Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

玻璃透光的奧祕-《10種物質改變世界》

天下文化_96
・2015/10/24 ・3422字 ・閱讀時間約 7 分鐘 ・SR值 487 ・五年級

玻璃為何如此神奇,竟然會是透明的?光為何能穿透這種固體,其他物質為何無法讓光穿過?玻璃的組成原子明明和沙子一模一樣,為什麼沙子不透明,玻璃卻能透光和屈折光線?玻璃(和其他一些材料)是由矽原子和氧原子組成。原子中央為原子核,包含質子和中子,周圍是數量不一的電子。比起原子的尺寸,原子核和電子都微不足道。假設原子是一座體育場,原子核就是場中央的一顆豆子,電子就是周圍看台上的沙粒。因此,原子內部(應該說所有物質內部)幾乎都是空的。換句話說,原子應該有許多空隙能讓光穿透,不會撞到電子或原子核,而事實也是如此。因此,真正的問題其實不是「玻璃為什麼是透明的?」而是「為何不是所有物質都是透明的?」

原子,PanSci
原子的內部幾乎是空的。Source: 10種物質改變世界

讓我們繼續使用體育場的比喻。在原子體育場內,電子只能占據看台上的某些位子,就好像大多數座位都移走了,只剩下幾排留著,而每個電子只能待在指定好的某一排。電子若想升等到更好的位子,就得多付錢,而所謂的錢就是能量。光穿透原子時會帶來大量能量,只要量夠,電子就會用它升等到更好的位子,也就是會把光給吸收,使光無法穿透物質。

不過,事情還另有蹊蹺。光的能量必須恰到好處,讓電子可以從現在的位子跳到其他空位上。能量太小,拿不到前一排的位子(也就是到前一排所需的能量太高),電子就無法升等,光也就不會被吸收。電子必須取得恰到好處的能量,才能在不同排的位子間(稱為能態)移動,這是原子世界的基本法則,稱為量子力學。排與排之間的落差是特定的能量值,稱為量子。玻璃裡的量子排列方式與眾不同,使得移動到空位的能量高於可見光,因此可見光無法讓電子升等座位,於是能直接穿過原子。這就是玻璃透明的原因。然而,紫外線之類的高能光就能讓電子升等,因此無法穿透玻璃。這就是為什麼玻璃能防曬,因為紫外線根本無法穿透玻璃碰到我們。木頭和石塊之類的不透明材質,擁有大量的便宜座位,因此可見光和紫外線都很容易被吸收。

就算光沒被玻璃吸收,穿過原子時還是會受到影響而減慢速度,直到穿出玻璃的另一面後才會回復原速。若光以斜角進入玻璃,由於光的各組成元素(單色光)進出玻璃的時間不同,使得各色光在玻璃內的前進速度產生差異。這個速度差會讓光折屈,也就是折射。光學鏡片就是依據折射原理製作的。鏡面弧曲會讓不同角度的入射光以不同角度折射,只要控制鏡面曲度就能放大影像,讓人類得以製作顯微鏡和望遠鏡,也讓戴眼鏡的人能看清楚東西。

-----廣告,請繼續往下閱讀-----
眼鏡,PanSci
眼鏡利用凹透鏡發散光線的性質,讓物體能成像在近視者的視網膜上。Source: wiki/Hackfish

玻璃推動科學進展

控制鏡面曲度的更深遠影響,是讓光變成了可實驗的對象。玻璃工匠在幾百年前就已經發現,陽光以某個角度穿透玻璃時,會在牆上形成迷你彩虹,卻一直無法解釋其原因,只能看圖說故事,推斷顏色是在玻璃內形成的。要到 1666年科學家牛頓發現看圖說故事是錯的,並提出正確的解釋,世人才終於明白背後的道理。牛頓的天才之處在於發現稜鏡不只能讓「白光」變成七彩色光,還能反轉整個過程,把七色光回復為白光。於是他推論,玻璃產生的七種色光其實一開始就在光裡。這些色光混成一道光線,從太陽直射而來,進入玻璃後才又各自分散。光穿透水滴會造成迷你彩虹,也是同樣的道理,因為水也是透明的。牛頓就這樣一舉破解了彩虹的祕密,成為提出彩虹原理的第一人。

Light dispersion of a mercury-vapor lamp with a prism made of flint glass
三稜鏡能將白光分成不同色光是因為不同波長的光在玻璃中的速度不一樣。Source: wiki/D-Kuru

利用實驗替彩虹找出合理的解釋,不僅展現了科學思考的威力,也凸顯了玻璃對科學實驗及破解宇宙奧祕的貢獻。並且玻璃的功勞可不僅限於光學,化學更是因它而改頭換面,得到的幫助比任何學科都大。只要走一趟化學實驗室就能明白,玻璃的透明與惰性,讓它非常適合用來混合化學物質和觀察反應。在玻璃試管發明之前,化學反應都在不透明的燒杯裡進行,因此很難看到過程變化。有了玻璃這種材質,尤其是派熱司( PYREX)玻璃問世之後,化學總算進階成為一門有系統的科學。

派熱司玻璃是加了氧化硼的玻璃。氧化硼分子和氧化矽分子一樣,很難形成結晶,更重要的是玻璃加了它會抑制熱脹冷縮。玻璃溫度不均時,不同部位的脹縮速率不同,會彼此擠壓,在玻璃內部形成應力,產生裂痕最後導致破裂。要是玻璃瓶裡裝的是沸騰的硫酸,瓶子碎裂還可能讓人殘廢甚至死亡。硼矽玻璃(派熱司是商標名稱)的出現讓玻璃的熱脹冷縮從此絕跡,也連帶去除了應力,讓化學家可以隨意加熱或冷卻化學物質,專心研究化學現象,不必擔心可能的熱衝擊。

實驗器材,玻璃,PanSci
派熱司玻璃較一般玻璃更不易熱漲冷縮,讓化學家使用玻璃器材操作反應時,不必擔心玻璃碎裂爆炸。Source: wiki/Tweenk

玻璃還讓化學家只用噴燈就能彎曲試管,製作複雜的化學器具(例如蒸餾瓶和氣密容器)也容易許多,讓他們可以隨心所欲蒐集氣體、控制液體和操弄化學反應。玻璃器材是化學家最聽話的僕人,好用到專業的化學實驗室都至少有一台吹玻璃機。有多少諾貝爾獎是玻璃從旁邊推了一把?又有多少現代發明萌生於小小的試管裡?玻璃技術是否推動了十七世紀的科學革命,兩者是不是簡單的因果關係,目前還未有定論。玻璃看來更像是必要條件,而非充分條件。但有一點毋庸置疑,就是東方忽視了玻璃整整一千年,而玻璃卻在這段時間徹底改變了歐洲人一項最寶貴的傳統。

-----廣告,請繼續往下閱讀-----

玻璃揭開啤酒的面紗

雖然有錢人幾百年前就開始用玻璃杯喝紅酒,但啤酒直到十九世紀之前,都還是用不透明的容器,如瓷杯、錫杯和木杯等來飲用。由於大多數人都看不見自己喝的酒是什麼顏色,因此只在乎啤酒的味道,對啤酒的色澤也就不太在意。當時啤酒大多是深棕色且很混濁,但到了 1840年,現屬捷克的波希米亞地區發明了大量製造玻璃的方法,使玻璃造價降低許多,於是啤酒都能用玻璃杯盛裝。酒客終於見到自己喝的啤酒是什麼模樣,結果卻常常大失所望:所謂的頂層發酵啤酒不僅味道各異,顏色和透明度也不一樣。但不出十年,捷克的皮爾森地區就開發出了色澤較淡的底層發酵啤酒,外觀金黃澄澈,而且和香檳一樣也有氣泡。這就是窖藏啤酒。窖藏啤酒不只好喝,而且好看,它的金黃色澤也一直延續到現在。諷刺的是,這麼適合用玻璃杯品嘗的啤酒,現代人幾乎都用鋁罐喝,而一般人常用玻璃杯喝的啤酒,反倒是最不透明的啤酒。它是玻璃杯出現之前就有的古董:健力士黑啤酒

健力士黑啤酒,PanSci
健力士黑啤酒。Source: wiki/Liftarn

用玻璃杯喝啤酒還有一個意料之外的副作用。據英國政府統計,每年遭到酒杯或酒瓶攻擊的人數超過五千,消耗健保費用超過二十億英鎊。雖然不少酒館和夜店嘗試過許多種的塑膠杯,這些塑膠杯同樣透明堅固,卻始終不成氣候。

用塑膠杯喝啤酒跟用玻璃杯喝,感覺完全不同。塑膠不僅味道不同,而且熱傳導係數較低,使它在口中感覺比玻璃溫暖,降低了暢飲冰啤酒的快感。此外,塑膠還比玻璃柔軟許多,因此很快就會失去光澤、滿布刮痕、不再透明,不僅會遮住啤酒的亮眼色澤,還會影響我們對杯子乾不乾淨的觀感。玻璃的一大魅力就是它外表晶瑩剔透,就算有髒汙也感覺乾淨,讓我們願意接受集體催眠,不去想這酒杯可能一小時前才碰過別人的嘴。

 

10種物質改變世界,PanSci本文摘自《10種物質改變世界》,由天下文化 出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

5
1

文字

分享

1
5
1
史上最早金屬吸管——5000年前一組8人喝啤酒?
寒波_96
・2022/02/07 ・3857字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

湖中女神:「請問你掉的是金吸管,銀吸管,還是紙吸管?」
考古學家:「我只要塑膠吸管,塑膠吸管是人類最偉大的發明。」

前幾年台灣政府限制使用塑膠吸管後,好些人響應環保號召,隨身攜帶金屬吸管。最近有論文報告,發現已知最古老的金屬吸管,以高貴的金、銀打造,距今有 5000 年之久。古代人使用金屬吸管的目的當然不是環保,是享樂。

啤酒 8 人一桶,保證群聚感染。圖/參考資料 1

超過一公尺的金屬管,是權杖還是吸管?

這批「吸管」出土於北高加索的梅科普遺址(Maikop),而且早在公元 1897 年就重現於世。它們來自一座豪華墓葬(kurgan),是豐富陪葬品的一部分。照現代的認知,這座墓葬距今約 5000 年,被歸類為青銅時代早期。

墓中陪葬的金屬長管共有 8 根,擺在長眠的墓主附近。它們由金、銀打造,金屬原料被打薄成大薄片,再捲起來成管狀。每根長度 112 公分,直徑約 1 公分,管壁厚度介於 0.27 到 0.70 mm,重量約 200 公克。

梅科普遺址出土,由金、銀製成,長度超過一公尺的「權杖」?圖/參考資料 1

超過一公尺的金屬管並非一體成型,而是多段組合而成。4 根包含較短的二或三段銀管,其中 2 根上有小隻銀牛的雕像裝飾;另外 4 根則包括金管和銀管,其中 2 根上有金牛雕像。金牛與銀牛皆為實心,長度 7 到 9 公分,中間穿孔插在管上,可以滑動調整位置。

-----廣告,請繼續往下閱讀-----

一開始挖掘的考古學家,聖彼得堡大學的 Nikolai Veselovsky 判斷,這組金屬管是古代大人物用的權杖,後來還有其他學者提出不同見解,覺得是出巡用大棒棒之類的(法西斯?)。但是他們都無法解釋,為什麼權杖要大費周章做成空心的。

新發表的論文認為應該是「吸管」,使用時過濾器方向朝下,可移動的金牛、銀牛是倒立的。圖/參考資料 1

新發表的論文則提出幾點證據,認為這組「權杖」應該是吸管,目的是讓大家一起吸啤酒。如此判斷的證據,來自與中東地區考古的比較。

咕咕咕咕嘟嘟嘟嘟,用吸管逸樂的歷史

啤酒的歷史也許非常早。早於植物被馴化,農業誕生、人類定居形成農村以前,黎凡特(現今的以色列、黎巴嫩與周圍一帶)的納圖夫文化(Natufian)疑似已經有人發酵穀物,釀造啤酒。反正酒的歷史,淵遠流長。

至於吸管的歷史,不可考。用管子吸液體,應該不是太難的發明,但是如果以麥稈、蘆葦等材質作為吸管,幾乎不可能留下考古紀錄。

如今已知最早的吸管並非實體,而是留在印章上的圖案,來自伊拉克北部的 Gawra XII,以及伊朗西部的 Chogha Mish 這些位於中東的遺址,超過五千年。

-----廣告,請繼續往下閱讀-----
1 是烏爾王室墓葬中,以吸管共享飲料的圖像;2 是普阿比女王墓葬中,包金的蘆葦吸管;3 是普阿比女王墓葬中,包金和青金石的銀西管;4 是 Tell Asmar 出土的過濾器; 5 是敘利亞的 Chagar Bazar 出土的過濾器。圖/參考資料 1

六千年前過後,美索不達米亞的蘇美等古文化,漸漸發展出初步的古文明,也顯現出逸樂的跡象。幾處距今 4000 多年的貴氣墓葬,描繪宴會的場景中,可以見到一群人用長吸管喝飲料。

蘇美人常用的吸管材質應該是蘆葦,也有豪華版的包金蘆葦。烏爾(Ur)的普阿比女王(Queen Puabi)距今約 4600 年的華麗墓葬中,便出土金箔包覆的蘆葦桿,長度 124 公分、直徑 1 公分。另外還有 2 根類似的吸管,一根銅製,另一根銀製,上頭包金,2 根都有青金石裝飾。

烏魯克(Uruk)等地,則出土過吸管上的動物裝飾小雕像。

梅科普遺址出土金屬長管的一截尖端,推測是浸入啤酒中,作為過濾器使用。圖/參考資料 1

和普阿比女王墓葬同時期的 Tell Asmar 留下一組飲用設備,包括碗、長管、過濾器。過濾器通常為銅製的窄椎體,安裝在蘆葦吸管的前端,浸入液體過濾啤酒中的雜質,可以拆卸重複使用。

一組八人咕咕咕咕咕咕咕咕,第九個人沒酒喝!?

上述位於今日伊拉克境內的多處遺址,出土的長管們,可以肯定作為吸管之用,它們的型態和北高加索的金屬長管十分相似。

-----廣告,請繼續往下閱讀-----

另外北高加索的金屬管內,疑似作為過濾器的部分,也發現裡頭殘留大麥澱粉顆粒和植物矽酸體(phytolith)。綜合推論,這組金屬管應該也是作為吸管使用,曾用於吸食啤酒。

梅科普遺址出土,1 是銀製過濾器;2、3 為大麥的澱粉顆粒;4 為椴樹(lime tree)的花粉粒;5 為穀物的植物矽酸體。圖/參考資料 1

早在公元 1897 年便被發掘的梅科普遺址,後來成為廣布北高加索地區,梅科普文化的代表性遺址。此一文化介於新石器時代晚期(或銅石並用時期)到青銅時代早期,過去常認為以畜牧業為主要生產方式。

然而該遺址其實也出土大量石製鐮刀、儲存容器,這些都是農業生產的特徵。當時的人,無疑具備用大麥等穀物釀酒的條件。

超過一公尺的金屬吸管如何使用?參考距今 4000 年左右,敘利亞的 Tell Bagüz 遺址的狀況,論文推測可能是將 8 支吸管插在大酒桶裡,同時讓 8 個人圍一圈一起喝酒(第 9 個人沒酒喝!),是宴會的項目之一。

梅科普遺址的吸管上的金牛、銀牛。圖/參考資料 1

考慮到不少吸管是陪葬品,而葬禮是人類最重要的聚會形式之一,古人也可能會在葬禮中痛飲一輪,再把吸管組陪葬。不論如何,這都是某種享受與奢華的展現。

穿越文明疆界的啤酒社交風俗

這類社交場合,也伴隨體液交流,可想而知是群聚感染的溫床,不過當然不能用現代公衛標準要求古代人。

-----廣告,請繼續往下閱讀-----

另一點有趣的是,要用超過一公尺的吸管吸到啤酒,肺活量想必不能太差;比起倒出來用酒杯痛飲,吸管的飲酒效率應該差很多,為什麼不倒出來喝呢?(想想李白用吸管啜飲美酒的畫面……好違和)

位於北高加索的梅科普,距離當時美索不達米亞的文明中心有段距離,兩地卻存在一樣的共享啤酒文化。圖/修改自 google map

我猜有個可能理由是促進社交,辦流水席吃吃喝喝,是不同時空的文化,維繫組織運作的一大共通手段。大家圍一圈喝酒,人際交流的意義不遜於飲酒本身(8 個人同時吸一大桶酒,佔著位置不吸大概也不會被發現,嘻嘻),這樣設計的目的,也許本來就是避免參與者喝的太多、太快,而忽略社交。

有趣的是,長吸管共飲是四、五千年前,中東文化發達地區流行的風尚。以中東古文明的視角觀之,距離數百公里的高加索北部可謂化外之地,但是這批邊緣人也存在使用金、銀吸管的風俗(順帶證實他們金屬加工的手藝相當優秀),與中東文明中心類似。啤酒文化的交流與傳播,顯然能穿越空間的阻礙。

延伸閱讀

參考資料

  1. Trifonov, V., Petrov, D., & Savelieva, L. (2022). Party like a Sumerian: reinterpreting the ‘sceptres’ from the Maikop kurgan. Antiquity, 1-18.
  2. Oldest known drinking straws identified

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

10
6

文字

分享

1
10
6
玻璃碎滿地怎麼辦?掃一掃再回收啊!它是「碳中和」的送分題
暐恩咖啡_96
・2021/12/16 ・3220字 ・閱讀時間約 6 分鐘

過去十年是人類史上最熱的日子,且全球海平面上升速度加快至原來的近 3 倍 [1],氣候變遷不是未來式,而是現正「熱」映中。

若地球再升溫攝氏 1.5 度,氣候的變化可能變得無法挽回,而且上升的海平面將會入侵沿海城市與人口稠密的平原區,人類生存將會面臨很大的挑戰,為了避免如此巨大的災難,IPCC 訂定了全球行動基準:2030 年前,全球碳排放量需減半[2],時限只有不到十年的時間。

可是人類的所有的活動,都會或多或少造成二氧化碳排放,難道真的要靠薩諾斯彈個手指消滅一半的人類嗎?粗暴的行為 duck 不必!我們只需要將「碳中和」的概念貫徹於生活中就可以了。

本圖為過去三十年全球表面平均溫度值,可以看出全球溫度明顯上升。圖/WIKIPEDIA

先談談什麼是「碳中和」

碳中和(carbon neutrality),是指通過使用低碳能源取代化石燃料、植樹造林、節能減排等方法,抵銷各種產品或活動造成的二氧化碳排放,實現正負抵消,達到相對「零排放」的做法。

-----廣告,請繼續往下閱讀-----

一般常見的做法有兩種:

  • 建立碳補償系統。例如:透過植樹造林、購買再生能源憑證[註1] ,從大氣中移除因為某項產品或活動造成的碳排放量。
  • 使用低碳或零碳排的技術。例如使用再生能源(如風能和太陽能),而非化石燃料,以避免因燃燒化石燃料而排放二氧化碳到大氣中。
利用風力發電等再生能源來替代火力發電,能夠相對減少碳排放量。圖/Pexels

但無論是碳補償系統或是再生能源產業,都還需要花很長的時間來建設,那麼,有什麼是我們在日常生活中可以落實的?——有的!那就是玻璃回收。

玻璃:完全可再生利用的材質

玻璃是將石英(SiO2,砂的主要成分)混合了定量的碳酸鈉與碳酸鉀後,在 1,500 °C 熔煉爐中燒製而成的,是一種透明、高硬度的材料,具有成分安定的特性,所以許多化學會使用玻璃瓶來盛裝。

但也是因為不易腐化的特性,如果將廢玻璃作為垃圾處理,無論是掩埋或是焚化,都無法很有效的處理廢玻璃,玻璃碎片將成為土壤中難以分解的物質。

-----廣告,請繼續往下閱讀-----

但這也不是什麼難解的問題,因為玻璃是一種可以完全再利用及再生的材質,可以被再製成各類玻璃產品或玻璃原料,具有一定的回收價值。

玻璃主要回收方式有兩種:

  • 原型利用:將使用過的玻璃容器或產品直接回收再利用,不經由粉碎等過程,常見於玻璃容器回收。
  • 粉碎玻璃粒料再利用:將使用過的玻璃產品,回收後經由清洗、粉碎、去除雜質後,製成可供再次熔煉的玻璃粒料,常見於平板玻璃的回收。

其中「原型利用」是最簡單又最能有效減碳的再利用模式,像是台灣菸酒公司及台灣青島啤酒公司針對其所使用的啤酒瓶等容器,透過回收瓶費制度及逆向回收系統,將收回的玻璃酒瓶經清洗與高溫消毒處理後,就可以重複裝填啤酒等產品。

玻璃酒瓶很適合「原型利用」的回收方式,原酒廠只要將瓶子回收、清洗後,就能再次利用了。圖/Pixabay

生產新玻璃,加熱原料「碳排量」極高

若是生產全新的玻璃瓶,在加熱原料時需要燃燒天然氣來達到高溫,這個步驟佔玻璃製造碳排放量的 75% 至 85%,其他的排放量大多是來自於原料之間化學反應的副產物[3]。與之相比起來,「原型利用」幾乎是零碳排的作法,也是最節省成本與材料資源的好方法。

-----廣告,請繼續往下閱讀-----

即使是難以直接再利用的平板玻璃,粉碎後重新煉製成玻璃也能大量減少碳排放量,因為融化碎玻璃所需要的溫度較低,能減少燃料的使用,而且碎玻璃融化時,不會像石英沙等原材料釋放二氧化碳,從而減少碳排放量。

根據歐洲容器玻璃聯盟 (FEVE) 的說法,與完全由原材料製造玻璃相比,熔爐中每使用 10% 的回收碎玻璃,可減少 5% 二氧化碳排放量[3],若再參照我國行政院環境保護署網站資訊,台灣的玻璃製造廠使用的原料中,回收碎玻璃約佔 50%[4],換算下來約能減少 25% 的碳排量。

除此之外,粉碎玻璃粒料還可以作為玻璃瀝青、透水磚等環保建材的材料。然而這種回收難度不高、用途又廣泛的材料,在大多數國家卻仍當作垃圾掩埋,為什麼?

利用回收碎玻璃重新燒製成玻璃產品也能減少許多碳排放量。圖/Pexels

美國玻璃回收率僅 31%,算是放牛班

歐洲是少數妥善回收玻璃的地區,也是全球回收玻璃的領頭羊,所有 27 個歐盟成員國以及英國,已經回收了境內四分之三的容器玻璃,並且每個新的玻璃製品使用了約 52% 的回收材料,而且他們還希望做到更好,當地的玻璃容器業有一個宏大的願景:希望能在 2030 年以前將容器玻璃收率達到 90%。

-----廣告,請繼續往下閱讀-----

與歐洲相比,美國的消費習慣與環保概念仍十分落後,根據美國國家環境保護局(Resources in Traditional Chinese Language)的數據,僅 2018 年美國就把 700 萬噸玻璃當作垃圾掩埋了,佔所有固體城市垃圾的 5.2%,僅有 31% 的玻璃容器被回收。

幸好,還是有部分區域自發性的在為玻璃回收做出貢獻,像是有美國維吉尼亞州阿靈頓郡的玻璃包裝協會,他們正努力趕在 2030 年前將玻璃容器回收比例提高到 50%;而南非的玻璃回收公司(Glass Recycling Company),成功將整個南非的玻璃回收率從 2005-06 年的 18% 提高到 2018-19 年的 42%。

但在其他開發中國家——例如在中國、巴西或印度,沒有公佈明確的回收現況報告或者未來的計畫,然而這些國家也有著巨大的生產力與消費力,環保永續的未來必須要大家一同參與,否則是對寶貴資源的巨大浪費。

垃圾, 废金属, 浪费, 环境污染, 金属, 环境保护, 环境, 玻璃回收利用, R, 所作, 瓶子, 处置
環境是大家共享的,保護環境的責任也是。圖/Pixabay

玻璃是透明的,但不能視而不見地埋起來

從工業革命開始,人類不斷的使用石化燃料、排放溫室氣體,未來十年內,二氧化碳就會達到足以改變氣候的濃度,放縱的消費習慣是該懸崖勒馬了。

-----廣告,請繼續往下閱讀-----

玻璃是必不可少的材料,我們當然可以繼續使用,只需要確保它被正確地回收再利用,而不是被埋進垃圾場裡,就能大大減少製造過程所產生的二氧化碳,邁向循環永續的綠色供應鏈。

就讓我們從玻璃回收再利用開始做起,讓回收玻璃成為「碳中合未來」的敲門磚!

註解

註 1:再生能源憑證是再生能源電力生產的證明,通常以度或千度電量為單位,在憑證上會紀錄這批電力的發電方式、生產地點及生產時間,並透過國家認可的第三方認證,證明你買到的是純綠電,也稱綠電憑證。造成碳排的一方可以購買再生能源憑證,等於是將自己產出的碳排放量交由再生能源業者回收。

  1. 聯合國氣候變遷最新報告顯示全球氣溫上升速度快過預期
  2. 碳中和
  3. Nature : Glass is the hidden gem in a carbon-neutral future
  4. 行政院環境保護署 生活廢棄物質管理資訊系統
  5. IPCC https://www.ipcc.ch/sr15/
  6. 認識再生能源憑證
  7. 永續發展從哪裡來能往哪裡去?減碳還不夠,下一站是「碳中和」
  8. 資源回收網- 材質專區
  9. 升溫逼近關鍵的1.5度,IPCC釋出最新氣候報告
  10. 氣候變化:九張圖看懂全球變暖和你我的關係
  11. 維基百科 玻璃
-----廣告,請繼續往下閱讀-----
所有討論 1
暐恩咖啡_96
3 篇文章 ・ 0 位粉絲
一入生科 一生科科 我是說熱愛科普啦~ 努力將科學知識 譜寫成大家都能會心一笑的文章