0

1
0

文字

分享

0
1
0

多重宇宙真的存在?艾弗雷特三世(Hugh Everett III)的多世界詮釋

PanSci_96
・2024/07/28 ・2651字 ・閱讀時間約 5 分鐘

在前一篇我們聊到,為了反駁量子力學的機率詮釋和疊加態的說法,薛丁格提出著名的思想實驗:「薛丁格的貓」。既然貓在現實中不可能既生又死,所以量子理論一定有不夠完備的地方。

延伸閱讀:物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯

然而,真的是這樣嗎?有沒有既符合量子理論又能解釋這個實驗的說法呢?

測量問題:量子系統的確定性

在量子力學中,量子系統的狀態在被測量前是不可確定的,所有可能狀態以機率的形式共存,這時系統處於所有狀態的疊加態。只有當我們進行測量時,系統才會變成某個特定狀態。

-----廣告,請繼續往下閱讀-----

例如,原子裡的電子並沒有一個確定的位置,它可能出現在任意地方,像波一樣散佈於空間中。當你測量它,它有一定機率出現在某處。愛因斯坦曾問:「是不是只有當你在看它的時候,月亮才在那兒呢?」對他而言,月亮不管有沒有人在看,都懸掛在天上,他認為量子系統應該也是如此,總是有個確定的狀態,只是我們還沒搞清楚而已。

而薛丁格在與愛因斯坦討論後提出「薛丁格的貓」思想實驗。薛丁格利用貓不可能處於既生又死的疊加態來質疑量子理論,雖然引起了話題,但並未成功反駁量子理論。

量子力學的理解不斷累積,我們知道了許多愛因斯坦和薛丁格當時不知道的事情,因此在某種程度上,回應他們的質疑已經不再是問題。

多世界詮釋:分岔的宇宙

1957 年,美國普林斯頓大學的博士生艾弗雷特三世(Hugh Everett III)提出了一個大膽的想法。他認為,宇宙的一切可以由單一個宇宙波函數(universal wave function)來描述,遵循量子力學的波動方程式。當我們進行測量時,例如檢查「薛丁格的貓」實驗結果,不同的子系統(如貓、毒藥瓶和測量者)會在交互作用下彼此連動,呈現出兩組狀態:貓死亡、毒藥瓶打破、測量者看到貓死亡,或貓活著、毒藥瓶沒破、測量者看到貓活著。

-----廣告,請繼續往下閱讀-----
艾弗雷特三世(Hugh Everett III)提出的多世界詮釋,之後成為許多科幻題材的靈感來源。圖/wikimedia

延伸閱讀:首創平行世界理論,艾弗雷特三世誕辰|科學史上的今天:11/11

測量會讓宇宙波函數分岔出兩個不同的分支,或說兩個平行世界。在其中一個宇宙,貓會活著;另一個宇宙,貓則會死亡。兩個宇宙都真實存在,沒有貓既死又活的事情。

在艾弗雷特的詮釋中,宇宙波函數隨著時間演化,就像一株大樹,每當有測量發生,就會分出不同的枝幹。每個枝幹代表一個獨立的平行世界或平行歷史,這就是著名的多世界詮釋(many-worlds interpretation)。歷史上每次的測量或選擇都會分裂出不同的世界,產生超級龐大的平行世界數量,彼此之間無法溝通或交換資訊。

雖然我們在這個世界買樂透沒中獎,但在另一個平行世界裡,我們可能是中頭獎的大富翁。多世界詮釋的優點是,它與量子理論沒有矛盾,能解決薛丁格的貓等悖論。

然而,儘管有人曾提出過驗證多世界詮釋的方式,現今的科技無法做到。艾弗雷特的博士論文沒有受到學界的多大關注,他之後改從事與物理研究無關的工作。直到1970年代,多世界詮釋才開始受到注意,並在艾弗雷特於1982年去世後,變得越來越受歡迎,甚至被科幻作品挪用。

-----廣告,請繼續往下閱讀-----

量子去相干:量子特性的喪失

量子去相干(quantum decoherence)是另一種解決方法。在雙狹縫干涉實驗中,同一波源的波從兩個狹縫出來並產生干涉條紋,代表它們存在相干性(相互干涉的性質)。若對其中一道狹縫的光波進行干擾,相干性會消失,干涉條紋不會出現,這就是去相干。

在量子力學裡,微觀粒子具有波的特性,也會發生相互干涉。波函數隨外在環境存在許多不同可能狀態,彼此相干。在電子的雙狹縫實驗中,電子以波的形式通過兩個狹縫,接著彼此干涉,形成干涉條紋。當我們測量電子的路徑,就會讓系統不同可能狀態的相干性消失,這就是量子去相干。

只要一個量子系統沒有完全孤立,與外界有交互作用,就算是干擾。想像將熱水和冷水倒在一起,熱水分子和冷水分子會互相作用,交換熱能和動量,最終達到平衡——一杯溫水。原本的每個熱水分子和冷水分子可以視為孤立系統,但當它們互相作用,改變狀態,就必須將整杯水視為整體。

量子系統的測量就像這個例子,測量者和量子系統之間的交互作用會導致量子系統與外界交換資訊,無法再用原本的波函數描述,最終逐漸喪失量子特性。

-----廣告,請繼續往下閱讀-----

現實中的量子去相干

在電子的雙狹縫干涉實驗中,若要知道電子通過雙狹縫時的確切位置和路徑,就必須偵測它,與之產生交互作用,導致量子去相干,干涉條紋消失。量子去相干的概念下,測量是一種交互作用,會引起量子去相干現象。隨著交互作用程度不同,量子系統會逐漸失去量子特性。

在現實世界中,所有量子系統都不可能完全孤立,與外界互動後,時間久了必然去相干。現實生活中的所有物體,雖然由量子系統組成,但當原子構築成更大的結構,會因彼此的交互作用喪失量子特性。因此,愛因斯坦問的「是不是只有當你在看它的時候,月亮才在那兒呢?」我們可以回答:「並不是這樣。」因為月亮已經不是量子系統。

薛丁格的貓不可能存在?

在「薛丁格的貓」實驗中,當作為量子系統的不穩定原子核被偵測到衰變後,交互作用就完成了,量子系統的狀態就確定了,貓也就死定了。此外,貓自身因量子去相干的關係,不會是量子系統,不可能同時處於生和死的狀態。

目前量子相關科技,如量子電腦、量子通訊等,在研發上遇到的困難,部分來自於量子去相干現象。量子電腦使用的量子位元必須保持在隔絕於外界、不受干擾的環境中,才能維持在量子態。一旦有風吹草動,量子位元可能出錯。隨著量子位元數目變多,要同時維持全部的量子態也變得更加困難,這些就是當前技術需要克服的挑戰了。

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

PanSci_96
1266 篇文章 ・ 2624 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
通向未來的原子薄膜:二維材料
顯微觀點_96
・2025/09/02 ・4123字 ・閱讀時間約 8 分鐘

本文轉載自顯微觀點

在古典科學觀念中,材料在物理學上的內含性質(intensive property)就如同它們的指紋,足以辨識材料成分的身分、本質,不會因材料大小、形狀而改變。但是 21 世紀的科學家卻發現,將材料剝離分解到無法更薄、僅剩 1 層原子厚的二維平面,竟會出現超導體、超流體、活躍強健的激子等奇特現象,與原本的物理性質大異其趣。

這種新興的「二維材料(2-dimensional materials)」物理不僅召喚著科學家的濃厚好奇心,也具備科技創新的潛力。要探究二維材料這些超越既有材料科學認知的神祕特性,就要從量子世界中的電子行為「能帶理論」談起。

決定材料性質的電子能帶

能帶理論(Energy Band Theory)是以高低不同的「能量帶」空間觀念,對晶體中的電子行為進行解讀:電子平時處於能量較低的價電子帶(亦稱價帶,covalence band)。此能帶的電子受到原子核束縛,不能自由運動,且許多電子塞滿其中,沒有流動空間,因此價帶中的電子不能導電。

-----廣告,請繼續往下閱讀-----

若從外來光子獲得足夠能量,電子會躍升到傳導帶(亦稱導帶, conduction band),在此空間充沛的能帶,電子能夠自由移動,在外部電場的作用下形成電流、展現出導電性。

電子能帶中的「能隙」大小,左右著電子躍升導帶的難易,也決定了材料的導電性。

導帶、價帶之間的能量帶稱為「能隙(band gap)」,是電子無法停留的能帶位階,不同種類晶體的能隙大小不同,電子由價帶升往導帶的難易度因此相異。若價帶電子得到的外來能量並未超過能隙大小,就沒辦法升往導帶。

金屬晶體具有極小的能隙,某些金屬的導帶與價帶甚至重疊,因此電子可以輕易進入導帶,展現出良好導電性。而絕緣體的能隙極大,電子難以躍升到導帶,因此困在價帶,無法導電。半導體介於金屬與絕緣體之間,在適當的能量激發或能隙調整下,就能展現導電性,人類得以調控電訊號。

備受眾望的石墨烯,終究因為其沒有電子能隙、導電性過佳,難以成為實用的半導體材料。但是另一種二維材料:過渡金屬二硫族化物(Transition Metal Dichalcogenides, TMD)卻展現出了可調控的導電性,讓半導體產業界的希望之火繼續燃燒,也為物理學界展開寬闊的未知境地。

-----廣告,請繼續往下閱讀-----

未來的超級材料:TMD

TMD二維材料的大型原子之間具有原子核、電子的相互作用,產生一般材料罕見的超導特性與巨磁阻,成為具備高潛力的半導體材料。從上方觀察,TMD如石墨烯一般形成六角形晶格平面,但從側面看,會發現上下兩層硫族原子將金屬原子夾在中央,猶如一個原子三明治。

單層的 TMD 結構,從側面看到三層原子面(a),從上方看則有類似石墨烯的六角形晶體(b)。Source: Wikipedia

在TMD的原子三明治菜單上,二碲化鎢(WTe2)、二硫化鉬(MoS2)、二硫化鎢(WS2)、二硒化鉬(MoSe2)、二硒化鎢(WSe2)等,都是極具潛力的二維層狀半導體材料。

這些潛力TMD與石墨烯相似的不僅是晶格排列模式,同時它們也具有強力的層內共價鍵與薄弱的層間凡德瓦力,這種力量分配讓它們更容易剝離成單層結構。相較之下,其他材料(例如純金屬)通常具備延伸共價鍵或金屬鍵,材料塊不容易層層剝落、難以形成單層二維材料。

TMD 單層分子平面成形之後,電子能帶結構會從原本的間接能隙轉變為直接能隙,使互相吸引的導帶電子與價帶電洞(即為激子)結合時直接放出光子。在間接能隙結構中,激子結合的能量會轉換為熱能,不利於能量或訊號傳輸。單層 TMD 的直接能隙則讓它們在光照之下,可以透過電子活動而激發出螢光,成為光致發光(photoluminescene)的良好材料。

-----廣告,請繼續往下閱讀-----
硒化鍺(GeSe)與硒化錫(SnSe)的二維材料形成異質結構,並以石墨烯為基板,展現出不同的物理特性。電子便在此有限的空間架構中,展現出異於常態的行為。

矽或鍺等等電子元件常見材料,在二維狀態下依然保持間接能隙,能量會化為熱能,不會轉換為光。因此 TMD 二維材料取代傳統材料,成為產業界創新光電材料的希望所在。

透過顯微操作,科學家更利用 TMD 的層間凡德瓦力,將不同的 TMD 二維材料疊合、錯位,形成異質結構(Heterostructures),透過材料堆疊位置調整電子能帶,產生如超導體或莫特絕緣體等特殊物理現象。就像在玩奈米尺度的樂高積木,只是成果比樂高更令人驚奇。電子在異質結構中產生的新奇行動模式,有機會應用在量子計算、奈米元件等領域。

此外,TMD 二維材料本質上比石墨烯更加特殊之處,是其中的金屬原子質量較重,導致更強的電子自旋-軌道耦合(Spin-Orbit Coupling, SOC)效應,於是 TMD 在 2 個電子能谷(Energy Valleys)中表現不同的電子特性,使科學家能夠操縱電子的「谷自由度」來進行訊號傳輸(類似1與0的二進位訊號)。

透過不同於傳統半導體的超導、絕緣、谷電子學性質,TMD 二維材料可以提供極快速、低耗能的訊號調控與傳導,在小於奈米的空間中,也能保持訊號精確。此外,由於激子的活動現象,二維材料也更有機會實現利用光子傳輸訊號的計算機元件。

-----廣告,請繼續往下閱讀-----

在家裡研究量子物理

提及激子的研究方法,台灣大學人工低維量子材料物理實驗室(Quantum Physics of Artificial Low-dimensional Materials Lab, 又稱 QPALM 實驗室)主持人陳劭宇解釋,雖然量子力學被多數人視為難以捉摸的神秘領域,但製作二維材料的方法卻可以非常貼近日常生活。

陳劭宇副研究員除了專精於二維材料的實驗設計與操作,也積極推廣二維材料物理的知識與重要性。攝影:楊雅棠

陳劭宇說,「我們實驗室最常用來製作二維材料的工具,你一定也用過,就是有名的 Scotch Tape 法。」

Scotch Tape 法又稱機械剝離法(exfoliation):使用膠帶黏住小塊材料,材塊對面再以膠帶黏貼,接著將兩側膠帶撕開,就會將材料一分為二。如此反覆黏撕,最後出現極為單薄的單層二維材料。這也是當年海姆(A. Geim)與諾沃蕭洛夫(S. Novoselov)將石墨塊製作成單層石墨烯、邁向 2010 年諾貝爾物理學獎的方法。陳劭宇團隊則更進一步,對各種材料塊採用不同的膠帶,以得到最佳的剝離效果。

若你在生活百貨結帳時遇見購買各式膠帶的顧客,除了封箱收納,他也可能是位準備動手研究量子物理的科學家。

得到單層材料之後,科學家透過顯微操作將其放上六方氮硼(h-BN)等基材,再加熱使膠帶與二維材料分離。材料與操作方法相當平易近人,卻可以結合顯微觀察、拉曼光譜等方法從中測得奇妙的量子物理現象。

-----廣告,請繼續往下閱讀-----
QPALM 實驗室的研究生正在利用膠帶製造二維材料。攝影:楊雅棠

陳劭宇回憶道,「這是可以自己『在家動手做』的物理研究,在 COVID-19 疫情嚴峻隔離的時候,我們輪班工作、不能持續待在實驗室。只好自己組裝一台顯微鏡,用不同的光線觀察二維材料,竟因此發現某些材料在特定顏色光照射下,才有辦法清晰觀測。」

這個發現雖然尚未發表,但也成為他的實驗秘技之一。而當時「在家動手做量子物理」的研究過程也錄製成影片,作為疫情期間透過網路推廣科學的素材。

在二維材料研究中,材料層數是最重要的數字,而光學顯微鏡就在材料層被剝離後,擔任檢驗的工具。陳劭宇說,不同的材料有各自適合的顯微觀察方式,從常見的穿透光、反射到微分干涉(DIC)顯微術都是他會採用的方法。

確認材料層數之後,便能以光、電與材料互動,或是疊合異質材料,並以顯微鏡或拉曼光譜儀觀測,針對觀測結果進行運算,實驗人員可以得知二維材料的激子束縛能、能量轉換、導電性等物理特質。

-----廣告,請繼續往下閱讀-----

例如,因為二維材料的層間空間極小,因此受到激發的電子可能移動到相鄰的異質材料層,而其相應的電洞還停留在原本材料層,電子與電洞在不同材料層互相吸引,形成奇妙的跨層激子(interlayer excitons),產生新穎的電學、光學、磁學現象。

陳邵宇舉例,暗激子的超流體狀態就是其中一種神奇現象。他說,「超導體的節能來自於傳輸電荷時不耗能,而超流體則是粒子移動時不耗能。若能控制超流體狀態的激子,我們就能得到超級節能的元件。」

陳劭宇闡明,超流激子在理論上已被預測,但還沒有人在實驗中成功操縱這項性質。他表示,控制超流激子是物理學界共有的、也是他個人追求的遠大目標之一。二維材料中包含超流體、高效率光電轉換等特質,為未來科技開創了廣大的可能。在陳劭宇等物理學家的持續投入下,我們有機會親眼見到他們利用輕於鴻毛的二維材料,實現宏大的未來科技。

(更多深入淺出的二維材料知識,請看降維展開新宇宙:陳劭宇和激子物理

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

參考資料

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。