Loading [MathJax]/extensions/tex2jax.js

1

2
0

文字

分享

1
2
0

暗物質比先前認為的還要「暗」

臺北天文館_96
・2015/03/31 ・1625字 ・閱讀時間約 3 分鐘 ・SR值 513 ・六年級

Galaxy cluster MACS J0416.1–2403 with dark matter map
credit: Hubble Space Telescope

暗物質(dark matter)在我們對於宇宙的了解中仍是一個巨大的問號。

不過,瑞士洛桑聯邦理工學院(École Polytechnique Fédérale de Lausanne,EPFL)天文學家 David Harvey 等人利用哈伯太空望遠鏡(Hubble Space Telescope)和錢卓 X 射線觀測衛星(Chandra X-ray Observatory)觀測星系團(galaxy clusters)互撞時,星系團中的暗物質會有什麼樣的行為模式。

結果發現暗物質彼此間的交互作用程度比先前認為的還要少,但這一發現也將暗物質可能的「身份」範圍縮減,希望最終能揭開暗物質的神秘面紗。

目前科學家們對暗物質的瞭解仍然非常粗淺,僅知宇宙中的暗物質含量比可見的一般物質還要多。

-----廣告,請繼續往下閱讀-----

造成這種尷尬境況的原因在於:暗物質不反射、發射或吸收光線,因此無從用現代儀器「看到」這些暗物質,只能透過暗物質對一般可見物質的重力效應來窺見暗物質的存在,因此才會將之稱為「暗」物質。

由於對它的不瞭解,因此對暗物質性質的猜測相當多元化而複雜。

為了更瞭解這些神秘的物質,Harvey 等人透過類似研究可見物質的實驗,期待觀察到暗物質與一般物質撞擊時會發生什麼事。因為規模夠大才能看出撞擊效應,他們挑選了星系團作為觀察目標。

星系主要由恆星、氣體雲和暗物質組成。當星系團發生碰撞事件時,散佈在星系各處的氣體雲會彼此撞擊,而後逐漸減速或甚至停下;換言之,星系撞擊時的氣體-氣體交互作用(gas-gas interaction)非常強。

-----廣告,請繼續往下閱讀-----

然而恆星本身則很少受到星系團撞擊時的氣體阻滯力(gas-star drag)影響,而且由於恆星彼此間的間隙很大,所以並不會彼此影響而使速度減慢,不過如果真的發生恆星互撞,則摩擦減速的力道也還是很龐大的。

先前認為暗物質的行為應該類似子彈星團(Bullet Cluster)中所呈現的。但僅有一個案例,很難預測將會看到什麼。每一次的星系團碰撞都耗時數億年才結束,因此以人類生命而言,我們只能從一個特定角度看到碰撞事件的某一瞬間。

但碰撞案例數量若能增加許多,那麼便可從各個碰撞呈現的片段資訊,拼貼出比較完整的劇情,瞭解事態的發展走向。

Collage of six cluster collisions, with dark-matter maps and X-r
credit: Hubble Space Telescope

Harvey 等人從哈伯和錢卓觀測資料中選取的 72 個大型星系團撞擊事件進行研究。這些撞擊事件發生在不同時期,所見的撞擊角度也互異,有些是從側邊所見,有些則是正面的俯瞰景象。

-----廣告,請繼續往下閱讀-----

既然已知氣體和恆星在星系團互撞過程中會如何行動,以及會在何處發生這些事件,那麼僅需對照暗物質如何作用,就可以幫助科學家縮減暗物質可能的組成成分的範圍。

這些天文學家發現:像恆星一樣,暗物質在劇烈撞擊時會持續前進,並不會慢下來。然而又和恆星不一樣,暗物質之所以不會慢下來,並不是暗物質彼此間距離很遠,碰不到一起的關係。

現行公認的理論認為暗物質是均勻的散佈在星系團內,因此暗物質粒子彼此間應該靠得很近。所以暗物質在星系團撞擊過程中之所以不會慢下來,是因為它們不僅幾乎不與一般可見物質粒子交互作用,而且暗物質彼此間的交互作用程度也比之前認為的還低;這項事實,正是讓 Harvey 等人能縮減暗物質的可能性質的關鍵。

現行最被接受的暗物質理論認為暗物質可能是由「超對稱粒子(supersymmetric particle)」所組成。在標準模型(Standard Model)中,認為電子、質子、中子等所有粒子都有它自己的超對稱粒子伙伴,這些超對稱粒子伙伴的質量比粒子本身稍重一些。

-----廣告,請繼續往下閱讀-----

這項理論迄今還無法獲得實驗證實,不過已經可以協助科學家們解決一些紛爭;超對稱理論其中一項概念認為粒子是穩定且為電中性,與標準模型中的一般粒子僅有很微弱的交互作用。而這些性質,似乎都能解釋暗物質的性質。

Harvey 等人目前計畫要繼續增加碰撞星系團的案例數,甚至考慮將單獨的星系撞擊也納入研究範圍,畢竟單獨星系撞擊的事件比星系團碰撞要常見多了。

資料來源:

  1. Dark matter even darker than once thought. [Hubble space telescope, March 26, 2015 ]
  2. Harvey, D., Massey, R., Kitching, T., Taylor, A., & Tittley, E. (2015). The nongravitational interactions of dark matter in colliding galaxy clusters. Science347(6229), 1462-1465.

本文轉載自網路天文館

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

21
6

文字

分享

0
21
6
暗能量是什麼?看不到也摸不著,我們該如何找到它?
PanSci_96
・2023/11/27 ・5683字 ・閱讀時間約 11 分鐘

愛因斯坦對於宇宙的理解錯了嗎?

愛因斯坦的廣義相對論重新改寫我們對於時間、空間、與質量的認知,也開啟我們對廣大宇宙研究的大門。

在宇宙物理學如同大霹靂快速發展之時,我們也發現愛因斯坦最早提出的宇宙模型,可能並不完全正確。

正確來說,我們發現我們過去對宇宙的理解,可能真的太少了。少到我們至今所觀測到的所有物質,可能仍不到整個宇宙組成的百分之五。並不是說這些能量或物質距離我們太過遙遠,而是他們可能就在附近,而我們卻全然不了解它。

-----廣告,請繼續往下閱讀-----

其中佔了將近宇宙組成七成的「暗能量」,到底是什麼來頭?我們能徹底了解它,同時能為我們宇宙的存在,提供一個正確的解釋模型嗎?又或者我們能掌握它,來改變宇宙的未來嗎?

暗能量(dark energy)到底是什麼?這聽起來有夠中二的名字,難道是暗影大人的新能力嗎?

其實暗能量的「暗」,指的是我們看不到也摸不到,用上各種波段的電磁波都察覺不到,甚至現今沒有任何儀器能偵測到它的存在。因為我們無法感受到它、不知道他們的型態,所以稱為暗能量。也就是說,如果暗影大人或是哪個最終 BOSS 的絕招是「暗能量波動」,當巨大的能量朝你襲來,不用擔心,站在原地就好,因為它只會穿過你的身體,打不中你的。同樣的,你可能聽過的「暗物質」,指的也是我們無法探知的未知物質。也就是說,暗物質並不是指某種特定物質叫做暗物質,任何我們現在還無法探測到的,都可能是暗物質的其中一種。題外話,近年某些暗物質面紗底下的容貌,已經逐漸能被我們窺見,例如微中子。這部分,之後我們介紹暗物質的節目中,再來好好討論,今天先來和大家聊聊佔了宇宙質能 7 成的暗能量。

矛盾大對決來了,既然我們摸不到,也看不到,我們怎麼知道暗能量存在,還是僅存在我們的中二想像中呢?我們得將時間回推到最早認為宇宙中有未知能量存在的那個人,他不是別人,就是鼎鼎大名的愛因斯坦。

-----廣告,請繼續往下閱讀-----

1916 年愛因斯坦推導出廣義相對論,解釋物質和能量如何影響時空的彎曲和演化。愛因斯坦當時認為,宇宙應該是靜態的,但是若宇宙中只有物質,宇宙應該會受重力吸引而塌縮,因此需要與反向的能量來平衡重力,這股能量平均地存在在空間當中。愛因斯坦當時引入了宇宙常數 Λ 來平衡他的靜態宇宙模型,而直到非常近期的 1998 年,暗能量 (dark energy) 這個詞才由物理學家麥可.特納提出。

在愛因斯坦之後,著名宇宙學家傅里德曼提出不同看法,他認為宇宙不一定是平衡的,也可能正在收縮或膨脹當中,並根據廣義相對論推導出 Fridemann 方程式,關於 Fridemann 方程式的故事,先前我們有好好介紹過。

暗能量不只存在於理論上的預測,同時期天文學家開始發現我們熟知的銀河系,並無法代表整個宇宙,原來夜空中很多像星雲的天體,其實是遙遠的星系!宇宙遠比以前認為得大的太多了!1929 年,哈伯進一步發現,這些星系竟然正在遠離我們而去,而且距離我們愈遠的星系,遠離的速度就愈快!宇宙竟然真的是以地球為中心,而地球利用強大的排斥力,將其他星系用力向外推開嗎?當然不是,想像一下,宇宙就像一個葡萄乾麵包,上面布滿的葡萄乾就是各種天體,當麵包發酵膨脹時,不論站在哪顆葡萄乾的視角,所有天體的距離都是互相拉遠,而且距離愈遠的天體,彼此遠離的速度就愈快。

也就是說,哈伯觀測到的結果顯示整個宇宙正在膨脹。但還有一個問題,就是這個宇宙的膨脹速度,是隨著時間經過越來越快的加速膨脹,還是膨脹速度正隨著時間在趨緩的減速膨脹呢?為什麼這個問題很重要?因為如果是減速膨脹,靠現有的重力理論就可以解釋,宇宙中天體所提供的重力,正在使宇宙減速膨脹,甚至宇宙的結局可能會是宇宙重新塌縮。但如果宇宙正在加速膨脹,那麼只考慮重力就不夠了,為了抵抗向內塌縮的重力,勢必要有一股力量要將宇宙向外加速推開。這時,就需要加入暗能量的存在了。

-----廣告,請繼續往下閱讀-----

宇宙真的正在加速膨脹?

為了確認宇宙正在減速或加速膨脹,好推算暗能量是否存在,科學家再次將目光投向宇宙深處。隨著觀測技術愈來愈進步,天文學家可以透過不同方式,觀測更早期的宇宙。

愈遠的天體發出的光,需要經過愈長的時間才能傳到地球。假設我們觀察離地球1億光年遠的星球,由於我們看到的影像是從星球出發後,經過 1 億年後才到達地球,因此在望遠鏡中看到的,其實是該星球一億年前的樣子。只要利用這點,如果我們將望遠鏡頭對向更加遙遠的宇宙深處,就能看到更早期的宇宙樣貌,幫助我們了解宇宙過去的樣子。

科學家主要透過三種方法,分別用來觀測晚期、中期、到早期的宇宙。第一種方法是觀測 Ia 型超新星爆炸,它指的是當一顆緻密白矮星到了生命末期,吸收大量鄰近伴星的氣體,使得內部重力超過某個極限,引發失控的核融合而形成的超新星爆炸。這個爆炸會在瞬間釋放出許多能量,亮度甚至可以媲美整個星系,因此即使是很遙遠的超新星也可以被地球觀測到。最受天文學家關注的是,因為每個 Ia 型超新星爆炸時產生的尖峰光度都相同,可以直接作為觀測或是亮度的比對參考點,又稱為標準燭光。當它離我們愈遠亮度就愈小,只要觀測亮度就可以得知它離我們的距離。

Ia 超新星殘骸。圖/wikimedia

接著,透過光譜分析,我們還能得到這個超新星遠離我的的速度。這就像是救護車在靠近和遠離我們的時候,警笛的聲音頻率會因為我們和救護車相對速度的改變而產生變化,同樣的道理放在電磁波上,當超新星遠離我們,電磁波頻譜的頻率會下降,我們稱為頻譜「紅移」。最後,只要我們同時觀測好幾顆超新星,並且量測每一顆的距離和遠離我們的速度,看看是不是真的離我們越遠的超新星離開的速度越快,就可以知道宇宙正在加速或是減速膨脹。

-----廣告,請繼續往下閱讀-----

第二種方法是觀測宇宙大尺度結構,宇宙中星系的分佈其實是不均勻的,有些地方有星系團,也有一些地方是孔洞,整個宇宙就像是網子一樣。這是因為宇宙在形成星系時,向內的重力以及向外的氣體與光壓力會彼此抗衡,就像我們在擠壓彈力球一樣,向內壓時內部壓力會增強,導致物質向外拋射,壓力減弱後又會停止拋射,這樣來回震盪的過程,就在宇宙中形成一個個震波漣漪,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。有趣的是,當好幾個地方都在震盪,就會產生類似好幾個水波互相撞在一起的干涉現象。而這個宇宙規模的超大水波槽中,波腹部份聚集較多物質就會形成星系團,波節部份不足以形成星系就形成孔洞,是不是覺得我們的宇宙就像是一鍋湯,而我們只是裡面毫不起眼的一顆胡椒粒呢?不過即使是連一粒胡椒都不如的我們,透過觀測宇宙星系分布並透過理論計算,人類科學家還是可以得知這些結構的大小,並且推知這些結構上的星系距離我們多遠,最後再搭配紅移光譜,一樣可以算出宇宙膨脹的速度。今年七月升空,11 月 8 號從太空傳回第一張照片的歐幾里得太空望遠鏡,它的其中一項任務,就是專門觀測重子聲學振盪,來研究宇宙大尺度結構。歐幾里得太空望遠鏡有望帶給我們對宇宙的全新認知,關於這一部分,我們很快會再來深入介紹。

第三種方法是透過觀測宇宙微波背景輻射,它是宇宙的第一道曙光,在此以前,宇宙能量很高,光和電漿相互作用,不會走直線。但是到了宇宙三十八萬歲時,宇宙已經冷卻到足以讓電子與原子核結合,宇宙終於變得乾淨了,光也終於可以走直線。而三十八萬歲時的早期宇宙的畫面,至今仍不斷經過遙遙 137 億年的時間抵達地球,被我們觀測到,稱為宇宙微波背景輻射。有趣的是,根據這些照片,我們能發現早在 137 億年前,宇宙各處就不是均勻的。透過分析這些微波的分布,科學家能計算出當時宇宙的組成成份。這時我們發現,目前的已知物質,也就是元素週期表上看得到的原子,只佔所有能量的 4.93%,而看不到的暗物質,佔 27.17%,那還有 67.9%,將近七成的組成分是什麼?科學家認為就是暗能量。

宇宙微波背景輻射。圖/wikimedia

哇!暗能量佔的比例這麼高?那我們未來有機會從空間中汲取無限的能量嗎?先不要想的這麼美,其實暗能量在宇宙中的密度很低,依照質能等價公式,質量跟能量是可以互相換算的。換算下來暗能量每立方公分只有 10 的負 24 次方公克,相比之下,水的密度是立方公分 1 公克!真的微乎其微。之所以暗能量在宇宙中佔的能量比這麼大,是因為它均勻的存在在廣大無垠的宇宙中,不像一般的物質,只集中在一些星系和星體中。

現在我們知道暗能量存在,而且量也不少,但回到最關鍵問題,這些暗能量到底是怎麼來的呢?

-----廣告,請繼續往下閱讀-----

宇宙與暗能量的未來

科學家普遍認為暗能量是來自「真空能量」,根據量子力學,我們過往認為的真空,其實會不斷短暫的出現粒子並消失。而這些量子漲落便會產生真空能量。雖然這聽起來很玄,但各位看完我們的影片並按下訂閱之後,這些訂閱數就一定會是真的。都看到影片最後一段了,就拜託大家再多動一下手指吧!

而量子力學除了能在真空中產生真空能量以外,這個過程甚至可能幫助我們開啟蟲洞!關於真空能量與時空旅行的關係,可以參考我們的這一集哦(閃電俠)。

為了重新認識我們的宇宙,科學家此時再次拿出了宇宙常數 Λ 和 Fridemann 方程式,建立了一個可以完美解釋前面三種觀測結果的模型-ΛCDM 模型。

ΛCDM 是近代在解釋宇宙微波背景輻射、宇宙大爆炸時,最常被使用的理論。目前對於宇宙歷史與加速膨脹的圖像,也都基於此模型。

-----廣告,請繼續往下閱讀-----
ΛCDM模型,加速擴張的宇宙。圖/wikimedia

不過 ΛCDM 理論仍有兩個致命的問題待解決。第一個是理論中的宇宙常數 Λ,應該要與位置、時間無關,是一個不隨時間變化的常數。然而針對觀測早期和晚期宇宙所計算出來的宇宙常數數值卻不一樣,要如何解釋這個觀測差異?第二個問題是,假設暗能量是真空中的量子漲落所造成,依此推算出的宇宙常數數值,還跟觀測差了 120 個數量級!也就是 10 後面有 120 個零,整個宇宙中的原子數量也才 82 個數量級而已!

因此科學家也提出其他可能的暗物質理論。比如認為暗能量不是來自真空能量,而是由一種未知的粒子場所驅動,而這個場與時間有關,導致早期和晚期宇宙的觀測結果有差異。還有人認為根本沒有暗能量存在,宇宙會膨脹,是因為愛因斯坦的廣義相對論在宇宙學這種大尺度中是不適用的!就像牛頓的萬有引力公式在地球上管用,到了太陽系規模就會出現誤差。或許在宇宙規模還有比廣義相對論更完備的其他理論等待我們發現!另一派科學家也認為沒有暗能量,我們會看到加速膨脹,只是因為銀河系剛好位於宇宙大尺度結構的孔洞中,也就是葡萄乾麵包裡面空氣比較多,口感比較鬆的地方,由於這個地方總體重力比較小,天體也就是葡萄乾之間向外膨脹的速度比較快,但不代表整個葡萄乾麵包都在加速膨脹,宇宙加速膨脹只是局部觀測的假象。

這些理論或許可以解釋部份的問題,但沒有一個能解釋所有觀測數據,而且由於觀測的限制,這些理論都缺乏數據的佐證。因此目前我們只能說,暗能量的效應確實存在,但我們還不知道它確切是什麼。

有人可能想問,研究暗物質對我們真的那麼重要嗎?其實,它不只影響了宇宙過去演化的歷史,也影響著我們將來的命運。由於宇宙膨脹,物質的密度會因為膨脹被稀釋,但如果暗能量是常數,就代表密度不會改變,因此宇宙會膨脹的愈來愈快,導致遙遠的星系加速離我們遠去,最後暗能量會超過所有的基本作用力,包括重力、電磁力和核力,星系、太陽系、地球都將被拉開,甚至中子和質子都互相分離,使原子不復存在,進入大撕裂時期,也將是宇宙最孤獨的結局。不過這是一百多億年後的事情,在那之前地球會先被死去的太陽吞沒,我們應該要先煩惱的是要如何移民其他星球才是。

-----廣告,請繼續往下閱讀-----

最後總結一下,暗能量到底是什麼?很抱歉,經過了幾十年的努力,這個問題依舊是一個問號,但藉由宇宙學的研究,使我們更謙卑更加發覺自身的渺小,我們或許已經掌握許多物質運作的原理,也開發出許多高科技產品,但這些只是整個宇宙的 5% 仔,宇宙中還有許多未知等待我們去探索,而它深深關係到我們的過去和未來。

最後也想問問大家,你覺得當一切真相大白之時,我們會發現暗能量是什麼呢?

  1. 符合最直覺的 ΛCDM 理論,它就是宇宙加速膨脹的元凶!
  2. 它根本不存在,我們甚至需要比廣義相對論更強的理論來解釋!
  3. 依照人類這個物種的感知等級,可能永遠無法了解暗能量的真相!
  4. 我、我已經無法抑制我左手的暗能量了!啊啊啊~

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

2

4
2

文字

分享

2
4
2
2022 年《Science》年度十大科學突破(上):持續進化的 AI 與韋伯太空望遠鏡
PanSci_96
・2022/12/30 ・3733字 ・閱讀時間約 7 分鐘

回顧 2022 年,有沒有讓你印象特別深刻的科學新聞呢?約莫兩星期前,《Science》雜誌公布了今年的十大科學突破,從農業到藝術、從細菌到宇宙、從百萬年前的生態到人類的未來,每一項突破都和我們的日常生活息息相關。

好啦,廢話不多說,現在就來揭曉答案吧!

十大突破之首——遙望宇宙的韋伯太空望遠鏡

今年,韋伯太空望遠鏡(JWST)帶來的震撼,相信你我都印象深刻。

韋伯發布的第一批照片拍到了 SMACS 0723 星系團。圖/Science

早在 1990 年,哈伯太空望遠鏡發射升空後,科學家就開始規劃下一步。他們不只想看見更遙遠的宇宙,也想透過不同的波長,分析地外生命存在的可能性。

-----廣告,請繼續往下閱讀-----

哈伯望遠鏡的觀測波段以可見光為主。確實,紫外線和可見光波長最有利於觀測誕生不久的新星,但隨著數十億年過去,這些新星發出的光,穿過不斷膨脹的宇宙,來到地球,被拉伸到更長的紅外線波長後,哈伯就沒輒了⋯⋯

韋伯望遠鏡可以清楚看見狼蛛星雲的塵埃、氣體雲和碳氫化合物。圖/Science

那麼,要怎麼看見更遙遠的宇宙呢?去年底,歷時 20 年建造、造價 100 億美元的「韋伯太空望遠鏡」順利升空,開啟 150 萬公里的長征。韋伯搭載的科學儀器可以觀測紅外線波段,包括來自宇宙第一批恆星和星系發出的光。

韋伯利用四種不同的紅外線波段觀測系外行星 HIP 65426 b。圖/Science

今年 6 月底,韋伯開始收集數據,三星期後就傳回了第一批深空照片,讓科學家看見了更遙遠、更古老的新星系,徹底改寫我們對宇宙的認識。對於天文學界來說,這是一個充滿奇蹟的時代,韋伯望遠鏡也因此榮登 2022 年最重要的科學突破。

2022 年十大科學突破之首:韋伯太空望遠鏡。影/Science

研發多年生水稻 PR23,減輕農民耕作負擔

盤點世界上最主要的糧食作物,水稻肯定有一席之地!現今,大部分水稻都是一年二至三穫,每年收穫後都得重新種植,對農民來說是非常耗時、費力的工作。

-----廣告,請繼續往下閱讀-----

今年 11 月,中國雲南大學農學院的研究團隊在《Nature Sustainability》發表他們十餘年來嘔心瀝血的研究成果——多年生水稻「PR23」。這是長雄野生稻和 RD23 栽培稻的雜交種,不但可以達到和傳統水稻相仿的產量,還可以省下農民的大把時間、精力與成本。

PR23 第一年的稻作成本與傳統水稻差不多,但從第二年開始,農民就可以跳過育秧、犁田、移栽幼苗的步驟,降低約 50% 的人力成本,到了第五年才需要重新種植。

在中國,PR23 的種植面積超過了 15,000 公頃,平均產量則是每公頃 6.8 噸,略高於傳統水稻。根據非洲和東南亞的試驗數據,PR23 還可以改善土壤結構、增加有機質含量、減少梯田和高地的水土流失。

與此同時,科學家也正在觀察兩個潛在問題:一、雜草和病原體是否會積累在田地中,導致 PR23 需要更多除草劑,二、是否會排放更多的一氧化二氮,加劇溫室效應。但目前不可否認的是,多年生水稻有助於降低成本、提高收益,確實是一項重要的突破。

-----廣告,請繼續往下閱讀-----
有了多年生水稻,農民每年都能省下好幾週的工作量。圖/Science

誰說 AI 沒創意?AI 的創造力可是超乎想像呢!

說到 AI,有沒有讓你想起去年的十大科學突破呢?沒錯,去年的十大突破之首就是預測蛋白質 3D 結構的 DeepMind 團隊,而在今年,他們著手設計全新的蛋白質,用來開發疫苗、建築材料和奈米機器。

與此同時,DeepMind 發布了 AlphaTensor,用來找出更有效率的矩陣乘法演算法。高中就學過的矩陣是代數中最簡單的運算之一,可以用來壓縮網路資料、辨識語音指令、模擬與預測天氣、生成電腦遊戲圖形等。

另外,DeepMind 還發布了可以自主編寫程式、解決問題的 AlphaCode。在程式解題競賽網站 Codeforces 定期舉辦的比賽中,AlphaCode 甚至打敗了過半的參賽者,取得排名前 54% 的成績,跌破創辦人的眼鏡。

除了科學、數學、程式設計之外,AI 在藝術領域更是大放異彩。

繼 OpenAI 去年發布繪圖軟體 DALL-E 後,今年 4 月發布了進化版的 DALL-E 2,只要輸入幾個字詞,AI 模型就能自動生成圖像。在 9 月,有一位藝術家利用類似的 AI 繪圖工具 Midjourney 奪下美國科羅拉多州博覽會首獎。

-----廣告,請繼續往下閱讀-----

此舉在藝術界掀起一股旋風,卻也引來了哲學辯論和道德抨擊,但毫無疑問的是,人類可以借助逐年進化的 AI 拓展創造力,開發出更多、更好的工具。

使用 Midjourney 創作的科羅拉多州博覽會首獎作品。圖/Science

超級華麗的大~大~大細菌!

在你的印象中,細菌是不是都很小、不用顯微鏡就看不見呢?今年 2 月,科學家在法屬西印度群島發現一種肉眼可見的巨無霸細菌——華麗硫珠菌(Thiomargarita magnifica),震驚了生物學界。

一般來說,細菌沒有細胞核和膜狀胞器,遺傳物質都在細胞中自由漂浮,但華麗硫珠菌真的很華麗,不只可以長到 2 公分,比多數細菌大上 5000 倍,而且還有隔間可以容納 1200 萬個基因組——這大概是多數細菌基因總量的 3 倍。

身為一種不應該有膜的原核生物,華麗硫珠菌的結構或許即將改寫原核生物和真核生物的定義,甚至有機會成為一塊拼圖,補足細胞進化過程中缺失的環節。

-----廣告,請繼續往下閱讀-----
華麗硫珠菌挑戰了「細菌」的傳統定義。圖/Science

開發新疫苗,呼吸道合胞病毒治療現曙光

在這 COVID-19 肆虐之年,美國感染呼吸道合胞病毒(RSV)的病例數也急遽上升。呼吸道合胞病毒傳染性極強,通常只會引起類似感冒的輕微症狀,但在嬰幼兒身上,這種病毒會使肺部發炎,而在老年人身上,會使既有的心肺疾病惡化。

早在 50 多年前,就有科學家試圖開發呼吸道合胞病毒的疫苗,但在臨床試驗導致 80% 的接種者住院、2 名兒童死亡後,開發就此中斷。後來,科學家發現敗筆在於這種殺死病毒後製成的「滅活疫苗」所引發的抗體較弱,不只殺不掉活生生的病毒,還能反過來幫助病毒破壞氣管。

如今,莫爾豪斯醫學院(Morehouse School of Medicine)開發了能夠引發強效抗體的新疫苗。在輝瑞(Pfizer)和葛蘭素史克藥廠(GSK)進行臨床試驗後,證實這兩種新疫苗可以保護嬰兒和老年人,不會引起嚴重副作用,而在孕婦注射後,也能將抗體傳給胎兒。

雖然過往的失敗讓開發團隊心存疑慮,但目前沒有任何數據顯示疫苗不安全,其中幾種候選疫苗也可能將在明年獲得監管機構批准上市。

-----廣告,請繼續往下閱讀-----
RSV 疫苗證實能有效保護易受感染的嬰幼兒和老年人。圖/Science

好啦~這篇到這裡,先介紹前五項突破就好!因為《Science》今年提供的內容實在是太精彩了,為了避免讀者一次閱讀太多字很累,只好拆成上下兩篇⋯⋯看完這篇後,如果你好奇另外五項突破是何方神聖,就來看第二篇吧!

接續下篇:2022 年《Science》年度十大科學突破(下):EBV 病毒與發燒的地球

-----廣告,請繼續往下閱讀-----
所有討論 2