Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

貓奴注意!喵星人石化開關的秘密——《真的假的!奇怪知識又增加了》

晴好出版_96
・2023/07/31 ・1499字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

石化的貓咪

如果我們想要驗證「掐住貓的後脖頸,貓就會乖乖石化」這件事,我們會試著掐掐自己養的貓,頂多再去掐掐朋友家養的貓。

但科學家找來了 31 隻喵星人,為牠們分組進行實驗,分析實驗資料,再進一步找出原因。布芬頓就是這樣的科學家。布芬頓認為,如果夾住後脖頸是「裝死開關」,那麼年齡、性別對喵星人這種反應的影響應該不大;相反,如果反應與年齡、性別有相關性,那麼這大概就不是裝死開關。

在他找來的 31 隻貓中,有 13 隻貓年齡在 5 歲以內,包括 5 隻雄性,8 隻雌性;還有 18 隻貓年齡介於5∼10 歲,包括 11 隻雄性和 7 隻雌性。布芬頓用壓力同樣為 140 毫米汞柱的夾子夾住牠們的後脖頸,觀察這些貓的反應。

實驗結果顯示,第一組的 13 隻貓中 12 隻有反應;第二組的所有貓都有反應。看起來,這的確是個與性別、年齡無關的「裝死開關」。

-----廣告,請繼續往下閱讀-----

然而,布芬頓發現,這些貓被夾起來以後,儘管會出現軀體靜止、脊柱捲曲拱起、尾巴夾在兩腿之間等舉動,但並沒有出現瞳孔渙散、體溫下降、心跳減慢等典型的裝死行為,有些貓甚至還會發出很享受的呼嚕聲。也就是說,這些貓產生的很可能並不是所謂的緊張性靜止行為,而是一種掐捏誘導的行為抑制(pinch induced behavioral inhibition,簡稱 IBI)

來自演化的行為抑制

一個月之後,布芬頓用這 31 隻貓重複進行了實驗。他發現,隨著時間推移,年齡比較大的貓對夾子的反應會變弱。到了第三個月重複實驗的時候,只有大約三分之二的貓還會對夾子有明顯反應,主要是年齡偏小的貓。

最後,布芬頓得出結論,貓被掐住後脖頸的行為是一種緊迫反應,來自進化,可能與母貓搬運小貓有關。

在進化過程中,那些被媽媽咬住後脖頸時還瘋狂亂動的小貓很容易被摔死,自然選擇(編按:也就達爾文所提出的 Natural Select)讓那些擁有「媽媽咬住後脖頸就要變乖」基因記憶的小貓存活了下來。

貓媽媽叼住小貓的後脖頸。圖/《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想

我們可以想像這樣的場景:在野外,帶著小貓的貓媽媽突然遭遇捕食者的襲擊,準備一口叼起自己的寶寶撒腿就跑,這時亂動亂叫的小貓就很難存活下來。也就導致了現存的所有貓科動物的基因中都寫了這樣一條紀律:被抓住後脖頸,就要老實點。甚至不管你是貓、獅子,還是老虎。

-----廣告,請繼續往下閱讀-----

布芬頓在實驗中還發現了一個現象:基本上每隻貓,不管年齡、性別,在第一次被夾住後脖頸時,都會產生行為抑制的反應。但隨著頻繁被夾,年齡較大的貓的反應會慢慢減弱。

這也正符合「小貓基因記憶更強,更需要有強烈反應」的邏輯。更進一步,布芬頓還從狐狸、浣熊、老鼠等動物身上找到了支持這個理論的依據。

後來,布芬頓教授根據這個理論, 設計了一款「Clipnosis」的擼貓神器,賣得相當好。Clipnosis 這個詞來自clip+hypnosis,正是「夾子」+「催眠」的意思。

當然,大家在家完全可以用文件長尾夾或者晾衣服的夾子來嘗試這種「擼貓黑科技」。但夾子的力度一定要掌握好,如果壓力太大了,貓疼,你也要做好被貓爪神功襲擊的準備。

-----廣告,請繼續往下閱讀-----

——本文摘自《真的假的!奇怪知識又增加了:自說自話的總裁顛覆認知的科學奇想》,2023 年 7 月,好出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
晴好出版_96
3 篇文章 ・ 2 位粉絲
晴方好,雨亦奇,換個角度都是「晴好」

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
2

文字

分享

0
6
2
【貓奴指南】把「貓界大麻」貓薄荷抹在身上,除了方便吸貓/給貓吸還有什麼作用?
PanSci_96
・2024/02/20 ・512字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

為什麼貓這麼喜歡貓薄荷呢?

原來是貓薄荷裡的荊芥內脂導致貓咪吸了貓心大悅,不住翻滾、流口水、打呼嚕。

但是,貓薄荷不是對所有貓都有用。不到六個月的小貓似乎不會有反應,而且有的貓喜歡,有的貓不喜歡……咦,這還和遺傳有關係嗎?

想要同時驅蚊,又讓貓貓情不自禁饞你身子嗎?那你一定要試試貓薄荷!

-----廣告,請繼續往下閱讀-----

荊芥內脂不只會讓貓咪快樂似神仙,也會活化蚊子體內的受體蛋白,接觸到的蚊子會產生搔癢和刺痛感。哈哈小蚊子,你也來嘗嘗癢癢痛痛的痛苦!

給你的貓貓來點刺激的快樂草吧!

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

3

5
3

文字

分享

3
5
3
貓的痛,AI懂?——貓臉疼痛辨識技術
胡中行_96
・2022/07/18 ・3111字 ・閱讀時間約 6 分鐘

人類必恭必敬稱家貓為「主子」,並自貶為「奴才」。陛下身體微恙,一團絨毛癱軟,表情內斂,叫貓奴如何揣測上意?懷疑牠受苦,便心急如焚。幾乎上演《還珠格格》裡,人家紫薇說沒事,爾康卻捨不得的虐心互動。貓咪說不定覺得:「……有這麼多人關心我,我已經不痛了……」人類仍在一邊:「可是,我好痛!」[1]

給人類用的「視覺類比量表」(上)和「臉譜疼痛量表」(下)。圖/Yale University

在治療人類時,醫護人員會用視覺類比量表(Visual Analogue Scale)、臉譜疼痛量表(Wong-Baker faces pain scale)或 FLACC 量表[註] 等工具,來評估患者疼痛的狀況。前二者靠病人自我評估,以數字或表情,象徵由舒適無恙,漸進到痛徹心扉的程度差異。 FLACC 則是醫護觀察嬰幼兒或無法言語溝通者,就其身體不適產生的行為變化來計分。[2] 儘管每個人敏感的程度不同,至少單一病患前後的得分,能相互對照出疼痛是否得到緩解,或者更加惡化。因此,這些量表均可視為有效測量疼痛的方法。

問題是有口難言,又行徑鬼祟的貓咪怎麼辦?人貓猜心的瓊瑤戲碼,自古不斷重演,沒完沒了。

直到有天,獸醫們看不下去了…

  

「貓咪苦臉量表」介紹影片。來源:Research Square on YouTube

  

-----廣告,請繼續往下閱讀-----

貓咪苦臉量表

2017 年的時候,加拿大蒙特婁大學 Paulo Steagall 副教授以及他的團隊,招募了一票被送急診的病貓。在得到飼主同意後,他們比較疼痛的病貓、服用止痛藥的病貓,還有健康貓咪的表情舉止,研發出「貓咪苦臉量表」(Feline Grimace Scale),並將結果發表於 2019 年的《科學報告》(Scientific Reports)。[3, 4] 其中列出幾個徵兆,可依級別給分,就此將貓咪的疼痛量化:

耳朵姿態(ear position):貓耳的尖角向外分開,並略為朝後旋轉。[3, 5]

圖/參考資料 5

瞇眼程度(orbital tightening):上下眼瞼之間的空隙,小於眼睛的寬度,或是完全緊閉。[3, 5]

圖/參考資料 5

口鼻緊繃(muzzle tension):口鼻(即臺語所謂「喙管」的部位)由圓轉扁,而呈橢圓形。[3, 5]

圖/參考資料 5

觸鬚變化(whiskers change):觸鬚從平常放鬆的圓弧,撐直且稍微向前。[3, 5]

圖/參考資料 5

頭部位置(head position):原本處於全身最高處的貓頭,降至低於肩膀,並往下垂。[3, 5]

圖/參考資料 5

  

貓臉疼痛辨識技術

目前受惠於物種專屬苦臉量表的,除了貓,還有鼠、兔、馬、羊、豬和貂等動物。受過訓練的獸醫,能精準判讀牠們的表情,用這些工具,來評估牠們的疼痛指數。隨著科技的進步,到了 2022 年《科學報告》期刊再次關懷貓咪的痛楚時,另一群科學家拿出「貓臉辨識技術」,試圖取代專業的肉眼觀察。[6]

  

-----廣告,請繼續往下閱讀-----
臉部辨識技術:照片>以眼睛為基準,進行臉部校正>調整尺寸。
圖/Serhan YH, HAKAN Ç, and RİFAT E. (2016) ’A comprehensive comparison of features and embedding methods for face recognition.’ Turkish Journal of Electrical Engineering and Computer Sciences, 24, 1, 24.

  

臉部校正

臉部校正是建立辨識系統的要務。先調整貓臉的特徵(landmarks,即照片上標有號碼的黑點),讓它們在空間中對齊,減少幾何上的變異,方便接下來的步驟進行。原則上,校正後的貓臉必須:[6]

  1. 在畫面正中央;
  2. 旋轉直到雙眼的連線呈水平;
  3. 尺寸都約略相同。

圖/參考資料 6 ,figure 1

  

模型1:特徵基準(landmark-based)

在找到貓臉的特徵後,依據「貓咪苦臉量表」的觀察部位,將貓臉特徵(黑點)分為:左眼右眼額頭與耳朵,以及口鼻和觸鬚,四個區塊向量。然後,多加一些貓鼻子的照片,進行「資料擴增」(data augmentation),[6] 彌補原始資料的不足,以強化機器學習。[7] 不過,團隊事後發現,這次的資料擴增,成效不彰。[6]

圖/參考資料 6 ,figure 3

處理這些照片的計算模型,是一種叫做「多層感知器」(Multi-Layer Perceptron)的人工神經網路(artificial neural network)。[6] 就像人的神經系統,有好多神經元相互連結,將輸入的資料從上一層送到下一層,經過多層運算後再輸出。[8, 9]

  

-----廣告,請繼續往下閱讀-----

模型2:深度學習(deep learning)

研究團隊把大量沒有標註特徵的貓照,在校正角度和尺寸後,餵給 ResNet50[6] 這是一種有五十層的深度學習模型,早已預先訓練好怎麼逐層辨識貓咪的輪廓、曲線及其它識別特徵。[10] 套用該模型的同時,還要進行實驗需要的特定調整,例如:加上「痛」與「不痛」的分類標籤。[6]

  

貓的痛,AI 有多懂?

上述兩個模型的實測,在判讀貓咪是否疼痛時,都有超過 72% 的準確率,算是相當不錯的成果。不過,在完全替代人工判讀之前,可能還要擴建訓練辨識系統的資料庫。因為當初請來的照片模特兒,是 29 隻準備接受卵巢子宮切除術的短毛母貓,年紀約幾個月到一歲多。拿牠們術前、術後,以及使用止痛劑前後的照片來訓練 AI ,雖然是個不錯的點子,但無法代表多元的貓咪社群。[6] 將來的實驗,若能涵蓋其他性別、年齡和品種,相信貓咪們會覺得更加窩心。

  

-----廣告,請繼續往下閱讀-----

備註

FLACC 量表: FLACC 是臉(face)、腿(legs)、活動(activity)、哭(cry)與  安撫(consolability)的縮寫。每個項目依觀察到的狀態,給 0 到 2 分,總分最高 10 分。[2]

  

  1. 瓊瑤經典台詞》小時候看超感動,長大看卻啼笑皆非的 7 大經典場景(風傳媒,2020)
  2. Pain assessment and measurement (The Royal Children’s Hospital Melbourne, 2019)
  3. Evangelista MC, Watanabe R, Leung VSY, et al. (2019) ‘Facial expressions of pain in cats: the development and validation of a Feline Grimace Scale’. Scientific Reports, 9, 19128.
  4. Me-owch — could resting cat face tell us about kitty’s pain? (CBC, 2020)
  5. Feline Grimace Scale – Practice your pain assessment skills using the FGS! (Université de Montréal, 2019)
  6. Feighelstein M, Shimshoni I, Finka LR, et al. (2022) ‘Automated recognition of pain in cats’. Scientific Reports, 12: 9575.
  7. 2021 iThome 鐵人賽-DAY21 資料正規化與資料增強(Data Normalization & Data Augmentation)(IT邦幫忙,2021)
  8. 2019 iT 邦幫忙鐵人賽-06. 深度學習的架構分析:多層感知器(IT邦幫忙,2019)
  9. 神經網路(IBM,2020)
  10. 何謂遷移學習?(NVIDIA,2019)
-----廣告,請繼續往下閱讀-----
所有討論 3
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。