Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

核廢料怎麼保存,才能安全「核」你一起走

彭 琬馨
・2016/03/16 ・2206字 ・閱讀時間約 4 分鐘 ・SR值 555 ・八年級

文/彭琬馨

時代力量新科立委黃國昌,二月十九日首度站上立法院質詢台,開口第一件事就針對行政院的 218 頁施政報告提出質疑,直指原先預計在 2016 年遷出蘭嶼的低階核廢料失信於民,「(施政報告)對於核廢料的處理一個字都沒有寫。」二月一日走馬上任的行政院長張善政,也答不出個所以然,只能強調「該做的事情都已經在做。」

在台灣光是蘭嶼、核一到三廠的低階核廢料,統計至二月底為止,已經累積 205,687 桶,高階核廢料也有 17,522 束。就算不看核電廠往後運轉會生產的垃圾,如此大量的核廢料,小小台灣要消化也不是那麼容易。無論是非核或廢核,民進黨政府上任後,勢必得面對已經產生的核廢料處理問題,但撇開複雜的政治立場不談,你了解核廢料嗎?向來被人詬病的核廢料,到底怎麼保存?

蘭嶼貯存場外觀。圖/flickr@billy1125
蘭嶼貯存場外觀。圖/flickr@billy1125

低/高階核廢料 半衰期大不同

依據輻射量高低對人體造成的影響程度,核廢料分為低階/高階兩個部分。低階核廢料主要指核電廠運轉過程中,受輻射汙染的物品如工作服、廢棄液體,以及醫療、研究機構生產的少量放射性廢棄物等(原能會針對低階核廢料的說明資料指出,除了核電廠以外的低階核廢料大約占 5 ~ 10 %),高階則是用過的核子燃料棒。

-----廣告,請繼續往下閱讀-----

由於核廢料輻射強度會隨著時間增加而遞減,核種不同也會影響輻射發散的時間。

以低階核廢料中的大宗鈷 60 為例,半衰期約為 5.3 年,也就是每 5.3 年核種活度會降為原來的一半,低階核廢料大約需要近百年的時間,輻射強度才會接近自然背景值;高階核廢料更久,鈽 239 一個半衰期就要兩萬四千年,完全超出人類可以想像的時間範圍,因此高階核廢料最終處置在設計時就強調,存放地點至少要能夠讓高放射性的核廢料隔絕人類生活圈二十萬年,低階核廢料則是三百年。

核廢料保存原則:多重障蔽

為防止輻射外洩,核廢料在儲存與最終處置時採取「多重障蔽(Over design)」的概念,也就是透過層層包裹,將廢棄物隔絕於人類生活圈之外。「廢棄物外洩唯一的媒介是水,因為水會流動、其他不會」,曾擔任台電核能後端營運處處長的研究員李清山強調,只要能擋住水,讓裡面的水不要跑出來、外面的水不會跑進去,放射物要跑到我們的生活環境「幾乎不可能」。

以低階核廢料(簡稱低放)來說,包含固體、液體和氣體的廢棄物,經過焚化壓縮(減容)、離心處理後,核廢料會混入凝結水及水泥。李清山說固化核廢料(第一層防護)目的是「讓它更加安定化」;接著裝入廢棄桶(第二層防護),最後放到暫時儲存場的混凝土壕溝中(第三道防護),待找到最終處置地點,再移入淺地層或坑道中。

-----廣告,請繼續往下閱讀-----

而高階核廢料因為會產生熱能,處置需要經過三個階段。先在用過燃料池中存放三到五年,讓燃料棒冷卻;接著移到設於地表的乾式儲存場隔絕,一般建議至少要四十年;最後找到「深地質處置」地點,藉由多重障蔽,將高階核廢料存放於地表下 300 至 1000 公尺(101 大約是508公尺),存放二十萬年左右,由於存放時間非常長,篩選場址的地質條件相對也相當嚴格。

鋼桶加鋅 強化核廢料保存

此外,保存技術的進展也能提升核廢料儲存效率。由於核廢料包含液體和氣體,早期使用鋼桶儲存,很容易發生腐蝕情況,原能會物管局自 1995 年七月起,就要求各廠改用抗蝕性較佳的「熱浸鍍鋅鋼桶」,改良後的熱浸鍍鋅鋼桶,是在原先的鋼桶上塗上一層鋅,由於鋅的抗蝕性很好,能抵抗環境中的溫度、鹽分、濕度,也較能抵禦核廢料帶來的腐蝕性。

台電核能後端營運處副處長黃添煌強調,蘭嶼儲存場的狀況比較特殊,一般來說,「在溫度、濕度控制的空調環境下(如核一到三廠的儲存倉庫),儲存桶基本上不會生鏽」。

不過,嚴謹的設計碰上多變的環境因素,加上人的執行力能不能落實,都會影響儲存場的品質管理。像是原先應該每十年評估一次是否需要檢整的蘭嶼儲存場,從民國 71 年(第一桶核廢料送進蘭嶼)開始到第一次大規模檢整時(民國 96 年),已經過了整整 25 年,許多廢料桶早已鏽蝕破損,過程中甚至發生疑似鈷 60 外洩的情況(對此台電強調,檢測到的鈷 60 是早期排放殘留,並非因為檢整外洩)。關注核能與能源議題的泛科學專欄作者廖英凱認為,持續性地監測技術、處理程序與定期檢整工程,「原理與技術都很簡單,但關鍵在必須正視與解決過去沒有做到的原因」。

-----廣告,請繼續往下閱讀-----

核電廠的外部效應也應該留意

技術人員思考的是設備本身的安全性,不過更多人關心核電廠對環境帶來的外部效應。曾在核研所服務過的學者賀立維就認為,台電減容中心在焚燒低階核廢料時,沒有控管、檢測排出的廢氣,對此台電則回應,所有廢棄排放都有經過檢測、符合相關法規。不過核電廠在焚燒核廢料時可能帶來的潛在輻射公共安全問題,的確引起相關學者關注。在美國研究核廢料的專家卓鴻年,就曾投書媒體建議,台電應該針對低階核廢料不同處理方式,可能帶來的外部效應進行評估,才能確保核廢料場的長期安全。

民國 67 年,第一座核電廠在新北金山開始運轉時,正值台灣經濟起飛時期,政府將核一廠列為十大建設之一,希望核電廠運轉後能為發展中的台灣補足用電缺口,核電相關研究也開始蓬勃發展。如今三四十年過去,環保意識抬頭,人們對環境使用的想法不再相同。四十年前為解決用電需求「先蓋再說」的核電廠,沒考慮除役、核廢料等問題,四十年後還是要面對。在核電議題上,你看的是現在、還是很久以後的未來?無論是支持或反對,同樣生活在這塊土地上的我們,都得共同承擔。

 

低階核廢料何去何從圖表02jpg

-----廣告,請繼續往下閱讀-----
文章難易度
彭 琬馨
32 篇文章 ・ 1 位粉絲
一路都念一類組,沒什麼理科頭腦,但喜歡問為什麼,喜歡默默觀察人,對生活中的事物窮追不捨。相信只要努力就會變好,相信科學是為了人而存在。 在這個記者被大多數人看不起的年代,努力做個對得起自己的記者。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
2

文字

分享

1
3
2
福島核污水是什麼?我們還能安心吃海鮮嗎?核污水全解析!
PanSci_96
・2023/10/01 ・4897字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

福島核污水正式排放入海了!食鹽要屯多少?海鮮還能吃嗎?哥吉拉要誕生了嗎?

核廢水是怎麼來的?

2011 年 3 月 11 日,一場海嘯衝擊了在福島海邊的第一核電廠,破壞了核電廠中做為緊急電源設備的發電機,在備用電池電力耗盡後,冷卻系統完全失效。然而反應爐內的連鎖反應還在持續,最後溫度不斷竄高,高溫水蒸氣與燃料護套中的鋯合金,發生鋯水反應並產生大量易燃的氫氣,最終與空氣中的氧氣作用導致爆炸。

在事故發生前後,日本政府灌入大量海水來為反應爐進行冷卻,而這些直接接觸熔融燃料棒的污水,就被稱為核污水,日文則稱為「汚染水」。至於當時的決策細節與失誤,大家可以看今年上映的日劇《核災日月》複習一下。而既然事件已經發生了,我們就重點討論核污水。

《核災日月》圖/IMDb

現在儲存在福島的核污水不只有冷卻水,其實還有受污染的降雨與地下水。事故發生後,東京電力公司在第一核電廠加裝擋水牆,阻擋因為降雨流經 1、2、3 號機組的污染水流入海洋。並且設置凍土牆隔絕地下水,同時挖水井抽出污染的地下水,讓廠區內的地下水水位下降,因此地下水只會從外部滲入,內部的污染水則不會滲到外面。不論是降雨還是抽出的地下水,都屬於污染水,平均每天都會增加 92 立方公尺的污染水。直至本集影片上架,當地已經存有 134 萬噸的汚染水,而且還會持續增加,你可以自己打開 Google Map,鳥瞰這密密麻麻的眾多大型儲槽,別忘了,核反應爐本體才是日本更迫切的問題,要是污水不先處理,要是下一個天災來襲,麻煩又會疊加。因此日本政府在 2016 年就展開討論,準備要處理掉這些污水。

-----廣告,請繼續往下閱讀-----
福島第一核電廠。圖/Google Map

為何決定排放入海?

為何核污水的最終處置決定是排放入海呢?其實 2016 年提出的方案有五種:稀釋入海、蒸發至大氣、電解水釋放氫氣、深層地質注水、以及水泥固化並地下處置。很快,電解水因為還需要相關技術研發而被否決,這個我們在氫能那集講過。深層地質注水和水泥固化並地下處置,則有選址與法規問題,無法立即實現。這部分則等同於核電使用國都面臨的核廢料處置問題,我們之前花過好幾集介紹過,歡迎前往複習。

最後僅剩稀釋入海和蒸發至大氣兩種方法,最後日本認為海洋的擴散行為更容易追蹤,最重要的是成本僅有蒸發的十分之一,因此選用了這個方法。至於有些人說,既然東電跟日本政府都保證安全,何不做成瓶裝水拿去賣?之類的建議在這我們不多討論,就請大家用理智來看待。

核廢水如何被處理?

根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。首先,污染水會經過「銫吸附裝置」,除去銫(Cs)和鍶(Sr)。接著再經過淡水化裝置除去水中的鹽分後,成為「鍶處理水」。這種鍶處理水,可以作為 1, 2, 3, 4 號機組的冷卻水再次循環利用。

最後,大部分的鍶處理水,會被送到「ALPS多核種除去設備」,將 63 種放射性核種中的 62 種放射性核種去除。「ALPS多核種除去設備」唯一不能去除的放射性核種,就是氚(H-3)。但其實啊還有一個碳-14 無法被過濾,但濃度低到可以忽視。經過「ALPS多核種除去設備」處理過後的「鍶處理水」,就稱為「含氚處理水」。

-----廣告,請繼續往下閱讀-----
根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。圖/PanSci YouTube

含氚處理水中的氚,指的是氫的同位素的一種,在自然界中就存在。半衰期為 12.43 年,衰變時會進行 β 衰變,放出一顆電子並成為氦-3。β 衰變對人體的穿透距離僅限於皮膚,不會對內臟器官產生傷害。
如要能危害人體,需要長期大量攝取由氚構成的重水。關於攝取過多重水對動植物的影響,我們網站上有文章詳細說明過。

簡單來說,綜合自然界中跟福島即將排放的氚,以及我們的生活型態來看,遠遠達不到可能產生危害的程度。知道劑量決定毒性,就像我們每天都吃下不少「有害」物質,例如殘留農藥、油炸致癌物、過多的精製糖等等,但攝取的多寡,對你的健康影響差異很大。那麼重點來了,福島排放的處理水,真的有合乎標準嗎?

處理水符合標準嗎?

這個問題,我們在今年六月的核廢料主題中有提到,國際原子能總署 (IAEA) 在五月底公布了第一階段的調查結果,針對「日本的核種監控能力」進行第三方驗證。結果認為,日本的檢測標準跟分析方法沒問題,調查結果是可信任的。報告中除了氚以外,其他放射性核種的活度也都遠低於排放限值。例如鍶-90 為每公升 0.4 貝克、銫-137 為每公升 0.5 貝克,以臺灣的「食品」標準,銫-137 為每公升 100 貝克以下,雖然鍶-90 還沒有定下標準,但是依國際食品法典委員會的標準,也是在每公升 100 貝克以下。目前的排放值都遠小於標準。

國際原子能總署(IAEA)公布第一階段的調查結果。圖/PanSci YouTube

除了各單一核種的活度以外,所有水中核種加起來的「告示濃度限度比」也低於日本國家標準的每年 1 毫西弗(mSv/year), 1 毫西弗大約是多少呢?大約是一般民眾一年會接收到的輻射劑量。

-----廣告,請繼續往下閱讀-----

至於無法被 ALPS 處理的氚,因為海洋中的水中就廣泛存在,日本將透過海水稀釋後排放入海。目前世界衛生組織對於飲用水的氚含量標準訂為每公升 1 萬貝克,台灣的標準嚴格了許多,是每公升 740 貝克。東電公司的處理水是每公升 14 萬貝克,在排放前會稀釋 740 倍,以每公升 190 貝克的氚濃度排放,低於台灣的飲用水標準。

那麼食鹽呢?我們需要搶購嗎?這就更不用擔心,因為食鹽中不含水,自然也不含氚。或是更進一步可以參考東海大學應用物理系的粉專,他們計算,根據國家標準,食鹽含水量若為 3% 以下,需要每天吃超過 400 公斤的食鹽才會攝取氚超標。真的,別吃那麼鹹啊。

每天吃超過 400 公斤的食鹽才會攝取氚超標。圖/pixabay

那麼,我們就真的兩手一攤,為這件事劃下結論,核輻射只是庸人自擾嗎?

我們該如何看待排放的處理水?

當然不是,就像許多人擔心的,就算科學上告訴你沒問題,但前提是,這些數據得是沒問題的。而且不用說周邊國家,連日本自家民眾也多次抗議處理水的排放。

-----廣告,請繼續往下閱讀-----

目前在 IAEA 架設的網站上,可以看到整個排水計畫的各種即時監測資料。其中就包括出水口的輻射數值監測。

為了驗證處理水不會對海洋生物產生影響,東京電力甚至從去年 9 月開始,就開始進行海洋生物飼養實驗,並且全程公開直播放在他們的YouTube頻道上。不過這頻道訂閱人數跟觀看次數都有點低迷,有興趣的話不妨訂閱,開啟小鈴鐺。

那麼我們能下定論了嗎?在科學上,我們確實能說,在符合規範下,這些排放入海的處理水是沒問題的,食鹽、海鮮也都能照吃,把注重食安與健康的努力分配到其他危害更大、風險更高的事情上,對處理水保持健康而非病態的質疑,對個人來說應該效益更高。

臺灣從去年到今年 6 月,曾 3 次組團赴日考察,並於 8/24 公佈報告書,包含跟日方的問答內容,還有福島核廢水排放設施的照片。海委會表示,專家觀察團評估日方排放相關作業的安全性,跟國際原子能總署評估的結果一致。然而是否選擇相信日本以及 IAEA 給出的數據,如今看來成了國際政治問題。

-----廣告,請繼續往下閱讀-----

另外,在 IAEA 的小組成員中,包含周邊國家:中國、美國、韓國、越南、澳洲、加拿大、法國、俄羅斯、英國、阿根廷、馬紹爾群島,並不包含台灣。如果台灣也能以任何形式加入團隊,或得以取得樣水複測,讓我們知道,日本以及 IAEA 給出的數值是可信的,想必都能更進一步降低民眾的擔憂。

最後,也問問大家,對於這次的處理水排放事件,你會擔心我們的海鮮或食鹽受到影響嗎?

  1. 不擔心,跟人類對海洋的其他污染相比,根本小巫見大巫。
  2. 擔心,等我親眼見到泛科學到現場實測我才相信。機票我出!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

2

6
1

文字

分享

2
6
1
從科學角度剖析能源政策的背後:核電延役真正的問題是什麼?
PanSci_96
・2023/07/09 ・3732字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

民眾黨總統參選人柯文哲,在 5 月 20 號正式宣補參選的誓師大會上,直球說出他的能源政策,就包含核電廠延役。

隨著 2024 大選戰鑼敲響,能源議題勢必會是各家爭論的議題。除了是政治口水之外,確實也與民生相關、不能忽視,而「核電」又是其中的熱門,「核電廠究竟要不要延役」也成為許多討論居聚焦之處。這裡,我們就嘗試從科學的角度剖析「核電延役」會遇到的問題與挑戰。

提到核電廠延役,有一個時常被忽略,但政治人物勢必要面對的問題。那就是,卡滿發電廠的核廢料,到底該去哪?

台灣核電廠的現況

先複習一下,台灣的三個核電廠中,「核一」的兩部機組已分別在 2018 年 12 月及 2019 年 7 月正式進入除役階段,「核二」的兩部機組則分別在 2021 年 12 月及今年 3 月停機後,也進入除役程序。我們當時也做了一支影片,分析核二在除役後,需要面對的核廢料處置問題。本集的內容是這支影片的後續,歡迎大家先去複習複習。

-----廣告,請繼續往下閱讀-----

跟在核一、核二之後,「核三」的兩部發電機組也將陸續在 2024 年 7 月和 2025 年 5 月停機,台灣全面告別核能。因此 2024 年的大選,會是挺核派最後的機會。

核電延役必須面對的問題:用過燃料棒無處可去

但就算挺核派成功修法讓核電延役,除了核三以外。核一、核二最大的問題,就是已經沒地方放核燃料棒了。舊的燃料棒不去,新的燃料棒不來。但現在核一、核二的用過燃料池已經被塞滿,核二的 1 號機甚至因為「用過燃料棒爆滿」而提早 6 個月停機。核電廠設定的 40 年服役期限甚至不是最大問題,因為它也無法阻止電廠在年限到來前,就因為用過燃料池爆滿提早停機。

所謂「用過燃料棒」,指的是發電完的燃料棒,也就是「高階放射性廢棄物」。這些燃料棒會在發完電後,暫時放置在用過燃料池中,等待放熱速度下降並且降溫。在用過燃料棒安定之後,依照各國處置流程,除了部分核電廠會將燃料棒繼續濕式儲存外,通常會將燃料棒移到「乾式貯存場」或是地下的「最終處置場」。不過目前台灣的狀況,不論是乾式貯存場還是最終處置場都還未啟用。因此,用過燃料棒,只能繼續卡在燃料池中。

用過燃料棒的處置現況

為了解決爆滿問題,台電已經多次做過處理。根據原能會資料,核一 1、2 號機原先規劃的燃料池,容量分別是 1410 和 1620 束的用過燃料棒,結果在 1986 年擴充至每機組 2470 束、1998 年再次擴充至 3083 束,最後的容量幾乎為原本規劃的兩倍。至於核二廠,兩部機組從原本規劃的 2571 束,經過 1991 年與 2003 年兩次擴充,也變成 4398 束,是原本的 1.7 倍。

-----廣告,請繼續往下閱讀-----
台灣各核電廠用過燃料棒的貯存現況。表/行政院原子能委員會

這邊必須說明,因為廠區內的空間是固定的,因此容量擴充,並不是多蓋幾個水池擴充燃料池空間,而是在相同大小的燃料池內,重新改裝填放燃料的格架:藉由減少格架的間距,增加燃料格架的數量。這怎麼塞都有極限的啊!

順道一提,核二廠中原本要用來打包核燃料棒、好將燃料棒移到乾式貯存場的護箱裝載池,現在都被改裝成用過燃料棒的貯存空間。目前核二每部機組中的燃料棒超過 4800 束,各約 800 公噸。

這點也是總統蔡英文回應核電延役議題時所說的,除了法規以外,在核一核二重啟執行上會實際遇到的困難。

但話說回來,核廢料的最終處置場,要確定地點最早也要 2038 年才會選定場所。這還不是開始蓋,只是選定場所而已。在這之前,用過燃料棒如果想要移出燃料池與反應爐,它們能去的地方就是「乾式貯存場」。

-----廣告,請繼續往下閱讀-----

那他們什麼時候能蓋好呢?其實,核一的乾式貯存場,2013 年就蓋好了。誒,那為何至今還未啟用呢?

燃料棒為何無法移至乾式貯存場?

依照規劃,乾式貯存場會建在各自發電廠的場區內,並且各有兩期規劃。

第一期是室外貯存,核一、核二預計分別能轉移 1680 和 2349 束燃料棒。後來原能會要求台電要興建第二期的室內貯存,如果完工,則可以為各自的核電廠容納 40 年發電量的核燃料棒,等於是兩座核電廠至今為止的所有燃料棒。

核一廠第二期室內乾式貯存設施透視示意圖(型式未定)。圖/台灣電力公司

然而,現實狀況是,雖然核一廠的乾式貯存已經完工,也在 101 年也通過了第一階段的冷測試作業,但從那之後到現在,都無法從新北市政府取得「水土保持設施完工證明」,自然無法往第二階段的熱測試前進。至於核二廠,新北市政府也駁回台電提出的「營建工地逕流廢水污染削減計畫」達 12 次,連興建工程都還未能開始執行。

-----廣告,請繼續往下閱讀-----

除了政策面以外,是否能說服當地民眾,乾式貯存場的安全無虞,也是需要面對的問題。在之前的節目中,我們有提到乾式貯存場的設計不論是輻射量或是堅固性都不用擔心,畢竟連火箭撞了都沒事。至於燃料棒本身的安全也不用擔心,用過燃料棒放入乾式貯存場後只需要靠空氣的被動循環,就能維持溫度穩定,完全不需插電。

乾式貯存槽示意圖。圖/台灣電力公司

但保證是一回事,有人擔心台灣與核能大國的美國不同,核電廠都靠海,金屬製的處置罐暴露在海風中,會不會有鏽蝕導致核污染外洩的問題?

乾式貯存場安全嗎?

這個問題,當然要經過充分測試以後才知道,但我們可以先參考與我們環境相同的日本。

日本有三座乾式貯存場,其中一座,就位在日本 311 大地震中受災的福島電廠。這座 1995 年就啟用、位在海邊的貯存廠,至今都保存良好。甚至在海嘯與核子事故之後,日本進行緊急安全評估與處置、檢查了乾式貯存設施,結果表明貯存槽並沒有發現空氣自然對流被阻礙的狀況,排熱功能、輻射屏蔽、維持燃料棒亞臨界等功能也沒問題。此外,經過現地抽樣檢查,用過核子燃料棒也均未受損。雖然受到海水倒灌影響,外側的二次蓋有觀察到海鹽腐蝕的現象,但封蓋間並無發生氣密被破壞的情形。整體來說,硬體設施的防護是到位的。當然在事後,9 個貯存護箱被移送到廠區內,由另一個臨時保管設施進行保管。

-----廣告,請繼續往下閱讀-----

當然,福島乾式貯存的設計與台灣並不相同,日本因為採取燃料棒再處理的策略,外頭是金屬護箱。台灣則與美國主流相同,最外頭採用的是混凝土護箱,結構強度比金屬護箱更強,並且留有空氣流動的自然通道。

你也許會問,台灣不是日本,比較高溫,氣候型態也不全然相同。沒錯,但真實數據也需要等待進到第二階段的熱測試,才能一起來檢視數據如何。

講到這邊,核一、核二延役要面臨的問題已經點出來了,核三的燃料池雖然還沒塞滿,但如果役期延長,遲早也會遇到相同的問題。而剩下的,就交給工程與政治去解決了。

我們該擁抱核能嗎?或許我們先問,該用什麼角度看待核能?

對於核能議題,除了近期的影片外,我們先前也討論過「核能算不算綠能」這個問題。但你真的知道綠能(Green energy)、潔凈能源(Clean energy)和永續能源(Sustainable energy)差在哪嗎?

-----廣告,請繼續往下閱讀-----

嗯,坦白說這真的很混亂。在我們之前影片發表後,馬上有能源研究者提醒我們影片中的介紹不夠準確,因為在台灣雖然國發會把綠能定義為再生能源,美國的能源部則是根本不用 Green Energy,只使用 Clean Energy,而這就包括了核能。此外,歐盟也不用 Green Energy 這詞,而是指定歐洲綠色政綱(Green Deal)下能符合條件的能源。

比起這些內涵會持續變化的分類名詞,既然現在全球都對「淨零排放」有共識,那我們至少可以明確地將核能重新定位:那就是,核能確實是一個低碳排的發電方式,但,有核安的風險要考量,有核廢料的問題需要解決。在這個前提之下,討論要不要選擇它,應該會更有意義一些。

核電與綠能要或不要,其實沒有永恆正確的答案,歐盟在 2022 年把核能納入永續投資分類,結果現在在多國都面臨訴訟,被認為違反了分類法的初衷,錯誤地引導市場;德國一馬當先廢核,卻又因為烏俄戰爭延役核電,今年四月全數關閉後,能源空缺得改燒煤炭,也令人詬病;法國新建核電廠,且呼籲要將核能產生的氫氣納入可再生燃料,但西班牙跟德國則堅持反對…,就算只看歐洲,就知道要下定決心擁核或廢核,有多困難。

在民主的社會下,我們應該尊重每個人的選擇。但為了對得起選民,比起口號,政治人物更該提出務實的政策,核電廠如何延役?如何解決核廢料的去留?期望的台灣發電比例是什麼?用電安全在哪?不論是哪一方,我們都由衷希望能看到完整的政見與科學論證。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 2