0

8
3

文字

分享

0
8
3

沒看過打不壞的木製球棒?最新「加工法」讓木材硬度堪比金屬!

Rock Sun
・2021/11/19 ・2152字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

如果今天你想要好好的切食物,該用什麼樣的刀呢?

大家馬上想到的,應該不外乎就是金屬或是陶瓷吧?自古以來要製作工具,這兩個材料一定是首選,直到當代貪圖方便而使用的塑膠刀叉之外,好像想找不太到其他更好的替代方案了。

但是最近,有一群研究人員打破了大眾的想法和材料科學的界線——用木頭製作的刀來取代金屬。

10 月 20 號,這一群來自馬里蘭大學的材料科學家們在期刊《Matter》上發表了一種全新的加工方法,可以把跟木材大幅強化,製作成餐刀等工具。這把刀的硬度不只跟一般的牛排刀不相上下,可以輕鬆地切開 8 分熟的牛排,還可以多次使用、洗滌、有效的回收再利用,整個產品製造過程的能源消耗也比金屬或陶瓷低非常的多,有望在未來取代這類餐具。

經過最新加工方法製成的木材,所製作出的餐刀可比不鏽鋼材質的更加鋒利。圖/Pixabay

比金屬和陶瓷更環保的選擇:木材

當你環顧生活周遭需要以「堅硬」為訴求的材料,你會發現它們大部分都是人造或經過加工的,因為想製作堅硬的物品,最怕的就是整個物理結構上有裂痕、中空或缺口等等瑕疵,只要有以上任何一種,工具的耐久度就無法維持多久,然而天然材料通常都有這種缺陷,例如木頭內部會有中空導管,石頭內則會有導致它容易剝落或裂開的天然紋理。

所以物質多半都都需要經過高溫冶煉才能夠成為堅硬的材料,例如光是製造陶瓷,就需要將陶土加熱到幾千度的高溫,而在這個講求環保的時代,有時候又要考慮產品的碳足跡……不用說,從地球土壤中開採鐵礦和陶土所耗費的能源,絕對與使用天然材質相對多很多。

所以這群研究人員把腦筋動到了陪伴原始人類到現在、樸實無華的木頭身上,他們覺得人類還沒發揮木頭 100% 的能力。

一般的木材在結構上有裂痕、中空或缺口等等瑕疵,無法加工成非常堅硬的工具。圖/Pixabay

請給我木材!人類尚未 100% 發揮它

好幾千年來,人類就不斷地想在木頭身上動手腳,但是在工具和建築上,木頭的加工通常只限於蒸氣曲木和壓縮法,用這種方法處理的木頭都會有個問題,在一段時間過後,木頭本身會有些許的回彈(定型)。

要知道為什麼就得先了解木頭!

木頭最主要的成分是纖維素,雖然平常可能無感,但纖維素其實有相當高的強度與密度比,表面上看起來是一個輕量又堅固的超理想材質,只看數字的話,甚至凌駕於大部分的高密度建築材料如水泥、金屬等等。但是我們目前加工木頭的方式,都無法把木材的材料潛力發揮到極致,部分是因為纖維素其實只佔了木材的 50%,除此之外還包含半纖維素、木質素等物質,這些聚合物主要是作為介質,而非提供強度,但如果將這些東西去除掉,整個木頭結構會變得容易崩壞。

所以研究團隊找到了方法,移除木頭內比較脆弱的物質,但是仍保留纖維素的結構,這個技術可以把原本木材的硬度整整強化 23 倍,並打造出比不銹鋼刀還鋒利 3 倍的餐刀。

蒸氣曲木加工法,將木材放在充滿蒸氣的箱子內彎曲,能加工出優美的弧線。圖/WIKIPEDIA

兩步驟加工:讓「普通木材」變「超硬木材」

第一步是將木頭浸泡在添加了特定化學物質的水中,並加熱到攝氏 100 度,以去除部分木質素。失去木質素的木材會變得較為柔軟、具有彈性甚至還會黏稠;以往的木材加工通常不會將這個方法用在木材上,除了如上述提到的結構問題外,還會有使用溶劑的毒性問題,但研究人員研發出了毒性較低、還能重複使用的溶劑。

第二步是對木頭進行高溫加壓,去除水分並讓其材質更為緻密,確保不會有結構上的缺陷,連樹木中原本被導管佔用的空間都能夠去除。

藉由這兩個步驟,他們有辦法去除木頭原本的結構問題,而經過這樣處理後的木頭還可以裁切成想要的形狀,然後再塗抹礦物油延長壽命、也隔絕水分讓纖維素不要再吸水,以免洗滌餐具降低刀子的鋒利程度。

將木材加工為「超硬木材」的實驗步驟。圖/參考資料 1

木材應用百百種!「五金材料」的新未來?

同樣的手法可以用來製作其他工具,例如和金屬釘子一樣堅硬的木頭釘子,一樣可以釘穿 3 塊木板,但是好處是木頭釘子不會有生鏽的問題,除了釘子之外,還有很多東西可以用這種木頭材質製作,例如更耐用的木頭地板。

儘管目前這個技術的使用還只是存在於實驗室環境中,但是不可否認的是,我們還沒有發揮木頭百分之百的實力,只要這個技術成熟,加上樹木可以種植並回收的特性,在未來每個人都可以分配到的超級強化木材資源或許可以凌駕於金屬,或只是打造出打不壞的木製球棒、堅不可摧的小木屋、輕量化的木頭汽車和飛機、或者是一把堪比鋼刀的超強木刀。

阿銀,你的木刀原來是這麼來的啊 ?

參考資料

2021,《Hardened wood as a renewable alternative to steel and plastic

文章難易度
Rock Sun
62 篇文章 ・ 586 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

0

3
0

文字

分享

0
3
0
CO2 不是廢物!以嶄新材料推進人造光合作用——林麗瓊專訪
鳥苷三磷酸 (PanSci Promo)_96
・2022/03/22 ・5496字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

  • 2017 年「台灣傑出女科學家獎」傑出獎第十屆傑出獎得主

在辛亥路側的臺灣大學凝態科學研究中心,曾為中心主任的林麗瓊帶著我們上上下下好幾層樓,如數家珍地說明各設備的能耐,以及學生要如何經過她紮實訓練跟親自審查才能上機。「還有好多,今天沒時間看」,站在她稱為「起家本」的第一台自製反應爐旁,她說當年太貪心,加了多個 Port,增加了殘餘氣體吸附而使樣品被污染的風險。然而這台由她自己設計、自己到工廠請人開模製作的機器,在她細心調教跟利用下,創造了許多研究突破。我們請林麗瓊與這座別具意義的反應爐一起合照,她則邀請在旁的學生 Suman 一起入鏡。

來自伊朗的 Suman 她選擇來台灣學習,一方面是因為台灣是個很安全的地方,另一方面就是因為林教授是很棒的楷模。「那你會在台灣待到什麼時候?」我問,她回說「這要看我什麼時候拿到博士學位。」「那就是要看林教授囉?」「不是,是要看她自己何時取得足夠的進展。」林麗瓊笑著說這句話,也透露出她指導學生的方法:不由上而下決定主題,讓學生自由探索、從好奇心出發。

回到辦公室,林麗瓊從玻璃櫃中拿出一幅裱框的照片,裡頭是朵特別的玫瑰。「本來該長成平的、漂漂亮亮的磊晶,結果長成一朵花。」

林麗瓊教授與我們分享學生的作品——〈Formosa Nano-Rose〉

拿著學生的「作品」,她笑說通常學生若做出這樣的磊晶應該要挨罵才對,然而學生發揮想像力,將奈米尺度的不規則形狀染上玫瑰紅,參加美國材料學會(Materials Research Society)年度的科學即藝術(Science as Art)競賽,拿到首獎,還有外國人寄信來,希望能取得圖片,用來求婚。

在林麗瓊經營帶領下,聚集多國、多領域人才的研究團隊看似和樂輕鬆,其實他們正探索一個可能改變人類未來的終極領域:光觸媒。

光觸媒的莫大潛力

如果要列出如今人類面對的最大挑戰,抑制二氧化碳排放、讓空氣中的二氧化碳量回到 350 ppm 的安全水平以下,不讓氣候危機加劇,肯定是其一。(順帶一提:2021 年 的 1 月是 413 ppm 上下。來源) 

就算逐步淘汰煤炭跟天然氣,改成再生能源發電,我們的生活依舊仰賴大量的石油化學產品,大氣跟海洋中依然有過量的 CO2,種樹也難趕上森林被砍伐跟遭野火肆虐的速度。然而林麗瓊另闢蹊徑,從拿手的材料科學著手,正研究如何將二氧化碳還原成低碳氫比燃料,關鍵就在於高效能的光觸媒。

這當然不是林麗瓊一開始就研究的主題。她於 1989 年取得哈佛大學應用物理博士學位後,馬上被美國奇異公司研發總部材料研究中心延攬為終生聘雇研究員,也是當時該研究中心唯一的亞裔女性。那時她加入的團隊裡有物理學家、化學家、電子電機工程師等,研究的主題從飛機引擎到核能電廠五花八門,例如他們開發新型飛機引擎的材料跟設計,讓飛行速度更快、更省燃料。

1994 年回台後,她返台主持凝態中心的尖端材料實驗室。「一開始做鑽石薄膜,後來做奈米碳管、奈米線、石墨烯。」開發這些碳基的低維度奈米材料,並使其展現出新奇特性是她的拿手絕活。既然現在二氧化碳成了眾矢之的,那就換個角度,把它從廢物變寶物吧!

「如果只是要把二氧化碳轉化成低碳氫比的燃料,或是高工業價值的原物料,方式不只有光觸媒,用電催化也可以。」林麗瓊表示電催化成熟度比光催化高,發展歷史久,但是腐蝕容易造成污染,而且 CO2 與水的溶解度低、需要額外耗電,因此不見得是最佳選項。若採用光觸媒,只要將工廠的排氣經過導管收集,將 CO2 分離,進入可以接受光照的反應爐,搭配適當的材料(如金屬氧化物),就能產生光催化效應,把 CO2 變成甲醇、甲烷、乙醇、乙烷、乙醛等。

「關鍵步驟就是那個材料的觸媒,它的催化功能性要夠,那怎樣功能性才會夠?這就有我們做材料的人可以玩的空間。」林麗瓊表示這樣的材料須具備半導體特性,也就是其特有的「能待結構」或「能階」,能接受光子的能量而激發,同時「能隙」不能太大也不能太小。目前已經商用的材料為二氧化鈦(TiO2),然而其吸收光需要 3.2-3.4 電子伏特(eV)的能量,也就是得用波長很短的紫外光,限制了發展。 因此她將重點放在找尋能夠吸收可見光的材料與最佳結構,提升轉化效率。「可能是1.7、1.8(eV)是最好的……就同樣一個材料,它本質可能是 1.5 eV,但位置不對,所以我們就想辦法做一些缺陷工程啊、做一些參雜、複合的結構。」

這樣的材料在吸光後會產生電子電洞對,林麗瓊生動地形容「要活活的」,才能跟二氧化碳與水起反應。意思是說這材料得身兼多職,先吸可見光、然後拆解電子電洞對,傳達到表面後,能接著活化其實很穩定的二氧化碳,再加上水氣才有可能轉化成甲醇等產物。即使是同一個氧化亞銅,他們也發現邊邊角角的活性才高,「所以就有辦法跟 CO2 招手,黏住又不能太黏喔!太黏 CO2 不跑啦!就把活性點通通給蓋住蓋死了。」

為了讓二氧化碳若即若離、欲迎還拒的戲碼能在奈米尺度上演,身為導演兼製作人的林麗瓊與團隊花了大把工夫選角(材料),如今已獲得初步的成果。

「在產量上,雖然還不是很高,但是有機會到 1% 了。假以時日,push 到 10%,應該是有機會」。她表示儘管還需要很多努力,而且後續也還有產物選擇性與分離的課題,但一關一關解,就能將二氧化碳變成原物料,邁向循環經濟「零廢物」的目標。

林麗瓊表示反應過程中的產物分析、以及反應控制的關鍵機制需要徹底釐清,才能知道到底材料的「什麼」在做出貢獻,例如是形狀、是位置、是大小、還是其他性質?她用各種技術來監測,將這過程比喻為「盲人摸象」,得一片一片摸熟了才能前進。雖然離製程成熟跟產業化還有很長的路,她發現這個領域受關注跟投入的程度在全球都大大提升,從她剛開始時一年不超過 50 篇研究,到現在每年破千篇。

從半導體、光電、能源材料、奈米薄膜到光觸媒,研究範圍廣泛的林麗瓊笑稱自己喜新厭舊又隨性,但萬變不離其宗:「我們就是玩材料的,我們玩得很開心啊!」

Welcome to the jungle 

外表溫和沈著、說話總是體貼地再三確認我們能否理解的林麗瓊,得過台灣與世界各國的獎項,也曾被選為美國材料學會董事會成員,曾任眾多知名學術期刊、專書的編輯與學術會議的主席,成就非凡。然而正如她研究的光觸媒,對於許多學生來說,她也是一位如光般賦予能量、催化著他們的觸媒。

林麗瓊坦言自己「鍛鍊很久」,努力學習理解各種關係必然遇到障礙,有時轉個彎就撥雲見日的道理。她不會給剛進門下的學生太明確、太細節的題目,而是讓他們先朝一個方向探索看看,約略三個月後再請他們提出 Proposal,她就在這段時間內觀察新學生與其他同學的互動,了解其性格,能力,再依此給出建議。

她將自己在美國奇異公司研發總部任職時學到的團隊合作方式,帶入自己的實驗室。「有的人性格像獅子、有的像兔子。但不能都一直是獅子或兔子」她順著學生的性格,鼓勵其發揮,但也鼓勵他們學習彼此的優點,懂得變換。

她說有些學生活動力很強,坐不住,沒辦法一直待在機器前;反過來有些學生開工之後,一天不去開機就覺得不舒服,連機器壞了也不肯停。但就是這樣不同的性格,獲得了意想不到的發現。雖然有時會建議學生互相合作,但她的安排也不一定成功,反而是讓資深的、主導性強的學生們發展、組隊,結果更好。她則透過每週定期的 Group meeting 發揮觸媒的作用,激發團隊成長。「我關心他們怎麼發展,可是絕對不強迫。有點黏又不會太黏。」她微笑說。

是傑出科技人,也是女人

2017 年得到第十屆「臺灣傑出女科學家獎」時的林麗瓊,已得過科技部傑出獎、教育部學術獎與國際上的諸多不分性別的榮譽,對於冠在科學家獎前的「女」字,很高興能獲得肯定,也自覺要承擔更多責任。然而在 30 年前,類似的經歷曾經困擾過她。

當她被奇異聘為終生職研究員時,她在哈佛的一位韓國同學則失之交臂,扼腕地對她說「都是因為妳是女生啦。」林麗瓊覺得自己夠認真、夠努力,當然有資格加入頂尖的企業。但反過來說,那位韓國同學也很認真、很努力,所以……是臨場表現有差別?還是真的因為她是女性而成了保障名額?

「不瞞你說,這的確是很矛盾、很複雜的一種心理。」她說:「如果只是因為我是女生,這個對我很傷啊!是不是?」後來在物理學會女性工作小組內討論這種「肯定」時,她漸漸想通,認為即使有這種可能,她也要勇敢去爭取,放下不舒服的感覺,不要覺得自己是被憐憫、被施予,而是要當第一個衝破現況者,別人才有機會跟上。

「有一些東西是非常根深蒂固的,男生女生都是這個文化的受害者。」她分享自己剛加入奇異公司的一段經歷:當時懷第二胎的她,發現好幾個月都沒有被分配到任務,也沒有被安排出差到工廠幫現場面臨的挑戰找題目。於是她鼓起勇氣去問經理,經理反而愣住,回答說就是因為知道她懷第二胎,家裡還有一個兩歲孩子,怎麼能讓她做這些又累又辛苦的事?

這樣的善意跟體貼,若說是歧視,林麗瓊認為就太重了,但結果卻幽微地害她投閒置散。於是她向經理明確表示自己先生非常支持,而且有保母能照顧小孩,承接任務沒有問題,才改變了這種不利自己發展的狀況。

「我自己覺得物理並沒有性別的問題,覺得好玩又可以發揮,學科本身不會阻擋女生。那是我們的環境嗎?還是什麼?」物理學界的女性比例「是可怕的低」,林麗瓊說大學部其實有 20-30% 是女生,研究所也可能還能維持 10-20%,但到教職就不到 5%。她認為這個現象不能簡單歸因,需要抽絲剝繭。舉例來說,由於她與先生(陳貴賢,中研院原子與分子科學研究所研究員)密切合作,剛回國任教提交計畫書審查時,曾被問「貢獻到底在哪裡?」但同樣的問題,她先生卻不會被問。她認為審查者不見得有意打壓,而是文化養成的習慣。要讓其他人知道自己有真功夫,需要一段不短的時間,她已十年沒被這樣問了,但的確成了女生額外要處理的。

得獎後,她參與台灣萊雅與吳健雄學術基金會合辦的高中女性科學教育巡訪計畫,每年都與許多年輕學生面對面交流,座談時間常互動熱烈到讓她趕不上搭車時間。透過這個獎跟活動,能讓許多學生有個學習楷模,提出心中的問題,幫她們去除刻板印象,其實讓她備感欣慰。她甚至因此收了高中生來實驗室實習,但她強調來的高中生得要「玩」、藉實習想像未來的生活,而不是為參加科展得名而來。

對林麗瓊來說,大她四屆,同樣就讀臺大物理系的四姐是最接近的楷模,也因此她學習科學一路以來備受鼓勵而沒受阻礙。另外,曾返台演講的吳健雄則是她朝聖的偶像,曾親睹吳健雄在新竹演講風采的她說自己非常震撼。後來與自己的大哥討論該不該朝物理學邁進時,大哥對她說「吳健雄不就是物理學家嗎?為什麼不呢?」她也因此非常感激。

她給予學生的力量,也承襲自她在哈佛的指導教授 Frans Spaepen。她記得在考慮該留在哈佛做博後,還是去產業界資源豐沛的實驗室時,Spaepen 教授對林麗瓊說,若她能留下來當博後,他會很高興,但不必將哈佛當作第一或是唯一的選擇,該把握機會到外頭更大的世界看看。這番話讓她至今銘記於心,也一直將這種「不為自己設限」的理念傳達給每一位學生。

「你覺得你的興趣在哪、你的才能在哪,就走走看,不要劃地自限。刻板印象是別人的刻板印象,若連自己都有刻板印象,當然就沒救。」身為物理學界的頂尖女性科學家,林麗瓊參與、籌辦了不少推動女性加入科研領域的工作,例如與物理學會女性工作委員會籌拍《物理好丰采》影片,協助成立臺灣女科技人學會等。她說,每個人有各自的問題,但有些問題有共通性,就該以團體的名義來爭取。

例如她參與的物理學會女性工作委員會曾以團體名義向國科會提案,讓有生產事實的女性研究者在提出研究計畫時,可以將過去七年內的發表成果納入,而不是原本的五年,否則女性研究者很容易因為生兒育女放慢進度而被系統性地歧視、或是擔心可能耽誤發展而乾脆不生育。

林麗瓊認為自己沒有天花板,但她不能代表所有女性研究者,因此「如果有需要去衝破的,一起去衝破吧。」她說。

台灣傑出女科學家獎邁入第 15 年,台灣萊雅鼓勵女性追求科學夢想,讓科學領域能兩性均衡參與和貢獻。想成為科學家嗎?妳絕對可以!傑出學姊們在這裡跟妳說:YES!:https://towis.loreal.com.tw/Video.php

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

鳥苷三磷酸 (PanSci Promo)_96
154 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

8
4

文字

分享

2
8
4
機器學習 × 鈣鈦礦材料:讓 AI 設計太陽能電池!
研之有物│中央研究院_96
・2022/03/09 ・6280字 ・閱讀時間約 13 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|簡克志
  • 美術設計|林洵安

機器學習輔助材料設計

為了 2050 淨零排放的目標,太陽能發電為不可或缺的再生能源之一,其中「鈣鈦礦太陽能電池」是近年最熱門的研究領域,不僅成本低廉、光電轉換效率也可達到 25%。然而,鈣鈦礦材料在環境中容易降解,影響使用壽命。材料科學家為了做出效能好又穩定的鈣鈦礦「料理」,無不卯足了勁,替這道菜加上各種「食材」,但是越複雜的菜,調出好味道就越困難。人腦畢竟有限,如果交給機器呢?中央研究院「研之有物」專訪院內應用科學研究中心包淳偉研究員,他與團隊訓練了一套機器學習模型,可以又快又準的找出複雜鈣鈦礦材料的最佳化條件!

「鈣鈦礦太陽能電池」是近年最熱門的研究領域,不僅成本低廉、光電轉換效率也可達到 25%。圖/Wikimedia Commons

光電好夥伴:複雜鈣鈦礦材料

對太陽能電池來說,鈣鈦礦材料具有優異的光電性質和低生產成本,近年也廣泛應用在 LED、雷射、光感測器和光觸媒。

鈣鈦礦是什麼呢?最初是指鈣與鈦的氧化物 CaTiO3,而現在常講的「鈣鈦礦材料」為一種統稱,泛指擁有相似結構的金屬鹵化物材料,通式為 ABX3。要調配出優秀的鈣鈦礦材料並不容易,科學家必須像大廚一樣,運用各種「食材」煮出 ABX3

鈣鈦礦材料 ABX3 的結構示意圖,同一個位置可以放入不同的相應元素。資料來源/Journal of Energy Chemistry

鈣鈦礦材料 ABX3 的「食材」有哪些?

  • A 的位置:可放入 +1 價的有機或無機陽離子,例如甲胺(CH3NH3+,簡稱 MA)、甲脒(HC(NH2)2+,簡稱 FA)或銫離子(Cs+)。
  • B 的位置:可放入 +2 價的無機金屬陽離子,通常是鉛離子(Pb2+)。
  • X 的位置:可放入 -1 價的鹵素陰離子,如碘(I)、溴(Br)、或氯( Cl)離子。

由於鈣鈦礦材料在環境中容易降解、影響使用壽命。研究發現,添加多種有機和無機離子的鈣鈦礦太陽能電池可大幅提升性能和穩定性,因此科學家為了調配出最好的鈣鈦礦材料,加料不手軟,成份也愈來愈複雜。

在眾多複雜鈣鈦礦材料中,包淳偉研究員探討的是 MAyFA1−yPb(BrxI1−x)3 ,下標符號 y 和 1-y 表示相對含量,如果 MA 佔 60%、FA 就是 40%,因為 MA 和 FA 會競爭同一個位置;同理 Br 和 I 亦然。

圖片為鈣鈦礦材料通式 ABX3 對應到混合離子鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 之示意圖。圖/研之有物

問題來了,MAyFA1−yPb(BrxI1−x)3 這個材料這麼複雜,比例要怎麼配比較好呢?「你累積的經驗越多,你就猜得越準」,包淳偉說道。

2016 年曾經有國外團隊為了找出離子濃度配方與 MAyFA1−yPb(BrxI1−x)3 元件性能的關係,不惜花重本「土法煉鋼」,分別將兩組相對含量 7 等分(0, 1/6, 2/6, 3/6, 4/6, 5/6, 1),做出 49 種不同的鈣鈦礦太陽能電池,再去測量光電轉換效率,得出最佳比例為 MA2/6FA4/6Pb(Br1/6I5/6)3 。

然而,爲何這樣的濃度配方可以得到最佳元件呢?很遺憾的,實驗團隊由於實驗表徵手段的限制,並不能解答這個重要的基礎問題。因此,實驗團隊仍然需要學生們焚膏繼晷地爆肝,用試誤法(trial and error)把最佳配方「踹」(try)出來。

國外團隊為了找到 MAyFA1−yPb(BrxI1−x)3 最佳比例,做出 49 種不同的鈣鈦礦太陽能電池,黃框處即為最佳比例。左圖為相應濃度的元件外觀,右圖為相應濃度的材料表面微結構。資料來源/Energy & Environmental Science

不過,一直反覆試誤並非好方法,畢竟每做一次實驗就是一次成本。因此,科學家也設法從理論模擬著手,包淳偉強調「模擬的好處是可以在電腦空間中創造一個最純淨的系統。」,而原子尺度模擬,更可以達到原子級的解析度,提供許多實驗無法量測的資訊。

要如何模擬一個材料系統?

材料科學注重製程(Process)、性質(Property)和結構(Structure)之間的關係。當我們對結構不夠瞭解時,往往只能透過不同的製程參數,慢慢做出我們想要的性質,可能在失敗多次之後,才能抓到一些訣竅。

理論模擬幫助科學家在做出樣品之前,先建立能量模型,找出能量最低、最穩定的微結構。當我們了解結構之後,可以避免有問題的製程參數設定,進而得到較好的材料性質。

首先,如果要知道材料性質,有個最精準也最耗時的方法:「第一原理計算」,只用量子力學原理,從頭開始把原子間的作用力和能量計算出來。

因為計算繁瑣,應用上只能模擬 1 奈米以內(10-9 公尺)的三維材料,抓到數個皮秒(10-12 秒)內的原子狀態,若再往外擴展所耗費的時間和成本難以想像。

相對地,計算材料性質也有省時省力的方法:「分子動力學模擬」,運用古典的牛頓力學,搭配統計力學去計算系統的微觀結構和能量。

分子動力學模擬大約可以模擬 100 奈米內的三維材料,抓到數個微秒(10-6 秒)內的原子狀態,可模擬的系統尺寸和時間都比第一原理計算要來得多!可惜準確度對於現在化學組成高度複雜的新穎材料而言是一個極大的挑戰。

有沒有一種方法,可以做到又快又準呢?有有有!它就是近年大熱門的「機器學習」!

圖/研之有物
第一原理計算僅適合用在 1 奈米以內尺度,計算準確耗時;分子動力學模擬可用於 100 奈米尺度,計算省時卻不夠精準;透過機器學習建立的神經網路模型,可以快速模擬 100 奈米尺度的材料,也保留高準確度。資料來源/包淳偉

時間就是金錢,請愛用機器學習!

當包淳偉看到 2016 年國外團隊的 MAyFA1−yPb(BrxI1−x)3 鈣鈦礦研究之後,他認為「結構」這塊還有很多地方可以討論,如果透過理論模擬,先找出最低能量的微結構,或許就能更有效率地探索離子濃度空間,找出決定最佳配方的關鍵要素!

由於第一原理計算和分子動力學模擬都不夠好用,包淳偉就將念頭轉到近年熱門的「機器學習」,他和團隊就先從簡單的 PbI2 開始,慢慢做到複雜的鈣鈦礦材料。一開始包淳偉的團隊使用布朗大學開發的原子尺度機器學習套件(Atomistic Machine-learning Package, AMP)來進行訓練與測試,然而,由於 AMP 套件性能無法達到預期,包淳偉團隊就走上了自行開發機器學習分子動力學模擬程式的不歸路。

訓練神經網路模型時,包淳偉採用第一原理計算的結果當作機器學習素材,並設計函數進行反饋校正,直到預測的原子能量誤差遠小於熱擾動。

這套神經網路模型如何運作?先輸入原子座標(位置向量 r),再換算成「原子指紋」(特徵向量 G,表示該原子與其他原子之間獨一無二的相對關係),之後透過神經網路,快速輸出整個材料系統的原子能量和作用力。

從輸入到輸出,要模擬原子走一個步階(註 1)有多快?假設以 2000 顆原子的計算量來看,自行開發的機器學習方法只要約 0.1 秒,第一原理計算則要花費 3 小時,足足快了十萬倍(註 2)!

包淳偉與團隊成功訓練出可以模擬複雜鈣鈦礦材料系統的神經網路模型。資料來源/包淳偉
此神經網路模型可以準確預測 MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料的系統能量和受力。縱軸表示包淳偉團隊的神經網路模型模擬結果,橫軸表示第一原理計算結果。資料來源/包淳偉

AI 告訴我們什麼?

包淳偉團隊成功訓練出來的神經網路模型,可以在 2,000 顆原子左右的材料系統上進行數百萬種可能的原子排列採樣,並計算出複雜鈣鈦礦材料的最低能量結構,模擬出不同原子在材料中最穩定的位置、它們的振動,以及它們受到擠壓時會怎麼跑。

多虧了神經網路的快速計算,即使是 MAyFA1−yPb(BrxI1−x)3 這麼複雜的系統也能處理,跑了將近 1 百萬次結構模擬,得出不同成份比例下 81 種最低能量的微結構(如下圖),這是第一原理計算絕對跑不出來的成果。

MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料的最低能量原子結構,縱軸 y 為 MA 濃度(CMA,從 MA0-FA1到 MA1-FA0),橫軸 x 為 Br 濃度(CBr,從 Br0-I1 到 Br1-I0),各自 9 等分。為求圖片簡潔,省略 x, y = 0 或 1 的結構圖。資料來源/包淳偉

找出系統最低能量的原子組態還不夠,包淳偉團隊想要進一步檢驗鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 是否能穩定地保持混合狀態,因此計算不同濃度成份下的離子混合能 Emix(如下圖)。

  • 混合能是負的,表示系統會傾向混合在一起,這也是材料學家想要的微結構,系統會維持單一固溶相,原子和原子之間「和平共處」。
  • 混合能是正的,表示系統會傾向分離成不同成分的「相」(Phase),材料不能保持穩定的混合狀態,會析出相異固溶相,產生許多缺陷。
MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料的混合能 Emix分布,藍色表示混合能為負(維持單一固溶相),紅色表示混合能為正(析出相異固溶相),可以看到 Br 和 MA 濃度高的時候,容易析出化合物。其中,縱軸 y 為 MA 濃度(CMA),橫軸 x 為 Br 濃度(CBr)。資料來源/包淳偉

從 MAyFA1−yPb(BrxI1−x)3 混合能分布初步來看,Br 濃度(CBr)或 MA 濃度(CMA)越高的時候,混合能就越高,系統越容易析出相異的固溶相。

除了混合能之外,研究團隊更進一步檢驗了不同濃度成份下的其他結構參數,例如短程有序參數 αA-B(正值表示 A-B 析出;負值表示 A-B 混合)、晶格扭曲 ηs(shear strain)與晶格畸變 ηv(volumetric strain),觀察析出化合物時,是否真的會改變晶格的幾何結構。

為了將模擬結果和實際情況對照,包淳偉再將模擬出來的結構以第一原理計算出不同濃度成份下的材料能隙(Eg),以及用內差法比對 2016 年國外團隊的實驗數據,得出不同濃度成份下的元件短路電流(Jsc)和光電轉換效率(power conversion efficiency, PCE)。

有了這些關鍵數據,我們終於可以完成鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 優化製程參數的最後一哩路!

鈣鈦礦材料設計最佳化!

還記得我們一開始跑模擬的目標嗎?幫助研究團隊在花大錢做實驗之前,先找出最穩定的結構,從結構參數回推好的製程參數,進而得到較好的材料性質。

那麼要如何把這麼多參數的相關性一網打盡呢?有個好工具叫「皮爾森相關性矩陣」(Pearson correlation matrix)

MAyFA1−yPb(BrxI1−x)3 鈣鈦礦材料透過機器學習方法模擬之後,計算出性質參數(Eg、Jsc、PCE)、結構參數(Emix、α、ηs、ηv)與製程參數(CMA、CBr)與之間的相關性。其中,r 為相關係數,紅色正值表示兩者正相關,藍色負值表示兩者負相關。資料來源/包淳偉

上圖的矩陣整合了結構參數、製程參數與性質參數的相關性。這張表格要怎麼解讀呢?

首先看結構參數,混合能(Emix)越高,晶格扭曲(ηs)程度越大,MA 和 FA 不互溶,Br 和 I 也不互溶,鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 不能保持穩定的混合狀態。

再來看製程參數和結構參數,Br 的濃度(CBr)和 MA 的濃度(CMA)越高,晶格扭曲明顯增加,使得混合能越高。尤其是 Br,Br 加得越多,MA 和 FA 不互溶,Br 和 I 也不互溶,容易析出其他固體相,在材料中引入缺陷。

最後看性質參數與結構參數,會發現混合能越高,光電轉換效率(PCE)和元件短路電流(Jsc)越差。

因此,如果要提升光電轉換效率,必須降低 Br 和 MA 的摻雜濃度來減少晶格扭曲,以降低混合能,使得 MA 和 FA ,Br 和 I 都能充分混合,讓析出物和缺陷減少。使電流傳輸時不會受到材料缺陷或晶界的阻礙,光電轉換效率才會好。

要做出好的鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 必要條件之一:「降低 Br 和 MA 的摻雜濃度,盡量讓材料維持單一固溶相」。

這就是理論模擬的科學力量,預先評估一款材料設定的製程參數好不好。如果要透過實驗方法窮舉出上述的最佳化原則,不僅金錢花費巨大,時間成本也相當高。

包淳偉與研究團隊透過近年熱門的機器學習技術,建立了模擬材料系統的神經網路模型,因為神經網路快速運算的特性,大幅降低花費時間和成本,並且模擬結果相當準確。

包淳偉團隊從簡單的化合物模擬開始,終於在 2021 年成功發表複雜鈣鈦礦材料 MAyFA1−yPb(BrxI1−x)3 的最佳化條件,成果發表在權威期刊《Journal of Physical Chemistry Letters》。

目前除了繼續改善神經網路模型之外,也開始和其他國外研究團隊合作解決混合複雜元素的材料系統問題,例如高熵合金。最近包淳偉團隊與香港研究團隊在《自然》期刊發表了一種超彈性高熵合金,而包淳偉團隊也正在使用機器學習輔助原子尺度模擬來研究它有趣的塑性變形性質。

要做出好的材料,結構、製程與性質缺一不可,機器學習輔助的模擬方法可以幫助科學家快速找到最低能量的結構,這是傳統模擬方法無法做到的。

目前除了繼續改善神經網路模型之外,最近包淳偉團隊與香港研究團隊在《自然》期刊發表了一種超彈性高熵合金,而包淳偉團隊也正在使用機器學習輔助的原子尺度模擬來研究它有趣的塑性變形性質。圖/研之有物

註解

  • 註 1:原子走一個步階的意思是:原子從某個位能井跳到下一個位能井。
  • 註 2:此為研究團隊早期模擬 MAPbI3 的成果,之後的神經網路模型效率更好。

延伸閱讀

  1. 機器學習與材料廚神的神祕Recipe
  2. 應用人工神經網路勢能場研究複雜鈣鈦礦材料微觀結構
  3. 見微知著─分子模擬的應用
  4. A highly distorted ultraelastic chemically complex Elinvar alloy
  5. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells
  6. Is machine learning redefining the perovskite solar cells?
  7. Microstructure Maps of Complex Perovskite Materials from Extensive Monte Carlo Sampling Using Machine Learning Enabled Energy Model
  8. Molecular Dynamics Simulation for All
所有討論 2
研之有物│中央研究院_96
253 篇文章 ・ 2202 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
1

文字

分享

0
3
1
史上最早金屬吸管——5000年前一組8人喝啤酒?
寒波_96
・2022/02/07 ・3857字 ・閱讀時間約 8 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

湖中女神:「請問你掉的是金吸管,銀吸管,還是紙吸管?」
考古學家:「我只要塑膠吸管,塑膠吸管是人類最偉大的發明。」

前幾年台灣政府限制使用塑膠吸管後,好些人響應環保號召,隨身攜帶金屬吸管。最近有論文報告,發現已知最古老的金屬吸管,以高貴的金、銀打造,距今有 5000 年之久。古代人使用金屬吸管的目的當然不是環保,是享樂。

啤酒 8 人一桶,保證群聚感染。圖/參考資料 1

超過一公尺的金屬管,是權杖還是吸管?

這批「吸管」出土於北高加索的梅科普遺址(Maikop),而且早在公元 1897 年就重現於世。它們來自一座豪華墓葬(kurgan),是豐富陪葬品的一部分。照現代的認知,這座墓葬距今約 5000 年,被歸類為青銅時代早期。

墓中陪葬的金屬長管共有 8 根,擺在長眠的墓主附近。它們由金、銀打造,金屬原料被打薄成大薄片,再捲起來成管狀。每根長度 112 公分,直徑約 1 公分,管壁厚度介於 0.27 到 0.70 mm,重量約 200 公克。

梅科普遺址出土,由金、銀製成,長度超過一公尺的「權杖」?圖/參考資料 1

超過一公尺的金屬管並非一體成型,而是多段組合而成。4 根包含較短的二或三段銀管,其中 2 根上有小隻銀牛的雕像裝飾;另外 4 根則包括金管和銀管,其中 2 根上有金牛雕像。金牛與銀牛皆為實心,長度 7 到 9 公分,中間穿孔插在管上,可以滑動調整位置。

一開始挖掘的考古學家,聖彼得堡大學的 Nikolai Veselovsky 判斷,這組金屬管是古代大人物用的權杖,後來還有其他學者提出不同見解,覺得是出巡用大棒棒之類的(法西斯?)。但是他們都無法解釋,為什麼權杖要大費周章做成空心的。

新發表的論文認為應該是「吸管」,使用時過濾器方向朝下,可移動的金牛、銀牛是倒立的。圖/參考資料 1

新發表的論文則提出幾點證據,認為這組「權杖」應該是吸管,目的是讓大家一起吸啤酒。如此判斷的證據,來自與中東地區考古的比較。

咕咕咕咕嘟嘟嘟嘟,用吸管逸樂的歷史

啤酒的歷史也許非常早。早於植物被馴化,農業誕生、人類定居形成農村以前,黎凡特(現今的以色列、黎巴嫩與周圍一帶)的納圖夫文化(Natufian)疑似已經有人發酵穀物,釀造啤酒。反正酒的歷史,淵遠流長。

至於吸管的歷史,不可考。用管子吸液體,應該不是太難的發明,但是如果以麥稈、蘆葦等材質作為吸管,幾乎不可能留下考古紀錄。

如今已知最早的吸管並非實體,而是留在印章上的圖案,來自伊拉克北部的 Gawra XII,以及伊朗西部的 Chogha Mish 這些位於中東的遺址,超過五千年。

1 是烏爾王室墓葬中,以吸管共享飲料的圖像;2 是普阿比女王墓葬中,包金的蘆葦吸管;3 是普阿比女王墓葬中,包金和青金石的銀西管;4 是 Tell Asmar 出土的過濾器; 5 是敘利亞的 Chagar Bazar 出土的過濾器。圖/參考資料 1

六千年前過後,美索不達米亞的蘇美等古文化,漸漸發展出初步的古文明,也顯現出逸樂的跡象。幾處距今 4000 多年的貴氣墓葬,描繪宴會的場景中,可以見到一群人用長吸管喝飲料。

蘇美人常用的吸管材質應該是蘆葦,也有豪華版的包金蘆葦。烏爾(Ur)的普阿比女王(Queen Puabi)距今約 4600 年的華麗墓葬中,便出土金箔包覆的蘆葦桿,長度 124 公分、直徑 1 公分。另外還有 2 根類似的吸管,一根銅製,另一根銀製,上頭包金,2 根都有青金石裝飾。

烏魯克(Uruk)等地,則出土過吸管上的動物裝飾小雕像。

梅科普遺址出土金屬長管的一截尖端,推測是浸入啤酒中,作為過濾器使用。圖/參考資料 1

和普阿比女王墓葬同時期的 Tell Asmar 留下一組飲用設備,包括碗、長管、過濾器。過濾器通常為銅製的窄椎體,安裝在蘆葦吸管的前端,浸入液體過濾啤酒中的雜質,可以拆卸重複使用。

一組八人咕咕咕咕咕咕咕咕,第九個人沒酒喝!?

上述位於今日伊拉克境內的多處遺址,出土的長管們,可以肯定作為吸管之用,它們的型態和北高加索的金屬長管十分相似。

另外北高加索的金屬管內,疑似作為過濾器的部分,也發現裡頭殘留大麥澱粉顆粒和植物矽酸體(phytolith)。綜合推論,這組金屬管應該也是作為吸管使用,曾用於吸食啤酒。

梅科普遺址出土,1 是銀製過濾器;2、3 為大麥的澱粉顆粒;4 為椴樹(lime tree)的花粉粒;5 為穀物的植物矽酸體。圖/參考資料 1

早在公元 1897 年便被發掘的梅科普遺址,後來成為廣布北高加索地區,梅科普文化的代表性遺址。此一文化介於新石器時代晚期(或銅石並用時期)到青銅時代早期,過去常認為以畜牧業為主要生產方式。

然而該遺址其實也出土大量石製鐮刀、儲存容器,這些都是農業生產的特徵。當時的人,無疑具備用大麥等穀物釀酒的條件。

超過一公尺的金屬吸管如何使用?參考距今 4000 年左右,敘利亞的 Tell Bagüz 遺址的狀況,論文推測可能是將 8 支吸管插在大酒桶裡,同時讓 8 個人圍一圈一起喝酒(第 9 個人沒酒喝!),是宴會的項目之一。

梅科普遺址的吸管上的金牛、銀牛。圖/參考資料 1

考慮到不少吸管是陪葬品,而葬禮是人類最重要的聚會形式之一,古人也可能會在葬禮中痛飲一輪,再把吸管組陪葬。不論如何,這都是某種享受與奢華的展現。

穿越文明疆界的啤酒社交風俗

這類社交場合,也伴隨體液交流,可想而知是群聚感染的溫床,不過當然不能用現代公衛標準要求古代人。

另一點有趣的是,要用超過一公尺的吸管吸到啤酒,肺活量想必不能太差;比起倒出來用酒杯痛飲,吸管的飲酒效率應該差很多,為什麼不倒出來喝呢?(想想李白用吸管啜飲美酒的畫面……好違和)

位於北高加索的梅科普,距離當時美索不達米亞的文明中心有段距離,兩地卻存在一樣的共享啤酒文化。圖/修改自 google map

我猜有個可能理由是促進社交,辦流水席吃吃喝喝,是不同時空的文化,維繫組織運作的一大共通手段。大家圍一圈喝酒,人際交流的意義不遜於飲酒本身(8 個人同時吸一大桶酒,佔著位置不吸大概也不會被發現,嘻嘻),這樣設計的目的,也許本來就是避免參與者喝的太多、太快,而忽略社交。

有趣的是,長吸管共飲是四、五千年前,中東文化發達地區流行的風尚。以中東古文明的視角觀之,距離數百公里的高加索北部可謂化外之地,但是這批邊緣人也存在使用金、銀吸管的風俗(順帶證實他們金屬加工的手藝相當優秀),與中東文明中心類似。啤酒文化的交流與傳播,顯然能穿越空間的阻礙。

延伸閱讀

參考資料

  1. Trifonov, V., Petrov, D., & Savelieva, L. (2022). Party like a Sumerian: reinterpreting the ‘sceptres’ from the Maikop kurgan. Antiquity, 1-18.
  2. Oldest known drinking straws identified

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
174 篇文章 ・ 671 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。