0

0
0

文字

分享

0
0
0

核廢料怎麼保存,才能安全「核」你一起走

彭 琬馨
・2016/03/16 ・2206字 ・閱讀時間約 4 分鐘 ・SR值 555 ・八年級

文/彭琬馨

時代力量新科立委黃國昌,二月十九日首度站上立法院質詢台,開口第一件事就針對行政院的 218 頁施政報告提出質疑,直指原先預計在 2016 年遷出蘭嶼的低階核廢料失信於民,「(施政報告)對於核廢料的處理一個字都沒有寫。」二月一日走馬上任的行政院長張善政,也答不出個所以然,只能強調「該做的事情都已經在做。」

在台灣光是蘭嶼、核一到三廠的低階核廢料,統計至二月底為止,已經累積 205,687 桶,高階核廢料也有 17,522 束。就算不看核電廠往後運轉會生產的垃圾,如此大量的核廢料,小小台灣要消化也不是那麼容易。無論是非核或廢核,民進黨政府上任後,勢必得面對已經產生的核廢料處理問題,但撇開複雜的政治立場不談,你了解核廢料嗎?向來被人詬病的核廢料,到底怎麼保存?

蘭嶼貯存場外觀。圖/flickr@billy1125
蘭嶼貯存場外觀。圖/flickr@billy1125

低/高階核廢料 半衰期大不同

依據輻射量高低對人體造成的影響程度,核廢料分為低階/高階兩個部分。低階核廢料主要指核電廠運轉過程中,受輻射汙染的物品如工作服、廢棄液體,以及醫療、研究機構生產的少量放射性廢棄物等(原能會針對低階核廢料的說明資料指出,除了核電廠以外的低階核廢料大約占 5 ~ 10 %),高階則是用過的核子燃料棒。

-----廣告,請繼續往下閱讀-----

由於核廢料輻射強度會隨著時間增加而遞減,核種不同也會影響輻射發散的時間。

以低階核廢料中的大宗鈷 60 為例,半衰期約為 5.3 年,也就是每 5.3 年核種活度會降為原來的一半,低階核廢料大約需要近百年的時間,輻射強度才會接近自然背景值;高階核廢料更久,鈽 239 一個半衰期就要兩萬四千年,完全超出人類可以想像的時間範圍,因此高階核廢料最終處置在設計時就強調,存放地點至少要能夠讓高放射性的核廢料隔絕人類生活圈二十萬年,低階核廢料則是三百年。

核廢料保存原則:多重障蔽

為防止輻射外洩,核廢料在儲存與最終處置時採取「多重障蔽(Over design)」的概念,也就是透過層層包裹,將廢棄物隔絕於人類生活圈之外。「廢棄物外洩唯一的媒介是水,因為水會流動、其他不會」,曾擔任台電核能後端營運處處長的研究員李清山強調,只要能擋住水,讓裡面的水不要跑出來、外面的水不會跑進去,放射物要跑到我們的生活環境「幾乎不可能」。

以低階核廢料(簡稱低放)來說,包含固體、液體和氣體的廢棄物,經過焚化壓縮(減容)、離心處理後,核廢料會混入凝結水及水泥。李清山說固化核廢料(第一層防護)目的是「讓它更加安定化」;接著裝入廢棄桶(第二層防護),最後放到暫時儲存場的混凝土壕溝中(第三道防護),待找到最終處置地點,再移入淺地層或坑道中。

-----廣告,請繼續往下閱讀-----

而高階核廢料因為會產生熱能,處置需要經過三個階段。先在用過燃料池中存放三到五年,讓燃料棒冷卻;接著移到設於地表的乾式儲存場隔絕,一般建議至少要四十年;最後找到「深地質處置」地點,藉由多重障蔽,將高階核廢料存放於地表下 300 至 1000 公尺(101 大約是508公尺),存放二十萬年左右,由於存放時間非常長,篩選場址的地質條件相對也相當嚴格。

鋼桶加鋅 強化核廢料保存

此外,保存技術的進展也能提升核廢料儲存效率。由於核廢料包含液體和氣體,早期使用鋼桶儲存,很容易發生腐蝕情況,原能會物管局自 1995 年七月起,就要求各廠改用抗蝕性較佳的「熱浸鍍鋅鋼桶」,改良後的熱浸鍍鋅鋼桶,是在原先的鋼桶上塗上一層鋅,由於鋅的抗蝕性很好,能抵抗環境中的溫度、鹽分、濕度,也較能抵禦核廢料帶來的腐蝕性。

台電核能後端營運處副處長黃添煌強調,蘭嶼儲存場的狀況比較特殊,一般來說,「在溫度、濕度控制的空調環境下(如核一到三廠的儲存倉庫),儲存桶基本上不會生鏽」。

不過,嚴謹的設計碰上多變的環境因素,加上人的執行力能不能落實,都會影響儲存場的品質管理。像是原先應該每十年評估一次是否需要檢整的蘭嶼儲存場,從民國 71 年(第一桶核廢料送進蘭嶼)開始到第一次大規模檢整時(民國 96 年),已經過了整整 25 年,許多廢料桶早已鏽蝕破損,過程中甚至發生疑似鈷 60 外洩的情況(對此台電強調,檢測到的鈷 60 是早期排放殘留,並非因為檢整外洩)。關注核能與能源議題的泛科學專欄作者廖英凱認為,持續性地監測技術、處理程序與定期檢整工程,「原理與技術都很簡單,但關鍵在必須正視與解決過去沒有做到的原因」。

-----廣告,請繼續往下閱讀-----

核電廠的外部效應也應該留意

技術人員思考的是設備本身的安全性,不過更多人關心核電廠對環境帶來的外部效應。曾在核研所服務過的學者賀立維就認為,台電減容中心在焚燒低階核廢料時,沒有控管、檢測排出的廢氣,對此台電則回應,所有廢棄排放都有經過檢測、符合相關法規。不過核電廠在焚燒核廢料時可能帶來的潛在輻射公共安全問題,的確引起相關學者關注。在美國研究核廢料的專家卓鴻年,就曾投書媒體建議,台電應該針對低階核廢料不同處理方式,可能帶來的外部效應進行評估,才能確保核廢料場的長期安全。

民國 67 年,第一座核電廠在新北金山開始運轉時,正值台灣經濟起飛時期,政府將核一廠列為十大建設之一,希望核電廠運轉後能為發展中的台灣補足用電缺口,核電相關研究也開始蓬勃發展。如今三四十年過去,環保意識抬頭,人們對環境使用的想法不再相同。四十年前為解決用電需求「先蓋再說」的核電廠,沒考慮除役、核廢料等問題,四十年後還是要面對。在核電議題上,你看的是現在、還是很久以後的未來?無論是支持或反對,同樣生活在這塊土地上的我們,都得共同承擔。

 

低階核廢料何去何從圖表02jpg

文章難易度
彭 琬馨
32 篇文章 ・ 1 位粉絲
一路都念一類組,沒什麼理科頭腦,但喜歡問為什麼,喜歡默默觀察人,對生活中的事物窮追不捨。相信只要努力就會變好,相信科學是為了人而存在。 在這個記者被大多數人看不起的年代,努力做個對得起自己的記者。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

3
2

文字

分享

1
3
2
福島核污水是什麼?我們還能安心吃海鮮嗎?核污水全解析!
PanSci_96
・2023/10/01 ・4897字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

福島核污水正式排放入海了!食鹽要屯多少?海鮮還能吃嗎?哥吉拉要誕生了嗎?

核廢水是怎麼來的?

2011 年 3 月 11 日,一場海嘯衝擊了在福島海邊的第一核電廠,破壞了核電廠中做為緊急電源設備的發電機,在備用電池電力耗盡後,冷卻系統完全失效。然而反應爐內的連鎖反應還在持續,最後溫度不斷竄高,高溫水蒸氣與燃料護套中的鋯合金,發生鋯水反應並產生大量易燃的氫氣,最終與空氣中的氧氣作用導致爆炸。

在事故發生前後,日本政府灌入大量海水來為反應爐進行冷卻,而這些直接接觸熔融燃料棒的污水,就被稱為核污水,日文則稱為「汚染水」。至於當時的決策細節與失誤,大家可以看今年上映的日劇《核災日月》複習一下。而既然事件已經發生了,我們就重點討論核污水。

《核災日月》圖/IMDb

現在儲存在福島的核污水不只有冷卻水,其實還有受污染的降雨與地下水。事故發生後,東京電力公司在第一核電廠加裝擋水牆,阻擋因為降雨流經 1、2、3 號機組的污染水流入海洋。並且設置凍土牆隔絕地下水,同時挖水井抽出污染的地下水,讓廠區內的地下水水位下降,因此地下水只會從外部滲入,內部的污染水則不會滲到外面。不論是降雨還是抽出的地下水,都屬於污染水,平均每天都會增加 92 立方公尺的污染水。直至本集影片上架,當地已經存有 134 萬噸的汚染水,而且還會持續增加,你可以自己打開 Google Map,鳥瞰這密密麻麻的眾多大型儲槽,別忘了,核反應爐本體才是日本更迫切的問題,要是污水不先處理,要是下一個天災來襲,麻煩又會疊加。因此日本政府在 2016 年就展開討論,準備要處理掉這些污水。

-----廣告,請繼續往下閱讀-----
福島第一核電廠。圖/Google Map

為何決定排放入海?

為何核污水的最終處置決定是排放入海呢?其實 2016 年提出的方案有五種:稀釋入海、蒸發至大氣、電解水釋放氫氣、深層地質注水、以及水泥固化並地下處置。很快,電解水因為還需要相關技術研發而被否決,這個我們在氫能那集講過。深層地質注水和水泥固化並地下處置,則有選址與法規問題,無法立即實現。這部分則等同於核電使用國都面臨的核廢料處置問題,我們之前花過好幾集介紹過,歡迎前往複習。

最後僅剩稀釋入海和蒸發至大氣兩種方法,最後日本認為海洋的擴散行為更容易追蹤,最重要的是成本僅有蒸發的十分之一,因此選用了這個方法。至於有些人說,既然東電跟日本政府都保證安全,何不做成瓶裝水拿去賣?之類的建議在這我們不多討論,就請大家用理智來看待。

核廢水如何被處理?

根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。首先,污染水會經過「銫吸附裝置」,除去銫(Cs)和鍶(Sr)。接著再經過淡水化裝置除去水中的鹽分後,成為「鍶處理水」。這種鍶處理水,可以作為 1, 2, 3, 4 號機組的冷卻水再次循環利用。

最後,大部分的鍶處理水,會被送到「ALPS多核種除去設備」,將 63 種放射性核種中的 62 種放射性核種去除。「ALPS多核種除去設備」唯一不能去除的放射性核種,就是氚(H-3)。但其實啊還有一個碳-14 無法被過濾,但濃度低到可以忽視。經過「ALPS多核種除去設備」處理過後的「鍶處理水」,就稱為「含氚處理水」。

-----廣告,請繼續往下閱讀-----
根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。圖/PanSci YouTube

含氚處理水中的氚,指的是氫的同位素的一種,在自然界中就存在。半衰期為 12.43 年,衰變時會進行 β 衰變,放出一顆電子並成為氦-3。β 衰變對人體的穿透距離僅限於皮膚,不會對內臟器官產生傷害。
如要能危害人體,需要長期大量攝取由氚構成的重水。關於攝取過多重水對動植物的影響,我們網站上有文章詳細說明過。

簡單來說,綜合自然界中跟福島即將排放的氚,以及我們的生活型態來看,遠遠達不到可能產生危害的程度。知道劑量決定毒性,就像我們每天都吃下不少「有害」物質,例如殘留農藥、油炸致癌物、過多的精製糖等等,但攝取的多寡,對你的健康影響差異很大。那麼重點來了,福島排放的處理水,真的有合乎標準嗎?

處理水符合標準嗎?

這個問題,我們在今年六月的核廢料主題中有提到,國際原子能總署 (IAEA) 在五月底公布了第一階段的調查結果,針對「日本的核種監控能力」進行第三方驗證。結果認為,日本的檢測標準跟分析方法沒問題,調查結果是可信任的。報告中除了氚以外,其他放射性核種的活度也都遠低於排放限值。例如鍶-90 為每公升 0.4 貝克、銫-137 為每公升 0.5 貝克,以臺灣的「食品」標準,銫-137 為每公升 100 貝克以下,雖然鍶-90 還沒有定下標準,但是依國際食品法典委員會的標準,也是在每公升 100 貝克以下。目前的排放值都遠小於標準。

國際原子能總署(IAEA)公布第一階段的調查結果。圖/PanSci YouTube

除了各單一核種的活度以外,所有水中核種加起來的「告示濃度限度比」也低於日本國家標準的每年 1 毫西弗(mSv/year), 1 毫西弗大約是多少呢?大約是一般民眾一年會接收到的輻射劑量。

-----廣告,請繼續往下閱讀-----

至於無法被 ALPS 處理的氚,因為海洋中的水中就廣泛存在,日本將透過海水稀釋後排放入海。目前世界衛生組織對於飲用水的氚含量標準訂為每公升 1 萬貝克,台灣的標準嚴格了許多,是每公升 740 貝克。東電公司的處理水是每公升 14 萬貝克,在排放前會稀釋 740 倍,以每公升 190 貝克的氚濃度排放,低於台灣的飲用水標準。

那麼食鹽呢?我們需要搶購嗎?這就更不用擔心,因為食鹽中不含水,自然也不含氚。或是更進一步可以參考東海大學應用物理系的粉專,他們計算,根據國家標準,食鹽含水量若為 3% 以下,需要每天吃超過 400 公斤的食鹽才會攝取氚超標。真的,別吃那麼鹹啊。

每天吃超過 400 公斤的食鹽才會攝取氚超標。圖/pixabay

那麼,我們就真的兩手一攤,為這件事劃下結論,核輻射只是庸人自擾嗎?

我們該如何看待排放的處理水?

當然不是,就像許多人擔心的,就算科學上告訴你沒問題,但前提是,這些數據得是沒問題的。而且不用說周邊國家,連日本自家民眾也多次抗議處理水的排放。

-----廣告,請繼續往下閱讀-----

目前在 IAEA 架設的網站上,可以看到整個排水計畫的各種即時監測資料。其中就包括出水口的輻射數值監測。

為了驗證處理水不會對海洋生物產生影響,東京電力甚至從去年 9 月開始,就開始進行海洋生物飼養實驗,並且全程公開直播放在他們的YouTube頻道上。不過這頻道訂閱人數跟觀看次數都有點低迷,有興趣的話不妨訂閱,開啟小鈴鐺。

那麼我們能下定論了嗎?在科學上,我們確實能說,在符合規範下,這些排放入海的處理水是沒問題的,食鹽、海鮮也都能照吃,把注重食安與健康的努力分配到其他危害更大、風險更高的事情上,對處理水保持健康而非病態的質疑,對個人來說應該效益更高。

臺灣從去年到今年 6 月,曾 3 次組團赴日考察,並於 8/24 公佈報告書,包含跟日方的問答內容,還有福島核廢水排放設施的照片。海委會表示,專家觀察團評估日方排放相關作業的安全性,跟國際原子能總署評估的結果一致。然而是否選擇相信日本以及 IAEA 給出的數據,如今看來成了國際政治問題。

-----廣告,請繼續往下閱讀-----

另外,在 IAEA 的小組成員中,包含周邊國家:中國、美國、韓國、越南、澳洲、加拿大、法國、俄羅斯、英國、阿根廷、馬紹爾群島,並不包含台灣。如果台灣也能以任何形式加入團隊,或得以取得樣水複測,讓我們知道,日本以及 IAEA 給出的數值是可信的,想必都能更進一步降低民眾的擔憂。

最後,也問問大家,對於這次的處理水排放事件,你會擔心我們的海鮮或食鹽受到影響嗎?

  1. 不擔心,跟人類對海洋的其他污染相比,根本小巫見大巫。
  2. 擔心,等我親眼見到泛科學到現場實測我才相信。機票我出!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1

2

6
1

文字

分享

2
6
1
從科學角度剖析能源政策的背後:核電延役真正的問題是什麼?
PanSci_96
・2023/07/09 ・3732字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

民眾黨總統參選人柯文哲,在 5 月 20 號正式宣補參選的誓師大會上,直球說出他的能源政策,就包含核電廠延役。

隨著 2024 大選戰鑼敲響,能源議題勢必會是各家爭論的議題。除了是政治口水之外,確實也與民生相關、不能忽視,而「核電」又是其中的熱門,「核電廠究竟要不要延役」也成為許多討論居聚焦之處。這裡,我們就嘗試從科學的角度剖析「核電延役」會遇到的問題與挑戰。

提到核電廠延役,有一個時常被忽略,但政治人物勢必要面對的問題。那就是,卡滿發電廠的核廢料,到底該去哪?

台灣核電廠的現況

先複習一下,台灣的三個核電廠中,「核一」的兩部機組已分別在 2018 年 12 月及 2019 年 7 月正式進入除役階段,「核二」的兩部機組則分別在 2021 年 12 月及今年 3 月停機後,也進入除役程序。我們當時也做了一支影片,分析核二在除役後,需要面對的核廢料處置問題。本集的內容是這支影片的後續,歡迎大家先去複習複習。

-----廣告,請繼續往下閱讀-----

跟在核一、核二之後,「核三」的兩部發電機組也將陸續在 2024 年 7 月和 2025 年 5 月停機,台灣全面告別核能。因此 2024 年的大選,會是挺核派最後的機會。

核電延役必須面對的問題:用過燃料棒無處可去

但就算挺核派成功修法讓核電延役,除了核三以外。核一、核二最大的問題,就是已經沒地方放核燃料棒了。舊的燃料棒不去,新的燃料棒不來。但現在核一、核二的用過燃料池已經被塞滿,核二的 1 號機甚至因為「用過燃料棒爆滿」而提早 6 個月停機。核電廠設定的 40 年服役期限甚至不是最大問題,因為它也無法阻止電廠在年限到來前,就因為用過燃料池爆滿提早停機。

所謂「用過燃料棒」,指的是發電完的燃料棒,也就是「高階放射性廢棄物」。這些燃料棒會在發完電後,暫時放置在用過燃料池中,等待放熱速度下降並且降溫。在用過燃料棒安定之後,依照各國處置流程,除了部分核電廠會將燃料棒繼續濕式儲存外,通常會將燃料棒移到「乾式貯存場」或是地下的「最終處置場」。不過目前台灣的狀況,不論是乾式貯存場還是最終處置場都還未啟用。因此,用過燃料棒,只能繼續卡在燃料池中。

用過燃料棒的處置現況

為了解決爆滿問題,台電已經多次做過處理。根據原能會資料,核一 1、2 號機原先規劃的燃料池,容量分別是 1410 和 1620 束的用過燃料棒,結果在 1986 年擴充至每機組 2470 束、1998 年再次擴充至 3083 束,最後的容量幾乎為原本規劃的兩倍。至於核二廠,兩部機組從原本規劃的 2571 束,經過 1991 年與 2003 年兩次擴充,也變成 4398 束,是原本的 1.7 倍。

-----廣告,請繼續往下閱讀-----
台灣各核電廠用過燃料棒的貯存現況。表/行政院原子能委員會

這邊必須說明,因為廠區內的空間是固定的,因此容量擴充,並不是多蓋幾個水池擴充燃料池空間,而是在相同大小的燃料池內,重新改裝填放燃料的格架:藉由減少格架的間距,增加燃料格架的數量。這怎麼塞都有極限的啊!

順道一提,核二廠中原本要用來打包核燃料棒、好將燃料棒移到乾式貯存場的護箱裝載池,現在都被改裝成用過燃料棒的貯存空間。目前核二每部機組中的燃料棒超過 4800 束,各約 800 公噸。

這點也是總統蔡英文回應核電延役議題時所說的,除了法規以外,在核一核二重啟執行上會實際遇到的困難。

但話說回來,核廢料的最終處置場,要確定地點最早也要 2038 年才會選定場所。這還不是開始蓋,只是選定場所而已。在這之前,用過燃料棒如果想要移出燃料池與反應爐,它們能去的地方就是「乾式貯存場」。

-----廣告,請繼續往下閱讀-----

那他們什麼時候能蓋好呢?其實,核一的乾式貯存場,2013 年就蓋好了。誒,那為何至今還未啟用呢?

燃料棒為何無法移至乾式貯存場?

依照規劃,乾式貯存場會建在各自發電廠的場區內,並且各有兩期規劃。

第一期是室外貯存,核一、核二預計分別能轉移 1680 和 2349 束燃料棒。後來原能會要求台電要興建第二期的室內貯存,如果完工,則可以為各自的核電廠容納 40 年發電量的核燃料棒,等於是兩座核電廠至今為止的所有燃料棒。

核一廠第二期室內乾式貯存設施透視示意圖(型式未定)。圖/台灣電力公司

然而,現實狀況是,雖然核一廠的乾式貯存已經完工,也在 101 年也通過了第一階段的冷測試作業,但從那之後到現在,都無法從新北市政府取得「水土保持設施完工證明」,自然無法往第二階段的熱測試前進。至於核二廠,新北市政府也駁回台電提出的「營建工地逕流廢水污染削減計畫」達 12 次,連興建工程都還未能開始執行。

-----廣告,請繼續往下閱讀-----

除了政策面以外,是否能說服當地民眾,乾式貯存場的安全無虞,也是需要面對的問題。在之前的節目中,我們有提到乾式貯存場的設計不論是輻射量或是堅固性都不用擔心,畢竟連火箭撞了都沒事。至於燃料棒本身的安全也不用擔心,用過燃料棒放入乾式貯存場後只需要靠空氣的被動循環,就能維持溫度穩定,完全不需插電。

乾式貯存槽示意圖。圖/台灣電力公司

但保證是一回事,有人擔心台灣與核能大國的美國不同,核電廠都靠海,金屬製的處置罐暴露在海風中,會不會有鏽蝕導致核污染外洩的問題?

乾式貯存場安全嗎?

這個問題,當然要經過充分測試以後才知道,但我們可以先參考與我們環境相同的日本。

日本有三座乾式貯存場,其中一座,就位在日本 311 大地震中受災的福島電廠。這座 1995 年就啟用、位在海邊的貯存廠,至今都保存良好。甚至在海嘯與核子事故之後,日本進行緊急安全評估與處置、檢查了乾式貯存設施,結果表明貯存槽並沒有發現空氣自然對流被阻礙的狀況,排熱功能、輻射屏蔽、維持燃料棒亞臨界等功能也沒問題。此外,經過現地抽樣檢查,用過核子燃料棒也均未受損。雖然受到海水倒灌影響,外側的二次蓋有觀察到海鹽腐蝕的現象,但封蓋間並無發生氣密被破壞的情形。整體來說,硬體設施的防護是到位的。當然在事後,9 個貯存護箱被移送到廠區內,由另一個臨時保管設施進行保管。

-----廣告,請繼續往下閱讀-----

當然,福島乾式貯存的設計與台灣並不相同,日本因為採取燃料棒再處理的策略,外頭是金屬護箱。台灣則與美國主流相同,最外頭採用的是混凝土護箱,結構強度比金屬護箱更強,並且留有空氣流動的自然通道。

你也許會問,台灣不是日本,比較高溫,氣候型態也不全然相同。沒錯,但真實數據也需要等待進到第二階段的熱測試,才能一起來檢視數據如何。

講到這邊,核一、核二延役要面臨的問題已經點出來了,核三的燃料池雖然還沒塞滿,但如果役期延長,遲早也會遇到相同的問題。而剩下的,就交給工程與政治去解決了。

我們該擁抱核能嗎?或許我們先問,該用什麼角度看待核能?

對於核能議題,除了近期的影片外,我們先前也討論過「核能算不算綠能」這個問題。但你真的知道綠能(Green energy)、潔凈能源(Clean energy)和永續能源(Sustainable energy)差在哪嗎?

-----廣告,請繼續往下閱讀-----

嗯,坦白說這真的很混亂。在我們之前影片發表後,馬上有能源研究者提醒我們影片中的介紹不夠準確,因為在台灣雖然國發會把綠能定義為再生能源,美國的能源部則是根本不用 Green Energy,只使用 Clean Energy,而這就包括了核能。此外,歐盟也不用 Green Energy 這詞,而是指定歐洲綠色政綱(Green Deal)下能符合條件的能源。

比起這些內涵會持續變化的分類名詞,既然現在全球都對「淨零排放」有共識,那我們至少可以明確地將核能重新定位:那就是,核能確實是一個低碳排的發電方式,但,有核安的風險要考量,有核廢料的問題需要解決。在這個前提之下,討論要不要選擇它,應該會更有意義一些。

核電與綠能要或不要,其實沒有永恆正確的答案,歐盟在 2022 年把核能納入永續投資分類,結果現在在多國都面臨訴訟,被認為違反了分類法的初衷,錯誤地引導市場;德國一馬當先廢核,卻又因為烏俄戰爭延役核電,今年四月全數關閉後,能源空缺得改燒煤炭,也令人詬病;法國新建核電廠,且呼籲要將核能產生的氫氣納入可再生燃料,但西班牙跟德國則堅持反對…,就算只看歐洲,就知道要下定決心擁核或廢核,有多困難。

在民主的社會下,我們應該尊重每個人的選擇。但為了對得起選民,比起口號,政治人物更該提出務實的政策,核電廠如何延役?如何解決核廢料的去留?期望的台灣發電比例是什麼?用電安全在哪?不論是哪一方,我們都由衷希望能看到完整的政見與科學論證。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 2