0

0
0

文字

分享

0
0
0

暗物質比先前認為的還要「暗」

臺北天文館_96
・2015/03/31 ・1627字 ・閱讀時間約 3 分鐘 ・SR值 513 ・六年級
Galaxy cluster MACS J0416.1–2403 with dark matter map
credit: Hubble Space Telescope

暗物質(dark matter)在我們對於宇宙的了解中仍是一個巨大的問號,不過,瑞士洛桑聯邦理工學院(École Polytechnique Fédérale de Lausanne,EPFL)天文學家David Harvey等人利用哈伯太空望遠鏡(Hubble Space Telescope)和錢卓X射線觀測衛星(Chandra X-ray Observatory)觀測星系團(galaxy clusters)互撞時,星系團中的暗物質會有什麼樣的行為模式,結果發現暗物質彼此間的交互作用程度比先前認為的還要少,但這一發現也將暗物質可能的「身份」範圍縮減,希望最終能揭開暗物質的神秘面紗。

目前科學家們對暗物質的瞭解仍然非常粗淺,僅知宇宙中的暗物質含量比可見的一般物質還要多。造成這種尷尬境況的原因在於:暗物質不反射、發射或吸收光線,因此無從用現代儀器「看到」這些暗物質,只能透過暗物質對一般可見物質的重力效應來窺見暗物質的存在,因此才會將之稱為「暗」物質。由於對它的不瞭解,因此對暗物質性質的猜測相當多元化而複雜。

為了更瞭解這些神秘的物質,Harvey等人透過類似研究可見物質的實驗,期待觀察到暗物質與一般物質撞擊時會發生什麼事。因為規模夠大才能看出撞擊效應,他們挑選了星系團作為觀察目標。星系主要由恆星、氣體雲和暗物質組成。當星系團發生碰撞事件時,散佈在星系各處的氣體雲會彼此撞擊,而後逐漸減速或甚至停下;換言之,星系撞擊時的氣體-氣體交互作用(gas-gas interaction)非常強。然而恆星本身則很少受到星系團撞擊時的氣體阻滯力(gas-star drag)影響,而且由於恆星彼此間的間隙很大,所以並不會彼此影響而使速度減慢,不過如果真的發生恆星互撞,則摩擦減速的力道也還是很龐大的。

先前認為暗物質的行為應該類似子彈星團(Bullet Cluster)中所呈現的。但僅有一個案例,很難預測將會看到什麼。每一次的星系團碰撞都耗時數億年才結束,因此以人類生命而言,我們只能從一個特定角度看到碰撞事件的某一瞬間。但碰撞案例數量若能增加許多,那麼便可從各個碰撞呈現的片段資訊,拼貼出比較完整的劇情,瞭解事態的發展走向。

Collage of six cluster collisions, with dark-matter maps and X-r
credit: Hubble Space Telescope

Harvey等人從哈伯和錢卓觀測資料中選取的72個大型星系團撞擊事件進行研究。這些撞擊事件發生在不同時期,所見的撞擊角度也互異,有些是從側邊所見,有些則是正面的俯瞰景象。既然已知氣體和恆星在星系團互撞過程中會如何行動,以及會在何處發生這些事件,那麼僅需對照暗物質如何作用,就可以幫助科學家縮減暗物質可能的組成成分的範圍。

這些天文學家發現:像恆星一樣,暗物質在劇烈撞擊時會持續前進,並不會慢下來。然而又和恆星不一樣,暗物質之所以不會慢下來,並不是暗物質彼此間距離很遠,碰不到一起的關係。現行公認的理論認為暗物質是均勻的散佈在星系團內,因此暗物質粒子彼此間應該靠得很近。所以暗物質在星系團撞擊過程中之所以不會慢下來,是因為它們不僅幾乎不與一般可見物質粒子交互作用,而且暗物質彼此間的交互作用程度也比之前認為的還低;這項事實,正是讓Harvey等人能縮減暗物質的可能性質的關鍵。

現行最被接受的暗物質理論認為暗物質可能是由「超對稱粒子(supersymmetric particle)」所組成。在標準模型(Standard Model)中,認為電子、質子、中子等所有粒子都有它自己的超對稱粒子伙伴,這些超對稱粒子伙伴的質量比粒子本身稍重一些。這項理論迄今還無法獲得實驗證實,不過已經可以協助科學家們解決一些紛爭;超對稱理論其中一項概念認為粒子是穩定且為電中性,與標準模型中的一般粒子僅有很微弱的交互作用。而這些性質,似乎都能解釋暗物質的性質。

Harvey等人目前計畫要繼續增加碰撞星系團的案例數,甚至考慮將單獨的星系撞擊也納入研究範圍,畢竟單獨星系撞擊的事件比星系團碰撞要常見多了。

 

資料來源:

  1. Dark matter even darker than once thought. [Hubble space telescope, March 26, 2015 ]
  2. Harvey, D., Massey, R., Kitching, T., Taylor, A., & Tittley, E. (2015). The nongravitational interactions of dark matter in colliding galaxy clusters. Science347(6229), 1462-1465.

 

本文轉載自網路天文館

文章難易度
臺北天文館_96
477 篇文章 ・ 12 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
952 篇文章 ・ 247 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策