺巴巴的「皮膚」竟然隱藏著超強的「伸展之力」,跟肌肉簡直就是完美搭檔。有了隱藏的伸展力,大象就能夠加倍發揮象鼻的各種功能,還能將象鼻伸得更長、更遠!

又硬又軟的萬用工具!象鼻究竟有多強?

象鼻實在是非常神奇的存在,它擁有超過四萬條肌肉,既能柔軟靈活地捲起水果和樹葉,又能強悍地打斷樹幹、抵禦攻擊。究竟它為何能這樣「又硬又軟」靈活切換呢?

神奇的象鼻,靈活地就像大象的手一樣。 圖/GIPHY

為了深入探索象鼻的秘密,研究團隊特別跑去亞特蘭大動物園(Zoo Atlanta),設置了高速攝影機,紀錄下非洲大象用象鼻拿取食物的過程。

乍看之下,軟軟的象鼻似乎就像我們的舌頭一樣,是充滿肌肉的無骨組織。然而,它真正派上用場時,可一點兒也不像舌頭呢!透過鏡頭,研究人員發現:象鼻頂部底部的運動狀況完全不一樣。當大象伸長象鼻時,象鼻外側的延伸能力比內側強多了。仔細看看畫面,就能發現外側的象鼻其實伸得更長!

非洲象用象鼻拿取食物的過程。影/Georgia Tech College of Engineering

秘密就在皮膚裡!打開皺紋發揮伸展之力吧!

至於兩邊的長度為何會有如此大的差距呢?秘密原來就藏在象鼻的皺褶中!研究團隊解剖了大象屍體,發現象鼻外側與內側的皮膚非常不同——象鼻外側那摺疊起來的皮膚,比另一側的皮膚多出了約 15% 的彈性。

更有趣的是,大象移動象鼻的方式,跟章魚觸手這種軟趴趴器官常用的「平均伸展大法」十分不同,象鼻伸展時就像是打開了一把折疊傘,內部是固定的,而傘面則可以向外變寬、延伸。不只如此,大象們還會如同開折傘一樣「分批運動」象鼻喔!

怎麼說呢?牠們運用象鼻時,會先探出頂端,然後視需求一節一節依序運用後面的肌肉,不到萬不得已,絕對不會動到靠近身體這側的肌肉群!學者們表示,大象之所以會這樣動,是因為象鼻前端部分的肌肉量較少,動起來也比較不費勁,而大象其實就跟人類一樣懶,當然是追求越省力越好囉!

在拿取東西時,象鼻會由前往後一節節伸展。圖/envatoelements

借我學一下啦!皺褶象皮竟能應用在機器人身上?

另一方面,象鼻上這些皺巴巴的皮膚其實也十分堅硬,能起到重要的保護作用。比如說,在關節部分,一般肌肉容易拉伸,甚至拉傷,但如果有了皺褶,則需要花上整整 13 倍的力量才能拉伸。

這樣的保護力有什麼用呢?在未來,或許可以應用在仿生機器人身上喔!許多仿生機器人都會設計液壓系統,雖然十分靈活,但施力時卻也非常容易斷裂。如果我們能在機器人身上添加一些皺巴巴的皮膚,不僅能提供更強大的保護力,也讓機器人在運用上出現更多不同的可能性。

參考資料

  1. Skin: An additional tool for the versatile elephant trunk
  2. Schulz, A. K., Boyle, M., Boyle, C., Sordilla, S., Rincon, C., Hooper, S., Aubuchon, C., Reidenberg, J. S., Higgins, C., & Hu, D. L. (2022). Skin wrinkles and folds enable asymmetric stretch in the elephant trunkProceedings of the National Academy of Sciences of the United States of America119(31), e2122563119. https://doi.org/10.1073/pnas.2122563119
  3. How Skin Helps Elephants Move and Twist Their Trunks
  4. 動物奇門功夫.象鼻神奇構造
Peggy Sha
69 篇文章 ・ 387 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

7

8
5

文字

分享

7
8
5
為何哺乳類顏色不能像鳥類與爬蟲類一樣豐富——著色的演化生物學
森地內拉_96
・2022/06/20 ・7268字 ・閱讀時間約 15 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

長期以來,動物著色策略一直都是博物學家和哲學家感興趣的話題,甚至在 2000 多年前亞里士多德的《動物史》中也早已出現過相似的議題[34]。在過去的幾個世紀中,科學家們開始認真探索動物顏色是如何產生的[45],並闡明它們可能的功能[11, 12, 57]

其中哺乳類的顏色一般都被認為是比較單調的[8],印象中雖然有看過五色鳥、變色龍和箭毒蛙等顏色鮮豔的動物了,但相比之下五顏六色的哺乳類確實難以想像,這不禁讓人思考是不是有哪些演化環節造成如此的差異?

本篇文章將以多元的觀點作切入,一步步探討為什麼哺乳類著色(coloration)會不夠豐富,並且梳理其中相關議題的脈絡。

什麼影響著色策略?

首先釐清這個問題必需要分成幾個層次。

  • 發色機制

除了生物螢光(biofluorescence)外,所有動物顏色都是由兩種主要機制所產生的:(1) 色素著色以及 (2) 結構著色[16]

舉例來說,藍色顏料在自然界其實是稀缺的,大部分鳥類的藍色羽毛(如台灣藍鵲)就是利用結構著色,而不是藍色色素[2, 35, 42]

其中生物色素如類胡蘿蔔素(carotenoid),吸收光譜約為 400–500nm,能在動物體內產生紅色至黃色,而黑色素在所有可見波長範圍內都表現出高吸光度,真黑素(eumelanin)產生黑色至金色;棕黑素(phaeomelanin)產生淡黃色至淡紅色[21, 28, 36]

而不同於其他脊椎動物,目前除了洪都拉斯白蝙蝠Ectophylla alba能夠在皮膚中累積類胡蘿蔔素以外[22]大部分哺乳類都只能在皮膚與毛髮中產生黑色素[7]

  • 視覺系統

再來必須意識到的是,我們人類所感知到的顏色與其他動物自己所感知到的顏色是兩回事。

生物的體色對於各式各樣的行為和演化研究非常重要,這些信號包括隱蔽(crypsis)、擬態(mimicry)、警戒色(warning coloration)、花果著色以及雌雄二型性(sexual dimorphism)[4, 18]

對於這些特徵來說,真正重要的是這些信號的目標受眾的色覺(color vision),無論是捕食者、傳粉者還是潛在配偶等[23]。所以有人就認為顏色不是物體的固有屬性,而是能感知它的生物體視覺系統屬性[17]

換句話說,根據動物光感受器的吸收光譜的不同,從物體反射的波長光譜將被感知為不同的顏色[17, 24]。而關於色覺的差異,不同種類的視蛋白(opsins)就代表著不同的吸收光譜,然而在當代主要脊椎動物群中,四種視蛋白(代表四色視覺)是廣泛存在於各種鳥類、魚類和爬蟲類中的,但意外的是大部分哺乳類卻是雙色視覺[6]

重要的演化事件——夜行瓶頸(nocturnal bottleneck)

所以是什麼造成哺乳類與鳥類、爬蟲類的視覺差異?

  • 時間背景

時間拉回到 2.5 億年前左右,哺乳動物最早是從三疊紀的獸孔目祖先演化而來,根據對化石證據的分析推斷,這些幾乎是夜行性的小型食蟲動物[31],關於這個現象有些議題會專注於討論視覺[50, 58],而有些會談地更全面[48, 60]。具體的夜行瓶頸假說最初是由Menaker等人制定[20, 43],內容主要是推測一些類哺乳爬蟲類動物(合弓綱)在 P/Tr 事件(二疊紀/三疊紀滅絕事件)中倖存下來,並大約發展了 1.45 億年後形成了所謂的「中生代哺乳類(圖1)

  • 生態背景

夜行瓶頸假說認為早期哺乳動物在中生代期間會面臨到日行性爬蟲類(主龍類,如恐龍)的競爭[10, 29, 43, 58],而這一系列的適應性變化使早期哺乳動物能不用受太陽輻射和環境溫度的限制下在夜間進行活動,並促進其內溫系統的發展[23]。相對地,長期適應夜間活動可能使光感受器(photoreceptor)發生巨大變化,包括未充分利用之光感受器功能與紫外線保護機制的喪失[23]

(圖 1)夜行瓶頸時序圖。灰色色塊代表時間範圍,三角形表示演化輻射。P/Tr 代表二疊紀/三疊紀滅絕事件;K/Pg 表示白堊紀/古近紀滅絕事件,P/Tr 與 K/Pg 之間代表中生代(Mesozoic)的範圍。獸孔目(therapsida);合弓綱(synapsids);蜥型綱(sauropsida);主龍類(archosaur)。圖/參考資料 23
(圖 2)五個視蛋白基因家族的光譜敏感範圍。圖/參考資料 30
(圖 3) 視蛋白基因家族譜系。綠色是視覺感受;藍色是非視覺感受。圖/參考資料 23
  • 視覺光感受系統

視錐細胞(cone cells)和視桿細胞(rod cells)內的感光色素皆是由視蛋白組成,而視蛋白基因可分為五個亞型:(sws1、sws2、rh1、rh2 和 lwS)[13, 59],它們的接收光譜範圍可以參考(圖2)。

儘管可能所有五種視蛋白基因早期都存在於合弓綱中,但隨著真獸下綱(eutherian)的演化輻射,視蛋白基因的多樣性就開始急劇減少了[13]圖1)。首先所有哺乳類祖先都丟失了 rh2 基因,雖然單孔目動物(鴨嘴獸和針鼴等)還是有保留著 sws1 基因,但是卻失去其功能,隨即真獸下綱也丟失了 sws2 基因,只剩 sws1 和 lwS 能表達[13],導致至今大部分的哺乳類都屬於雙色視覺 [14, 56]表1)。

  • 非視覺光感受系統

儘管在整個哺乳動物演化過程中,色覺的變化是被認為神經生態適應最經典的例子之一,但事實上夜行瓶頸在塑造非視覺光感受(non-visual photoreception)方面,也發揮了相當的影響力[23]。其中黑視蛋白 (melanopsin,Opn4) 就扮演了非常重要的角色,它負責晝夜節律的光誘導及調節其他生理反應[23],例如:身體色素沉著的變化[51]、瞳孔收縮[38]、褪黑激素抑制[39]、睡眠誘導[40]及暗光運動[19](dark photokinesis[註2]) 等。

黑視蛋白有 Opn4X 和 Opn4M 這兩種基因(Opn4M 是 Opn4X 的基因重複變體),它們廣泛存在於非哺乳動物脊椎動物中,但 Opn4X 在早期哺乳動物演化中丟失[3, 15](表1)。至於這兩個基因的差異並不明顯,主要在於組職表達模式的不同[26],且至今仍然沒有完全理解為什麼所有現存哺乳動物中保留的是 Opn4M 而非 Opn4X[23]

(表 1)各類群動物的視蛋白存在狀況。左至右:真骨下綱、兩棲類、爬蟲類、鳥類、單孔目、有袋類及真獸下綱。Y代表存在;N代表不存在。圖/參考資料 23

其他哺乳類的著色特例

  • 舊世界猴

約 8–9 千萬年前第一批靈長類動物出現了[5, 54],雖然這些早期靈長類通常也被認為是夜行性的[41],但隨後有許多靈長類動物譜系開始漸漸適應白天活動。直至大約 3–4 千萬年前,不同於其他哺乳類,所有狹鼻小目(catarrhine primates,包含舊世界猴、猿類與人類)都藉由基因重複多產生了一個 LWS 基因[44, 9],而這種革新開始提供靈長類重新擁有了三色視覺的能力。例如山魈因此得以演化出藍色的臉譜,但牠們利用的原理是相干散射(coherently scattering)[49],而不是單純的色素。

2022/07/06 編按:
多出來的 LWS 基因只是感測綠色,和藍色的山魈臉譜沒關係,前後並沒有因果關係。

(圖 4)山魈 。圖/pixabay
  • 能生物螢光的哺乳類

生物螢光簡單來說就是生物將短波長的光吸收後並重新發射成長波長的光,與舊印象不同,有趨勢顯示越來越多哺乳類物種被發現能夠進行生物螢光,雖然生物螢光的生態功能與起源目前還有爭議,但可能與中新世古氣候及物種的生活型態具有密切關係[25]

目前已知的在紫外線下具有生物螢光毛皮的哺乳類物種中,全部都是夜行性的,其中包括:鴨嘴獸[1]、美洲飛鼠屬 ( Glaucomys spp.)[32]、跳兔(Pedetes capensis[46]和一些負鼠科 ( Didelphidae)物種[47]

(圖5)在各種紫外光(385–395 nm)濾鏡下的鴨嘴獸標本。圖/參考資料 1
  • 非洲金鼴

非洲金鼴(Amblysomus hottentotus、Amblysomus septentrionals、Chrysochloris asiaticaEremitalpa granti)是一群撒哈拉以南特有的視力退化食蟲性穴居動物[33],牠們的毛髮具有特殊的虹彩(iridescent),能反射出藍綠色的高光,並且在電子顯微鏡下Snyder等人發現這些槳狀毛髮的超微結構[53],這構造除了能成色外還具有增加毛鱗耐磨性與減少摩擦力等功能,他們假設:因為缺乏視覺能力,非洲金鼴的虹彩既不是性擇的產物,也不可能起到偽裝的作用,唯一的可能就是毛髮在這種結構下能夠幫助非洲金鼴在地下移動時,減少在泥沙中的湍流,而毛髮的虹彩可能就只是演化下的副產品。

(圖5)非洲金鼴及其毛髪電顯圖,左邊是虹彩毛髮;右邊是一般毛髮。圖/參考資料 53

哺乳類的著色並沒有想像中的單調

雖然本篇的先入為主認為哺乳類的著色就是不豐富的,但如果論及花紋以及圖案了話,也有觀點是認為哺乳類的著色其實是很多樣的[8],況且如上面所提及的案例,就算以我們人類的視角,也有越來越多證據顯示某些哺乳類的顏色也沒那麼單調。正如前面所說的對於動物的著色而言,真正重要的是訊息的接受者,所以如果侷限於人類的視角了話,其實是難以了解其全貌的。

最後要提醒的是,即使夜行瓶頸影響了之後哺乳類的視覺系統,很多證據也顯示視覺與著色之間是有共演化關係的,特別是那些具有婚姻色或雌雄二型性的物種,但是對於隱蔽與偽裝色等來說,證據其實是有限的[37,55],更何況有如同非洲金鼴一樣的個案存在[53]。所以總體而言,這算是一個還滿複雜的議題,某些時候在宏觀演化學上不一定有所謂的必然[27],演化並不是說一定會這樣發展或那樣發展,更多的其實是要看這些生物在一定時空間尺度下要如何應對及適應。

註解

  1. 演化輻射指的是一個演化支多樣化的一個過程[52]
  2. 暗光運動指的是動物在缺乏眼睛等感光器官下,所進行的隨機尋光行為[19]

參考資料

  1. Anich, P. S., Anthony, S., Carlson, M., Gunnelson, A., Kohler, A. M., Martin, J. G., & Olson, E. R. (2020). Biofluorescence in the platypus (Ornithorhynchus anatinus). Mammalia, 85(2), 179–181. doi: 10.1515/mammalia-2020-0027
  2. Bagnara, J. T., Fernandez, P. J., & Fujii, R. (2007). On the blue coloration of vertebrates. Pigment Cell Research, 20(1), 14–26. doi:10.1111/j.1600-0749.2006.00360.x
  3. Bellingham, J., Chaurasia, S. S., Melyan, Z., Liu, C., Cameron, M. A., Tarttelin, E. E., Iuvone, P. M., Hankins, M. W., Tosini, G., & Lucas, R. J. (2006). Evolution of Melanopsin Photoreceptors: Discovery and Characterization of a New Melanopsin in Nonmammalian Vertebrates. PLoS Biology, 4(8), e254. doi: 10.1371/journal.pbio.0040254
  4. Bennett, A. T. D., Cuthill, I. C., & Norris, K. J. (1994). Sexual Selection and the Mismeasure of Color. The American Naturalist, 144(5), 848–860. doi: 10.1086/285711.
  5. Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., & Purvis, A. (2007). The delayed rise of present-day mammals. Nature, 446(7135), 507–512. doi: 10.1038/nature05634
  6. Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48(20), 2022–2041. doi: 10.1016/j.visres.2008.03.025
  7. Bradley, B. J., & Mundy, N. I. (2008). The primate palette: The evolution of primate coloration. Evolutionary Anthropology: Issues, News, and Reviews, 17(2), 97–111. doi: 10.1002/evan.20164
  8. Caro, T. (2005). The adaptive significance of coloration in mammals. BioScience 55(2), 125–136. doi: 10.1641/0006-3568(2005)055[0125:TASOCI]2.0.CO;2
  9. Carvalho, L. S., Pessoa, D. M. A., Mountford, J. K., Davies, W. I. L., & Hunt, D. M. (2017). The Genetic and Evolutionary Drives behind Primate Color Vision. Frontiers in Ecology and Evolution, 5(34). doi: 10.3389/fevo.2017.00034
  10. Crompton, A. W. (1980). Biology of the earliest mammals. In K. Schmidt-Nielsen, L. Bolis, & C. R. Taylor (Eds.), Comparative Physiology: Primitive Mammals (pp. 1–12).  New York, NY: Cambridge University Press.
  11. Darwin, C. (1859). On the origin of species by means of natural selection. London, UK: Murray.
  12. Darwin, C. (1871). The descent of man and selection in relation to sex. London, UK: Murray.
  13. Davies, W. I, Collin, S. P., & Hunt, D. M. (2012). Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology, 21(13), 3121–3158. doi: 10.1111/j.1365-294X.2012.05617.x
  14. Davies, W. L., Carvalho, L. S., Cowing, J. A., Beazley, L. D., Hunt, D. M., & Arrese, C. A. (2007). Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology, 17(5), R161–R163. doi: 10.1016/j.cub.2007.01.037
  15. Davies, W. L., Hankins, M. W., & Foster, R. G. (2010). Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochemical & Photobiological Sciences, 9(11), 1444. doi: 10.1039/c0pp00203h
  16. Doucet, S. M., & Meadows, M. G. (2009). Iridescence: a functional perspective. Journal of The Royal Society Interface, 6(Suppl_2), S115–S132. doi: 10.1098/rsif.2008.0395.focus
  17. Endler, J. A. (1978). A Predator’s View of Animal Color Patterns. Journal of Evolutionary Biology, 11(3), 319–364. doi: 10.1007/978-1-4615-6956-5_5
  18. Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41(4), 315–352. doi: 10.1111/j.1095-8312.1990.tb00839.x.
  19. Fernandes, A., Fero, K., Arrenberg, A., Bergeron, S., Driever, W., & Burgess, H. (2012). Deep Brain Photoreceptors Control Light-Seeking Behavior in Zebrafish Larvae. Current Biology, 22(21), 2042–2047. doi: 10.1016/j.cub.2012.08.016
  20. Foster, R. G., & Menaker, M. (1993). Circadian Photoreception in Mammals and Other Vertebrates. Light and Biological Rhythms in Man, 73–91. doi: 10.1016/b978-0-08-042279-4.50009-1
  21. Fox, D. L. (1953). Animal Biochromes and Structural Colours. Amsterdam University Press.
  22. Galván, I., Garrido-Fernández, J., Ríos, J., Pérez-Gálvez, A., Rodríguez-Herrera, B., & Negro, J. J. (2016). Tropical bat as mammalian model for skin carotenoid metabolism. Proceedings of the National Academy of Sciences, 113(39), 10932–10937. doi: 10.1073/pnas.1609724113
  23. Gerkema, M. P., Davies, W. I. L., Foster, R. G., Menaker, M., & Hut, R. A. (2013). The nocturnal bottleneck and the evolution of activity patterns in mammals. Proceedings of the Royal Society B: Biological Sciences, 280(1765), 20130508–20130508. doi: 10.1098/rspb.2013.0508
  24. Gerl, E. J., & Morris, M. R. (2008). The Causes and Consequences of Color Vision. Evolution: Education and Outreach, 1(4), 476–486. doi: 10.1007/s12052-008-0088-x
  25. Gray, R., & Karlsson, C. (2022, February 6). 101 years of biofluorescent animal studies: trends in literature, novel hypotheses, and best practices moving forward. doi: 10.32942/osf.io/ub6yn.
  26. Hauzman, E., Kalava, V., Bonci, D., & Ventura, D. F. (2019). Characterization of the melanopsin gene (Opn4x) of diurnal and nocturnal snakes. BMC evolutionary biology, 19(1), 174. doi: 10.1186/s12862-019-1500-6
  27. Haufe, C. (2015). Gould’s Laws. Philosophy of Science, 82(1), 1–20. doi: 10.1086/678979
  28. Hill, G. E. (2010). National Geographic Bird Coloration (Illustrated ed.). National Geographic.
  29. Hut, R. A., Kronfeld-Schor, N., van der Vinne, V., & de la Iglesia, H. (2012). In search of a temporal niche. Progress in Brain Research, 199, 281–304. doi: 10.1016/B978-0-444-59427-3.00017-4
  30. Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1531), 2957–2967. doi: 10.1098/rstb.2009.0039
  31. Kemp, T. S. (2005). The origin and evolution of mammals Oxford. UK: Oxford University Press.
  32. Kohler, A. M., Olson, E. R., Martin, J. G., & Anich, P. S. (2019). Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). Journal of Mammalogy, 100(1), 21–30. doi: 10.1093/jmammal/gyy177
  33. Kuyper, M. A. (1985). The ecology of the golden mole Amblysomus hottentotus. Mammal Review, 15(1), 3–11. doi: 10.1111/j.1365-2907.1985.tb00379.x
  34. Lennox, J. G. (2002). Aristotle: On the Parts of Animals I-IV (Clarendon Aristotle Series) (1st ed.). Clarendon Press.
  35. Liao, S. F., Yao, C. Y., & Lee, C. C. (2015). Measuring and modeling the inconspicuous iridescence of Formosan blue magpie’s feather (Urocissacaerulea). Applied Optics, 54(16), 4979. doi: 10.1364/AO.54.004979
  36. Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1–F4.3.8. doi: 10.1002/0471142913.faf0403s01 
  37. Lind, O., Henze, M. J., Kelber, A., & Osorio, D. (2017). Coevolution of coloration and colour vision? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1724), 20160338. doi: 10.1098/rstb.2016.0338
  38. Lucas, R. J., Douglas, R. H., & Foster, R. G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neuroscience, 4(6), 621–626. doi: 10.1038/88443
  39. Lucas, R. J., & Foster, R. G. (1999). Neither Functional Rod Photoreceptors nor Rod or Cone Outer Segments Are Required for the Photic Inhibition of Pineal Melatonin*. Endocrinology, 140(4), 1520–1524. doi: 10.1210/endo.140.4.6672
  40. Lupi, D., Oster, H., Thompson, S., & Foster, R. G. (2008). The acute light-induction of sleep is mediated by OPN4-based photoreception. Nature Neuroscience, 11(9), 1068–1073. doi: 10.1038/nn.2179
  41. Martin, R. D., & Ross, C. F. (2006). The Evolutionary and Ecological Context of Primate Vision. The Primate Visual System, 1–36. doi: 10.1002/0470868112.ch1
  42. Mason, C. W. (1923). Structural Colors in Feathers. I. The Journal of Physical Chemistry, 27(3), 201–251. doi: 10.1021/j150228a001
  43. Menaker, M., Moreira, L., & Tosini, G. (1997). Evolution of circadian organization in vertebrates. Brazilian Journal of Medical and Biological Research, 30(3), 305–313. doi: 10.1590/s0100-879×1997000300003
  44. Nathans, J., Thomas, D., & Hogness, D. S. (1986). Molecular Genetics of Human Color Vision: The Genes Encoding Blue, Green, and Red Pigments. Science, 232(4747), 193–202. doi: 10.1126/science.2937147
  45. Newton, I., Cohen, B. I., Einstein, A., & Whittaker, E. (2012). Opticks: Or a Treatise of the Reflections, Refractions, Inflections & Colours of Light-Based on the Fourth Edition London, 1730. Dover Publications.
  46. Olson, E. R., Carlson, M. R., Ramanujam, V. M. S., Sears, L., Anthony, S. E., Anich, P. S., … Martin, J. G. (2021). Vivid biofluorescence discovered in the nocturnal Springhare (Pedetidae). Scientific Reports, 11(1). doi: 10.1038/s41598-021-83588-0
  47. Pine, R. H., Rice, J. E., Bucher, J. E., Tank, D. H. J., & Greenhall, A. M. (1985). Labile pigments and fluorescent pelage in didelphid marsupials. Mammalia, 49(2). doi: 10.1515/mamm.1985.49.2.249
  48. Pough, H. F., Heiser, J. B., & McFarland, W. N. (1989). Vertebrate Life (3rd ed.). Macmillan Coll Div.
  49. Prum, R. O. (2004). Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. Journal of Experimental Biology, 207(12), 2157–2172. doi: 10.1242/jeb.00989 
  50. Schwab, I. R. (2012). Evolutions witness: how eyes evolved. New York, NY: Oxford University Press.
  51. Shiraki, T., Kojima, D., & Fukada, Y. (2010). Light-induced body color change in developing zebrafish. Photochemical & Photobiological Sciences, 9(11), 1498. doi: 10.1039/c0pp00199f
  52. Simões, M., Breitkreuz, L., Alvarado, M., Baca, S., Cooper, J. C., Heins, L., … Lieberman, B. S. (2016). The Evolving Theory of Evolutionary Radiations. Trends in Ecology & Evolution, 31(1), 27–34. doi: 10.1016/j.tree.2015.10.007
  53. Snyder, H. K., Maia, R., D’Alba, L., Shultz, A. J., Rowe, K. M. C., Rowe, K. C., & Shawkey, M. D. (2012). Iridescent colour production in hairs of blind golden moles (Chrysochloridae). Biology Letters, 8(3), 393–396. doi: 10.1098/rsbl.2011.1168
  54. Springer, M. S., & Murphy, W. J. (2007). Mammalian evolution and biomedicine: new views from phylogeny. Biological Reviews, 82(3), 375–392. doi: 10.1111/j.1469-185x.2007.00016.x
  55. Van der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G., & Kelber, A. (2020). Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. Annual Review of Entomology, 66(1). doi: 10.1146/annurev-ento-061720-071644
  56. Wakefield, M. J., Anderson, M., Chang, E., Wei, K. J., Kaul, R., Graves, J. A. M., Grützner, F., & Deeb, S. S. (2008). Cone visual pigments of monotremes: Filling the phylogenetic gap. Visual Neuroscience, 25(3), 257–264. doi: 10.1017/S0952523808080255
  57. Wallace A. R. (1889). Darwinism: an exposition of the theory of natural selection with some of its applications. London & New York: Macmillan.
  58. Walls, G. L. (2016). The Vertebrate Eye and Its Adaptive Radiation (Classic Reprint). Fb&c Limited.
  59. Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research, 19(4), 385–419. doi: 10.1016/S1350-9462(00)00002-1
  60. Young, J. Z., & Nixon, M. (1991). The Life of Vertebrates (3rd ed.). Oxford University Press.
所有討論 7
森地內拉_96
4 篇文章 ・ 12 位粉絲
總覺得自己是理組中的文科生,一枚資工念一半就轉去生科的傻白甜。 關注於生態、演化生物學、生物多樣性及動物行為等議題,想要把自己的想法與接受到的新知傳達給大家,所以就開始嘗試寫科普......