Loading [MathJax]/extensions/tex2jax.js

0

2
1

文字

分享

0
2
1

說到釀酒,酵母比釀酒師更重要?|《看得見與看不見的多樣性》系列講座

鳥苷三磷酸 (PanSci Promo)_96
・2020/12/31 ・5391字 ・閱讀時間約 11 分鐘 ・SR值 550 ・八年級

《看得見與看不見的多樣性:發酵、科學、微生物》系列講座以「發酵文化」出發,邀請不同專業領域的研究者與實務工作者對談,探索其如何交織於地方自然環境條件、農作型態與飲食文化。

文字紀錄 / Der
文字編修 / 泛科學編輯部

夏天到了,來杯啤酒吧!綿密泡沫搭配清爽的麥香,一飲而下,瞬間冰涼消暑(未成年請勿飲酒喔)。但你有思考過是「誰」釀了啤酒呢?是工廠、釀酒師,還是酵母?

這次「說到釀酒,酵母比釀酒人重要」講座,邀請到臺大生技中心的沈湯龍老師,以及臺灣啤酒品牌禾餘麥酒的創辦人陳相全 (Robert),來分享微生物在啤酒中的重要性,發酵過程中的秘密,以及如何運用發酵,重新詮釋臺灣作物的價值與特色。

認識發酵的主角:酵母菌

說到「發酵」,就不能不提到酵母。酵母屬於真菌界,因會產生特殊構造的有性胞子,因此被分類為「子囊菌」。屬於酵母菌綱、酵母菌目、酵母菌科,之下包含十多種不同的屬,以及 500 種以上的酵母菌,其中最常見於發酵食品產業的便是「Saccharomyces cerevisiase」,又稱「出芽酵母」(budding yeast)。

-----廣告,請繼續往下閱讀-----

酵母通常為球形或卵形,為含有細胞核的單細胞真核生物、具有細胞壁,還有其他胞器如粒線體,能夠利用外面環境中的醣,代謝生產能量;其生長過程會先出芽、分裂再慢慢長大。「酵母為無性繁殖,可不斷進行細胞分裂,釀酒過程中,這些酵母菌可快速生長,細胞就是生化工廠,幫我們製造需要的代謝產物。」沈湯龍老師說,於是人類便利用酵母的特性,在某些特殊條件下進行操作以獲得像是酒精等所需要的產品。

不過,在特殊環境下,酵母菌也會進行減數分裂,類似像精卵子,在酵母菌上被稱作 a 與 α,可以產生基因性狀不一樣的後代。

酵母菌的生長史。圖 / 沈老師簡報重繪。

出芽酵母小檔案

  • 學名:Saccharomycetes cervesiviae
  • 俗稱:出芽酵母(budding yeast)、啤酒酵母
  • 型態:球型或卵型
  • 大小:2-10 微米 (um, 10-6 m)
  • 基因體:單倍體 (N) 或是雙倍體 (2N);1200萬個鹼基,構成 16 組染色體,含有約 6000 個基因
  • 繁殖方式:無性出芽生殖或是有性生殖(a 和 α 單倍體孢子結合成 2N)

釀酒、美容、科學研究,酵母菌的多元應用

酵母有各式各樣的應用,除了本場講座的主題「釀酒」的酒精以外,還有麵包、起司,甚至生質能源的原料。而在生醫相關領域,酵母菌本身不只可以當成益生菌,其代謝產物也能夠抗氧化,讓人類皮膚有光澤,製作成美容保養的產品。「酵母能夠產生維他命 B 群、蛋白質、必需胺基酸,甚至吸收微量元素,來補充人類身體需要的微量元素。」沈湯龍老師補充說,「科學家也會利用它們當作模式生物,來研究遺傳學、分子生物學與遺傳工程等研究。」

1996 年是酵母菌在科學上的重要里程碑,《SCIENCE》期刊發表了首次將真核生物體的全基因體定序的論文,透過分析酵母菌,從基因分子角度來了解遺傳。

-----廣告,請繼續往下閱讀-----

「酵母菌、釀酒酵母共有 1200 萬個 DNA 序列,構成 16 組染色體,包含 6275 個基因。比對後,我們知道有 31% 與人類同源,變成很好的科學研究模型,能夠透過酵母菌了解人類細胞如何運作。」沈湯龍老師解釋,「有了這個資料庫,我們能根據酵母的生化反應,透過遺傳工程來操弄,使某些基因大量表現或關掉,來達成想要的目的。」

酵母菌的DNA。圖/Saccharomyces Genome Database | SGD

歷史悠久的酵母菌魔法:啤酒

接著來到今天的重頭戲,酵母菌的重要應用 — 啤酒。啤酒不是新的技術,早在西元前 2000 年,埃及金字塔中就有酵母的記錄,而『甕』裡面可能就是當初的釀酒工具或產品。波西米亞也出土許多釀酒相關器皿,前陣子還發現一醰像酒的古物。到了中世紀,修道院為生存,開始釀製與販賣啤酒,早期的分工多為女性釀酒、男性透過飲酒提升精神,去從事工作。

18 至 19 世紀微生物學出現,科學家們發現了微生物的存在、可分離培養的特性,造成歐洲開始成立啤酒廠。到了 19 世紀中至末期,許多今日的知名啤酒品牌如海尼根,開始陸續成立。那啤酒是怎麼被釀出來的呢?

步驟大致如下圖:將麥芽烘烤與碾碎後,糖化萃取出糖並過濾麥汁,麥汁煮沸後加入啤酒花產生苦味,之後曝氣並冷卻,然後再次加入酵母菌發酵,然後根據每家酒廠不同的配方和酒種做二次發酵(備註:現在有許多酒廠不一定會做二次發酵)、調味,最後再次過濾啤酒就這樣誕生啦。

-----廣告,請繼續往下閱讀-----
簡單的啤酒釀造過程。圖/沈老師簡報重製

除了大功臣酵母,啤酒的重要原料還有麥芽、提供苦味與香味的啤酒花以及水質。「啤酒使用的麥芽主要以大麥製成,產地多為澳洲、北美與歐洲。」沈湯龍老師進一步說明,「大麥不像小麥那樣適合當成人類主食,但是透過微生物的參與和幫助,製造出另一種風味,釀製出啤酒能使用。」

可再利用的釀酒副產物

如前面更提到,在使用酵母菌釀造啤酒的過程中,會產生酒精之外的副產物,現在已經有些廠商會將這些營養物質收集起來,進行再利用包含用於動物飼料、食品添加物等。

「這背後的意義也是本次主題想分享的,人類透過科學方式研究微生物,創造更多可能性。」沈湯龍老師說,「這次很高興有機會用科學學術的角度,跟大家分享日常生活中看得見、看不見的微生物,以及它們和我們究竟有什麼關係。」

禾餘麥酒:打造臺灣本土啤酒

了解酵母在釀造啤酒中的作用,更進一步地,來自禾餘麥酒的 Robert 要向大家分享,如何實際將這樣的發酵技術運用在產品當中。

-----廣告,請繼續往下閱讀-----

Robert 在國外求學期間便有做啤酒的經驗,就讀研究所時,他思考創業方向,發現 1990~2000 年間臺灣的新創產業多為高科技、網路領域。「但是這些企業擁有影響力之後,和臺灣的連結是什麼呢?於是我們想到,或許農業才是真正適合的模式。」

禾餘麥酒是間以農業為主軸的啤酒公司,「feed the world」是所有農藝人的使命,亦是禾餘麥酒最重要的目的,欲走出屬於臺灣在地啤酒的路,讓啤酒不只是工廠製造出的產品,更能與臺灣文化結合。

臺灣啤酒市場中,眾人熟知的「台灣啤酒」佔 70%,其他品牌佔 30%,小型釀造僅約 1.7%。禾餘麥酒從中看見成長空間,希望能以生長於臺灣土地上的作物取代進口原料,重新詮釋啤酒這項舶來品,使其更有「臺灣味」。

禾餘麥酒與各地農改場合作,找出臺灣產出的啤酒常見原料,契作選用三個品種的本土小麥:台中選 2 號、台中 34 號、台中 35 號,以及兩種本土大麥:中興 1 號、中興 2 號。

-----廣告,請繼續往下閱讀-----

「我們也希望推動友善種植,並保障農民權益,藉由真正把糧食作物的價值帶出來,才能讓這個產業存續下去,而不是一直在農田裡『種農舍』。」Robert 笑道。

Robert 提到近十年臺灣消費者越來越熟悉在地小麥,雖然佔小麥整體使用量仍很少,但讓大家有更多選擇,創造更多風味。圖片來源/Robert 簡報

使用友善土地、具在地特色的原料

Robert 提到,釀酒有許多不同的方式,例如德國就是十分嚴謹的民族,能夠控制發酵與製程中的各種因素。「我們研究了美國過去 10~20 年間的釀酒產業,其中一份尼爾森的調查就提到,『酒精濃度』不是最重要的,消費者還在意是否使用更多在地原料、是否為有機或原料相對健康,這些都是我們可以參考的價值。」

透過指導老師們的幫助,他們接觸許多臺灣田間小農,並找到種植條件符合想像、對土地友善的農民,獲得麥子之外的啤酒原料。包含友善種植、部分甚至可以做到有機栽種的晚崙西亞橙,青農回鄉種植的椪柑,以及原住民辛香料刺蔥。「刺蔥是臺灣原生種,本來就很野,不需要農藥也沒什麼病蟲害。」Robert 說。

不同國家的啤酒有自己釀造特色,如同比利時的啤酒會加入大量水果,禾餘麥酒也推出「越光米」特色的啤酒。Robert 說,剛好當時學校(臺大農藝系)跟臺南改良場合作,將日本越光米和臺農 11 號雜交,育種出臺南 16 號,團隊拿來與臺灣小麥(台中選 2 號)、臺灣在地椪柑一起釀造,創造帶有果酸與米甜的「丹橘月光」啤酒。

-----廣告,請繼續往下閱讀-----

「大家覺得加了米的啤酒就很淡,但重點在於發酵方式,你怎麼使用原料和酵母,它也能很濃,可以有不同想像。」Robert 解釋。他將原料比喻為骨幹、栽培管理比喻為血肉,同樣品種的米在不同方式下,風味就會有所不同。禾餘麥酒期許自己能真正了解種植背景,把生命科學知識帶入田間,在產業中做出不同的商品。

在地原住民香料刺蔥風味的啤酒「刺蔥白玉」。圖片來源:Robert 簡報
使用臺灣小麥與越光米釀造的丹橘月光。圖片來源:Robert 簡報

不只是作物,還有文化

禾餘麥酒也將融入在地作物的理念直接放在啤酒包裝上,每一瓶啤酒都標示了產品的臺灣雜糧使用比例,除了讓消費者一目了然,也時刻提醒著自己。

「我們太仰賴國外進口,大家都生產最有效率的東西,啤酒確實是舶來品,在臺灣做並不是最有效率的。但是,藉由食品加工技術與科技的進步,我們會有更多可能,或許在不同嘗試下,啤酒在臺灣也能符合經濟效益。」

包裝之外,禾餘麥酒的品名同樣暗藏玄機,舉例一款命名為「硬紅春」的啤酒,其實來自小麥國際期貨的分類方式。「小麥按照軟硬、紅白、季節分類,消費者一看就知道我們使用了哪一種小麥!」Robert 解釋,「在地作物的特色不只是製作方式,也可以體現於意義上,像它就融入臺灣期貨交易文化。」

-----廣告,請繼續往下閱讀-----
按照原料小麥命名的硬紅春啤酒。圖片來源:Robert 簡報

另外款「古早味紅茶啤酒」則融入臺灣特色飲品古早味紅茶,將其中的特殊風味「決明子」放入啤酒中。「我們一直希望叫它 taiwanese breakfast tea,是不是很洽當。」Robert 說,現場的人都不禁笑了出來而沈湯龍老師與主持人都笑了,「這就是文化上的結合,讓更多人知道我們的特色。」

討論到發酵,Robert 說釀酒的關鍵就是 feed the yeast,必須好好照顧酵母,妥善控制酸鹼值與溫度。「太酸不長、溫度太低也不會長!微生物最重要,要讓讓酵母有舒適、乾淨的環境。給它食物和溫度,它就會給你你要的酒精。」

另外,禾餘麥酒也對發酵有更多想像,以前面提到的「刺蔥白玉」啤酒為例,刺蔥屬於臺灣原生種,從微生物的角度來看應該會有酵母附著在上面,未來若能進行研究與分離,或許會發現臺灣自己的的特殊酵母。

最後 Robert 說,「土地的個個角落、意想不到的地方,都可能是文化聚集的表現。五們希望能找到更好方式,藉由啤酒為媒介,讓下一代不只是電子業,還有生物產業,甚至可以回到田間。」

靠天吃飯,一步步提升品質

在分享後的問答時間,線上參與者們紛紛提出好奇,首先討論的便是「如何維持精釀啤酒的品質」。

Robert 提到,他最近從書中讀到西班牙人早期製作雪莉酒的方式,當製作 7 年份的酒,會以 7 年或以上年份的酒去混;製作 9 年份的酒,則以 9 年或以上年份的酒來混合。「我們也有過類似狀況,當時遇到原料被無預警賣掉,因此拿前面兩年的作物和當年的混合。我不敢保證 10 年後嚐起來還能一樣,但至少消費者一年一年地喝,不會有太大差別。這和西班牙人做雪莉酒的邏輯相同,是為了達到產品一致性。」

那麼能不能透過少量試釀、或者科學方式調整呢?沈湯龍老師表示,啤酒的釀造過程牽動許多元素,包含原料組成、微生物中的酵素與多寡,較難以人工控制。「啤酒和本身農產的品質有極大相關,整個組合起來,很難說我了解每一個副產物、然後加進去,商業上也不划算。」

「就是原料的種植能耐,到底能不能達到那個品質。」Robert 補充,「這是使用臺灣原料最難的地方,畢竟我們的栽培面積很小,種植品質就會差異很大。」

接著也有參與者提問,發酵釀造從田間到工廠管理,都需要很多技術,是否會考慮種植「土地中的微生物」呢?

「要做土壤裡面的菌分類很麻煩,土壤學很複雜,土壤挖下去、拉起來,氧氣與壓力不同,條件就改變了。以我們現在可行的實驗方法,還較難完整看見土壤中的微生物狀況。」沈湯龍老師說。

他並提到,第二次綠色革命中美國人崇尚化學藥劑,然而過去 20 年人們的邏輯再度翻轉,現在大家越來越在意生物防治、環境賀爾蒙、昆蟲的費洛蒙等議題。「現在農業希望永續發展,我們與其他物種共存,並以誘導微生物幫忙的方式來達到目標。」

就目前的狀況而言,釀酒有部分仍需靠天吃飯,不過科學家、農業人員、釀酒師都持續在努力,隨著科技發展,未來肯定會越來越穩定。

身為消費者能做的,或許是擁抱這些不穩定與多樣性,就像 Robert 與沈湯龍老師最後所說,當大家能支持不同理念、技術的釀酒師與酒廠,才會出現更多面貌的產品,只要主原料的風味存在,多一些變化,也能讓我們的生活更加多彩繽紛。

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
微酸與麥香兼具 透視酸種麵包的小世界
顯微觀點_96
・2024/12/19 ・2726字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

sourdough
圖/顯微觀點

오늘도 아침엔 입에 빵을 물고 똑같이 하루를 시작하고(今天早上,我又嘴裡含著麵包,一如往常地開始了一天)

南韓女子偶像團體 (G)I-DLE 的《Fate》,唱出了麵包是不少忙碌上班族的早餐選擇。但有營養師指出,「酸種麵包」(sourdough)成分單純,較容易被消化不易脹氣,升糖指數也更低,適合減重者或是需要控制血糖的人。

酸種麵包是使用野生乳酸菌和酵母發酵麵團製成的麵包。用料通常非常單純,只採用天然酵母、麵粉、水跟鹽,經過長時間發酵而成,因此天然酵母發酵產生的乳酸會賦予麵包酸味並提高保存品質。

而 2020 年開始席捲全球三年多的新冠肺炎疫情,意外讓烘焙成了全球許多因封城、疫情警戒而坐困在家者的紓壓管道。由於人們對家庭烘焙的興趣增加,導致商店麵包酵母短缺,可在家培養麵團的酸種麵包更是因此風靡全球。

-----廣告,請繼續往下閱讀-----
酸種麵包
酸種麵包是使用野生乳酸菌和酵母發酵麵團製成的麵包,用料通常非常單純。圖/unsplash

酸種麵團可說是歷史悠久,最早可追溯到西元前3000多年的古埃及文明,直到中世紀歐洲使用酸種麵團仍是發酵常用方式。

除了歐洲,其實世界各地都有使用酸種麵團製作麵包的文化,「酸種麵包」的風味也和不同地區的歷史人文息息相關。

例如,義大利普利亞區的經典麵包「阿爾塔穆拉麵包(Pane di Altamura)」;墨西哥將啤酒和雞蛋加入酸種麵團,製作墨西哥傳統麵包「比羅特麵包(Birote)」;日本木村屋( Kimuraya bakery)用酸麵種麵包來製作紅豆麵包,再將八重櫻花瓣醃製後放進麵包中心,提供給日本天皇享用。至於中式「老麵」饅頭,也是所謂的「酸種麵團」。

而在加州淘金熱期間(1848–1855),法國麵包師將酵母技術帶到了北加州,出現了著名的舊金山酸麵包(Sourdough bread):一種白麵包,特徵是具有明顯的酸味。這至今仍然是舊金山文化的一部分,當地美式足球隊-舊金山 49 人隊的吉祥物就是牛仔造型的「Sourdough Sam」(酸麵團山姆)。

-----廣告,請繼續往下閱讀-----

一般市售麵包常使用 19 世紀末巴斯德(Louis Pasteur)發現的麵包酵母(或稱商業用酵母),以高產氣的單一菌種酵母來醒發麵團,通常可在不到兩小時內發酵,醒發時間短而促進量產。

和一般市售麵包不同,酸種麵包是利用原料或空氣中存在的天然微生物群來發酵麵粉,因此需要很長的醒發時間,通常麵團發酵並形成風味需要長達 24 小時。

酸種麵包的靈魂-微生物聚落

酸麵團是麵團和麵包製備的中間產品,含許多代謝活性微生物。發酵中 1 公克的麵團通常超過 108 個單位(CFU)的菌落形成,通常含有乳酸菌(LAB)和酵母,乳酸菌:酵母比例常為 100:1;依據麵包師傅處理方式和不同地區的風土,而有多種乳酸菌和酵母菌株來源。

但傳統酸麵團製程通常不依賴偶然的菌群,而是依賴母麵團的使用。這些母麵團保存很長一段時間,甚至可能持續數十年,為後續麵團做天然微生物接種。

-----廣告,請繼續往下閱讀-----

母麵團的微生物生態取決於內在和外在因素。內在因素主要由麵團的化學和微生物組成決定,外在因素則是溫度和氧化還原電位決定。諸如麵團產量(水活性)、鹽的添加、繁殖步驟的數量以及發酵時間等,都會對酸種麵包風味產生很大的影響。

微生物為酸種麵包帶來個性,但你有想過這些微生物在顯微鏡下的樣子嗎?俄亥俄州立大學電子顯微鏡與分析中心資深研究副工程師丹尼爾‧維蒂(Daniel Veghte)就透過電子顯微鏡觀察酸種麵團微生物群像。

酸種麵包的電子顯微圖像
酸種麵包的電子顯微圖像。圖/The Conversation/Daniel Veghte, CC BY-SA

影像中呈現綠色顆粒、相對較大球狀結構的是麵粉中的澱粉粒,直徑約 8 微米(µm)。

紅色是作為起發氣劑的酵母菌,隨酵母生長會發酵澱粉粒中的糖,並產生二氧化碳和酒精作為副產品,使麵團發酵,大小通常在 2 至 10 微米。這張圖像中的酸種麵團,可以看到兩種不同酵母類型,一種接近圓形,一種則是細長型。

-----廣告,請繼續往下閱讀-----

科學家在酸種麵團中發現了 20 多種酵母。而在不同的麵團中所發現的酵母數量和類型差異,取決於幾個因素,包括麵團水合程度、所用穀物類型、發酵溫度和酸麵團維持溫度。 例如,義大利酸麵團通常使用杜蘭麥粉製作,95% 以上的酵母屬於 C. humilis,且其優勢地位隨時間拉長而穩定。

圖像中藍色的則是細菌,通常是乳酸菌,酸種麵包獨特的風味便是由此而來。影像中細菌呈藥丸狀,大小約為2微米。

乳酸菌(lactic acid bacteria, LAB)是指能利用碳水化合物進行發酵生產大量乳酸的細菌總稱,酸種麵團中常見的 LAB 為乳酸桿菌,特別是在發酵時間較長或溫度較高的麵糊中。

乳酸桿菌占主導地位有幾個因素。首先,它們對碳水化合物的代謝機制非常適合將麵團、麥芽糖和果糖作為主要能量來源。其次,有些乳酸桿菌(如舊金山乳桿菌,L. sanfransiscensis)對溫度和 pH 值的生長需求與酸麵團發酵過程的條件相符。

-----廣告,請繼續往下閱讀-----

第三則是存在於酸種麵團的乳酸桿菌具有多種壓力反應機制來克服酸、高(低)溫、高滲透壓(脫水)、氧化和飢餓。第四是會產生乳酸、醋酸鹽等有機酸和細菌素等抗菌胜肽,可作為防腐劑、提高生存競爭力,並有助於發酵的穩定持久。

基於這些機制,乳酸菌和酸種麵包的風味、質地、陳化和保存期等息息相關,例如 L. sanfransiscensis 和 L. pontis 菌株被證明可以改善麵包的口感和氣味。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

7
0

文字

分享

0
7
0
家中養貓狗,寶寶可能更健康?研究證實毛小孩有助於提升新生兒免疫力
PanSci_96
・2024/08/25 ・1454字 ・閱讀時間約 3 分鐘

  • 文/林芸寬、張愷丰、張庭瑀、郭亮均、林詠真 

最新研究:寵物與新生兒健康的密切關聯

現代家庭飼養寵物的比例逐年上升,貓狗已成為人類最親密的夥伴。農業部最新(2023)的資料發現,臺灣飼養貓狗的比例上升,家犬較上一期(2021)增加 19%;家貓較上一期增加 50%。然而,許多新手父母常擔心,飼養貓狗可能會影響新生兒的健康,像是引發呼吸道過敏等疾病,但近期的科學研究提供了相對令人安心的解答。 

最新研究指出,飼養貓狗,可能更能減少新生兒感染呼吸道疾病的機率。 圖/envato

科學家發現,飼養貓狗也許有益家庭中新生兒的健康。最新研究證實,家中貓狗不僅能增添樂趣,更能減少新生兒感染呼吸道疾病的機率。早在 2012 年,就有芬蘭研究團隊追蹤鄉村地區 397 名新生兒,自出生到一歲的健康狀況,發現有飼養貓狗家庭中的新生兒,較少感染呼吸道疾病。研究詳實記錄貓狗與新生兒的互動頻率,及其對新生兒健康的影響。

腸道菌相的力量:微生物如何提升寶寶免疫力

今(2024)年聖路易華盛頓大學兒科團隊發表在《Pediatrics》的最新研究,分析新生兒的就醫紀錄,並透過對父母的訪談,探討「親餵母乳」、「家中飼養貓狗」、「新生兒醫療需求」三者間的關係。研究發現,親餵母乳且家中有飼養貓狗的新生兒,出生六個月內對醫療服務的需求相對較低。華盛頓大學團隊推測,這可能是貓狗身上的微生物 ,增加了環境中微生物多樣性,並影響新生兒的免疫力。 

環境中微生物多樣性,與新生兒免疫力的關係為何?至今仍是未解的問題,但根據現有的研究,這很可能與新生兒體內「腸道菌相」的差異有關。「腸道菌相」是胃腸道中的微生物群落,由細菌、病毒和真菌組成,它們在我們的免疫系統發展中扮演了重要角色,特別是在生命的早期階段,對腸道的健康和功能有著深遠的影響。

-----廣告,請繼續往下閱讀-----

為何養狗的新生兒感染率更低?

2023 年的一項研究,進一步探討環境中微生物多樣性與新生兒免疫力之間的關係,揭示腸道菌相的多樣性在在影響了新生兒的健康。研究顯示,家中飼養狗的新生兒,其腸道中的梭桿菌、科林氏菌和瘤胃球菌等菌群明顯較多,這些菌種的豐富性有助於免疫系統的發育,也可能有助於減少新生兒過敏與氣喘的風險。

有趣的是,這份研究也提到,對於喝配方奶的新生兒而言,其腸道菌相的組成與養狗有關,「與狗接觸」可能成為他們獲取環境微生物的替代途徑,補充因缺乏母乳餵養而缺少的微生物,從而幫助免疫系統的發展。

小孩與狗的接觸,反而可能成為獲取環境微生物的途徑。 圖/envato

目前研究雖無法直接證實接觸貓狗可以增強免疫力,但可以確定的是,接觸貓狗的小孩,腸道內的微生物多樣性高,也比較不容易生病,新手父母可以不用太擔心養狗對小孩發育的影響。同時,與狗接觸還能改變嬰兒腸道中的微生物組成,這或許有助於減少呼吸道疾病的發生風險。

資料來源: 

  1. https://www.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=9418
  2. https://publications.aap.org/pediatrics/article/130/2/211/29895/Respiratory-Tra ct-Illnesses-During-the-First-Year
  3. https://www.nature.com/articles/s41390-024-03200-9
  4. https://onlinelibrary.wiley.com/doi/epdf/10.1111/cea.14303
-----廣告,請繼續往下閱讀-----

討論功能關閉中。