Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

蚊子的咬人三部曲–二氧化碳、視覺、熱度

葉綠舒
・2015/07/19 ・1243字 ・閱讀時間約 2 分鐘 ・SR值 487 ・五年級

source:jon hayes
source:jon hayes

嗡嗡嗡,嗡嗡嗡!我們都有被蚊子咬的經驗,也都聽過各種有關蚊子咬人的都市傳說,例如體質的酸鹼度、吃素與否等等,到底蚊子是根據什麼條件來鎖定目標的呢?最近加州理工學院(California Institute of Technology)的研究團隊發現,對蚊子來說,遠距離的時候二氧化碳最重要,但是等到距離拉近以後,溫度、氣味以及視覺也對蚊子選擇目標有很重大的影響。

研究團隊使用了風洞 (wind tunnel,是一種產生人造氣流的管道,通常是空氣動力學當中的研究工具。),並針對二氧化碳、溫度、氣味以及視覺這些因素進行詳細的測試後發現,如果十公尺以上的遠距離,蚊子主要是依靠二氧化碳做為主要追蹤的目標。

當蚊子發現了二氧化碳,牠便會開始往上風處追蹤二氧化碳的濃度;追蹤片刻後若二氧化碳忽然變少或消失,蚊子便會開始以Z字形飛行,試圖找回二氧化碳的蹤跡(OS:明明剛剛還在呀?!)。當蚊子往上風飛行,追蹤著二氧化碳的痕跡時,路途上若出現了高對比的物體(黑點)時,蚊子便會降落在這個黑點上,即使黑點附近的二氧化碳濃度並不高(所以衣服不要穿太深色的?!)。

除此之外,蚊子可以感應到溫度。研究團隊發現,在沒有二氧化碳痕跡的狀況下,蚊子還是會主動接近攝氏37度的物體,對溫度的感應可以遠到20公分,不過大致上還是在2-3公分內最明顯;但如果加上水蒸氣(模仿流汗後汗液蒸發的狀況),蚊子對溫度的反應範圍可以擴大到6-8公分。

-----廣告,請繼續往下閱讀-----

將二氧化碳、熱、水蒸汽、顏色分開研究,能幫助我們了解是什麼吸引了蚊子飛來;但是人類並不會只單純發散其中一種因子。我們會呼吸(二氧化碳)、有體溫(發熱)、也會流汗(水蒸氣)。因此,研究團隊也想知道,究竟距離多遠蚊子還可以偵測人的手臂發散出來的綜合信號?

結果發現,雖然在10-15公分以外,人手臂所發散出來的熱,已經產生不了明顯的差別(大約相差攝氏0.2度,為蚊子對溫度的偵測極限);但是結合其他的信號,蚊子還是可以在30-50公分的距離之外發現「遠方有手臂」!這是在有氣流的狀態,若是在室內無風的狀態下,蚊子應該可以在更遠的距離就發現手臂的存在。

也就是說,在遠距離時,蚊子主要是依靠發現二氧化碳的痕跡來找尋可能的目標;當牠循上風越飛越近以後,溫度(體熱)、水蒸氣(汗液蒸發)以及視覺的刺激(穿的衣服或是生物的毛皮顏色)便成為辨別目標物的主要條件。

所以,該怎麼避免被蚊子咬呢?

-----廣告,請繼續往下閱讀-----

從這篇研究看來,筆者建議避免穿深色衣物、如果剛運動完,因為身體溫度較高,加上呼吸急促(發散較多的二氧化碳)而且還流汗,可能要避免待在有蚊子的地方。如果無法避免,或許找一個喜歡穿深色運動服的朋友一起運動當蚊香,也是一個辦法(XD)。

當然,如果您是蚊子世界的唐僧肉(具備擔任捕蚊燈的最佳體質),那麼以上這些建議都沒用,還是認真躲蚊子、使用防蚊用品以及多準備止癢藥膏吧!

參考文獻:

本文轉載自作者部落格

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
2

文字

分享

0
6
2
【貓奴指南】把「貓界大麻」貓薄荷抹在身上,除了方便吸貓/給貓吸還有什麼作用?
PanSci_96
・2024/02/20 ・512字 ・閱讀時間約 1 分鐘

為什麼貓這麼喜歡貓薄荷呢?

原來是貓薄荷裡的荊芥內脂導致貓咪吸了貓心大悅,不住翻滾、流口水、打呼嚕。

但是,貓薄荷不是對所有貓都有用。不到六個月的小貓似乎不會有反應,而且有的貓喜歡,有的貓不喜歡……咦,這還和遺傳有關係嗎?

想要同時驅蚊,又讓貓貓情不自禁饞你身子嗎?那你一定要試試貓薄荷!

-----廣告,請繼續往下閱讀-----

荊芥內脂不只會讓貓咪快樂似神仙,也會活化蚊子體內的受體蛋白,接觸到的蚊子會產生搔癢和刺痛感。哈哈小蚊子,你也來嘗嘗癢癢痛痛的痛苦!

給你的貓貓來點刺激的快樂草吧!

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
2

文字

分享

0
4
2
今夏登革熱來勢洶洶,該怎麼防治?有疫苗嗎?
PanSci_96
・2023/09/21 ・2680字 ・閱讀時間約 5 分鐘

「啊!蚊子!」

登革熱好嚴重,但,還會更嚴重。過往紀錄顯示登革熱的疫情高峰,常常到 9 月才大規模爆發?這聽起來有點反直覺,我本來還以為應該是最熱的 7、8 月?但其實啊,就是要等天氣稍微降溫,當大家開始出門,不是躲在冷氣房的時候,反而比較容易傳播登革熱。

而根據近期疾管署的統計顯示,台灣各地的登革熱已經發生 4,338 例本土病例,是從 2015 年登革熱在全台造成 43,419 例之後,登革熱疫情最嚴重的一年,我們真的要注意小心!只要出門,防蚊措施不能免!

不過……話說回來,難道就沒有疫苗可以一勞永逸預防登革熱嗎?

-----廣告,請繼續往下閱讀-----

好幾年沒聽說的登革熱,怎麼突然又「熱」起來?

這個我們就要講到台灣登革熱的發生模式,其實台灣沒有登革熱本土病毒株,所以每當登革熱疫情過去之後,登革熱病毒就會在台灣消失,而下一次的登革熱發生,就必須是境外移入的登革熱患者由國外輸入到國內,而且必須要在登革熱可被傳播的期間,被病媒蚊叮咬並傳播出去,才會造成本土的病例,所以從這點我們可以知道登革熱流行,有兩個有效的控制條件:第一、即時發現境外移入病例,直接隔絕病毒在境外。第二、控制台灣本土病媒蚊數量,以及密度,讓登革熱病毒難以傳播出來。

那過去幾年為什麼都沒有發生登革熱的流行呢?因為 2020 年開始因為 COVID-19 疫情封鎖國境,根據疾管署的資料,2020 年到 2022 年,這三年加起來全國僅有 144 例登革熱境外移入病例,而 2023 年至今已經有 158 例登革熱境外移入案例,而在 2015 年登革熱大流行時,更有 354 例境外移入案例,這也表示台灣登革熱疫情的發生,與境外移入登革熱案例息息相關。

臺灣 2023 年登革熱病例分布。圖/衛福部疾管署

尤其,台灣許多行業仰賴東南亞國家的移工,很多台灣廠商也在東南亞國家設廠,彼此之間的旅遊往來也越來越多,所以東南亞國家的登革熱疫情嚴重與否,與台灣是否會發生登革熱流行,有著高度相關。

把積水倒掉!杜絕登革熱,從減少病媒蚊產卵點開始

每年到了春夏交際時,政府都會宣導要防治病媒蚊,做好居家附近的環境衛生管理,大家耳熟能詳的【巡、倒、清、刷】四字口訣,為的是減少積水,那麼孳生源的減少,真的能夠有效防治登革熱發生嗎?

-----廣告,請繼續往下閱讀-----

這時我們要提到登革熱病媒蚊的生殖營養週期。週期的開始是一隻未吸血的雌蚊,開始尋找適合的吸血對象,在吸飽血後,這隻雌蚊需要等待約 2 到 3 天,讓體內的卵發育成熟,接著雌蚊就會開始尋找有水的地方產卵。而埃及斑蚊或白線斑蚊產卵場,都偏好小型的水域,就像廢棄輪胎內的積水、盆栽下方的接水盆等等,當雌蚊把卵都產下來後,就完成了一個生殖營養週期,接著她會再繼續尋找下一個吸血的對象,不斷循環下去。在實驗室內條件充足的環境下,最快 3 天就可以完成一個週期,而在野外一般環境中,科學家認為 5 到 7 天可以完成一次週期。

雌蚊吸飽血後,等待卵發育成熟,就會開始尋找有水的地方產卵。圖/Giphy

猜猜看一隻雌蚊一次可以產下多少卵?答案是 50-200 顆卵。也就是說,一隻雌蚊經歷一次生殖營養週期,假設生男生女一樣多,也就可以有 25-100 隻新出生的雌蚊。吸血的蚊子等於放大了 25-100 倍的數量,所以一隻蚊子在適合環境下,經歷三代之後最多就可以有 1,000,000 隻雌蚊產生。

我們透過蚊蟲的生活史反推,這僅僅只需要一個月左右的時間。

所以回到一開始的問題,把積水容器清除可以減少蚊蟲數量嗎?如果把你居家附近的積水容器清除的話,其實會讓蚊子找不到產卵的地方,你家附近的蚊蟲的確就會減少,其中一個特殊的現象就是,如果蚊子一直沒有辦法產卵,就會將體內的卵回收成為自身的營養,等待再進入一次生殖營養週期,因此減少雌蚊下一代,自然整體蚊蟲的數量就會減少。

-----廣告,請繼續往下閱讀-----

ADE 效應是什麼?有沒有疫苗可以防治登革熱?

除了防治病媒蚊以外,有沒有可以預防登革熱感染的疫苗呢?

其實,登革熱疫苗的開發非常困難,主要的原因是在人類中流行的登革熱病毒有四種血清型別,而不同型別之間的前後感染,有時候會造成前一型感染產生的抗體,幫助後面另外一型的登革熱病毒感染細胞,使病毒就更容易感染細胞,而這個現象也就是抗體依賴增強效應,簡稱 ADE 效應。

當 ADE 效應產生,也就容易造成較嚴重的病症,而 ADE 效應也是登革熱出血熱產生原因之一,也正是因為有 ADE 效應,登革熱的疫苗開發的難度相當大,因此這隻疫苗需要同時產生對抗四型登革熱的有效抗體,還要避免 ADE 效應的產生。

雖然有 ADE 這個大魔王擋在前面,那麼究竟能不能做出登革熱疫苗呢?

-----廣告,請繼續往下閱讀-----
登革熱疫苗的難度在於要克服 ADE 效應。圖/pixabay

其實,在 2015 年賽諾菲巴斯德藥廠曾經有世界上第一支可施打的四價登革熱疫苗 Dengvaxia,但這隻疫苗僅能夠使用在「感染過登革熱」的人身上,主要的原因,還是因為這支疫苗打在「未感染過登革熱」的人身上,當他們感染登革熱時,會產生 ADE 效應,反而變得更嚴重。

不過近期有了轉機,日本武田製藥的 TAK-003 已經完成三期試驗,在歐盟、英國、巴西、印尼、泰國、阿根廷獲得上市許可,根據 TAK-003 在新英格蘭醫學雜誌 NEJM 和柳葉刀 Lancet 發表的論文,在施打 2 劑後,12 個月可以達到 80.2% 的不感染保護力,18 個月後即便感染,也有 90.4% 的重症保護力,而在施打後 4 年半的持續追蹤,仍然保有 61.2% 的不感染保護力,而且對重度登革熱保護力也有 84.1%,更重要的是,跟 Dengvaxia 相比,不論是否曾經感染過登革熱,都可以施打這個新疫苗,不用擔心 ADE,除了 TAK-003 外,台灣還參與了默沙東藥廠的 V181 和默克藥廠的 TV003 兩支候選疫苗的臨床試驗,可惜的是,台灣還沒有通過 TAK-003 的上市許可。

但自從 1970 年代開始研發的登革熱疫苗,面對一道又一道難關,過了五十多年後,似乎終於有疫苗可以幫助人類對抗登革熱了!

登革熱正在蔓延中,你有什麼好的防蚊秘方嗎?你或認識的人得過登革熱嗎?當時的感受是什麼呢?歡迎與我們分享。最後也想問問,你會想打最新的登革熱疫苗嗎?

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----