Loading [MathJax]/extensions/tex2jax.js

0

20
6

文字

分享

0
20
6

暗能量是什麼?看不到也摸不著,我們該如何找到它?

PanSci_96
・2023/11/27 ・5683字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

愛因斯坦對於宇宙的理解錯了嗎?

愛因斯坦的廣義相對論重新改寫我們對於時間、空間、與質量的認知,也開啟我們對廣大宇宙研究的大門。

在宇宙物理學如同大霹靂快速發展之時,我們也發現愛因斯坦最早提出的宇宙模型,可能並不完全正確。

正確來說,我們發現我們過去對宇宙的理解,可能真的太少了。少到我們至今所觀測到的所有物質,可能仍不到整個宇宙組成的百分之五。並不是說這些能量或物質距離我們太過遙遠,而是他們可能就在附近,而我們卻全然不了解它。

-----廣告,請繼續往下閱讀-----

其中佔了將近宇宙組成七成的「暗能量」,到底是什麼來頭?我們能徹底了解它,同時能為我們宇宙的存在,提供一個正確的解釋模型嗎?又或者我們能掌握它,來改變宇宙的未來嗎?

暗能量(dark energy)到底是什麼?這聽起來有夠中二的名字,難道是暗影大人的新能力嗎?

其實暗能量的「暗」,指的是我們看不到也摸不到,用上各種波段的電磁波都察覺不到,甚至現今沒有任何儀器能偵測到它的存在。因為我們無法感受到它、不知道他們的型態,所以稱為暗能量。也就是說,如果暗影大人或是哪個最終 BOSS 的絕招是「暗能量波動」,當巨大的能量朝你襲來,不用擔心,站在原地就好,因為它只會穿過你的身體,打不中你的。同樣的,你可能聽過的「暗物質」,指的也是我們無法探知的未知物質。也就是說,暗物質並不是指某種特定物質叫做暗物質,任何我們現在還無法探測到的,都可能是暗物質的其中一種。題外話,近年某些暗物質面紗底下的容貌,已經逐漸能被我們窺見,例如微中子。這部分,之後我們介紹暗物質的節目中,再來好好討論,今天先來和大家聊聊佔了宇宙質能 7 成的暗能量。

矛盾大對決來了,既然我們摸不到,也看不到,我們怎麼知道暗能量存在,還是僅存在我們的中二想像中呢?我們得將時間回推到最早認為宇宙中有未知能量存在的那個人,他不是別人,就是鼎鼎大名的愛因斯坦。

-----廣告,請繼續往下閱讀-----

1916 年愛因斯坦推導出廣義相對論,解釋物質和能量如何影響時空的彎曲和演化。愛因斯坦當時認為,宇宙應該是靜態的,但是若宇宙中只有物質,宇宙應該會受重力吸引而塌縮,因此需要與反向的能量來平衡重力,這股能量平均地存在在空間當中。愛因斯坦當時引入了宇宙常數 Λ 來平衡他的靜態宇宙模型,而直到非常近期的 1998 年,暗能量 (dark energy) 這個詞才由物理學家麥可.特納提出。

在愛因斯坦之後,著名宇宙學家傅里德曼提出不同看法,他認為宇宙不一定是平衡的,也可能正在收縮或膨脹當中,並根據廣義相對論推導出 Fridemann 方程式,關於 Fridemann 方程式的故事,先前我們有好好介紹過。

暗能量不只存在於理論上的預測,同時期天文學家開始發現我們熟知的銀河系,並無法代表整個宇宙,原來夜空中很多像星雲的天體,其實是遙遠的星系!宇宙遠比以前認為得大的太多了!1929 年,哈伯進一步發現,這些星系竟然正在遠離我們而去,而且距離我們愈遠的星系,遠離的速度就愈快!宇宙竟然真的是以地球為中心,而地球利用強大的排斥力,將其他星系用力向外推開嗎?當然不是,想像一下,宇宙就像一個葡萄乾麵包,上面布滿的葡萄乾就是各種天體,當麵包發酵膨脹時,不論站在哪顆葡萄乾的視角,所有天體的距離都是互相拉遠,而且距離愈遠的天體,彼此遠離的速度就愈快。

也就是說,哈伯觀測到的結果顯示整個宇宙正在膨脹。但還有一個問題,就是這個宇宙的膨脹速度,是隨著時間經過越來越快的加速膨脹,還是膨脹速度正隨著時間在趨緩的減速膨脹呢?為什麼這個問題很重要?因為如果是減速膨脹,靠現有的重力理論就可以解釋,宇宙中天體所提供的重力,正在使宇宙減速膨脹,甚至宇宙的結局可能會是宇宙重新塌縮。但如果宇宙正在加速膨脹,那麼只考慮重力就不夠了,為了抵抗向內塌縮的重力,勢必要有一股力量要將宇宙向外加速推開。這時,就需要加入暗能量的存在了。

-----廣告,請繼續往下閱讀-----

宇宙真的正在加速膨脹?

為了確認宇宙正在減速或加速膨脹,好推算暗能量是否存在,科學家再次將目光投向宇宙深處。隨著觀測技術愈來愈進步,天文學家可以透過不同方式,觀測更早期的宇宙。

愈遠的天體發出的光,需要經過愈長的時間才能傳到地球。假設我們觀察離地球1億光年遠的星球,由於我們看到的影像是從星球出發後,經過 1 億年後才到達地球,因此在望遠鏡中看到的,其實是該星球一億年前的樣子。只要利用這點,如果我們將望遠鏡頭對向更加遙遠的宇宙深處,就能看到更早期的宇宙樣貌,幫助我們了解宇宙過去的樣子。

科學家主要透過三種方法,分別用來觀測晚期、中期、到早期的宇宙。第一種方法是觀測 Ia 型超新星爆炸,它指的是當一顆緻密白矮星到了生命末期,吸收大量鄰近伴星的氣體,使得內部重力超過某個極限,引發失控的核融合而形成的超新星爆炸。這個爆炸會在瞬間釋放出許多能量,亮度甚至可以媲美整個星系,因此即使是很遙遠的超新星也可以被地球觀測到。最受天文學家關注的是,因為每個 Ia 型超新星爆炸時產生的尖峰光度都相同,可以直接作為觀測或是亮度的比對參考點,又稱為標準燭光。當它離我們愈遠亮度就愈小,只要觀測亮度就可以得知它離我們的距離。

Ia 超新星殘骸。圖/wikimedia

接著,透過光譜分析,我們還能得到這個超新星遠離我的的速度。這就像是救護車在靠近和遠離我們的時候,警笛的聲音頻率會因為我們和救護車相對速度的改變而產生變化,同樣的道理放在電磁波上,當超新星遠離我們,電磁波頻譜的頻率會下降,我們稱為頻譜「紅移」。最後,只要我們同時觀測好幾顆超新星,並且量測每一顆的距離和遠離我們的速度,看看是不是真的離我們越遠的超新星離開的速度越快,就可以知道宇宙正在加速或是減速膨脹。

-----廣告,請繼續往下閱讀-----

第二種方法是觀測宇宙大尺度結構,宇宙中星系的分佈其實是不均勻的,有些地方有星系團,也有一些地方是孔洞,整個宇宙就像是網子一樣。這是因為宇宙在形成星系時,向內的重力以及向外的氣體與光壓力會彼此抗衡,就像我們在擠壓彈力球一樣,向內壓時內部壓力會增強,導致物質向外拋射,壓力減弱後又會停止拋射,這樣來回震盪的過程,就在宇宙中形成一個個震波漣漪,稱為重子聲學振盪(BAO,baryon acoustic oscillations)。有趣的是,當好幾個地方都在震盪,就會產生類似好幾個水波互相撞在一起的干涉現象。而這個宇宙規模的超大水波槽中,波腹部份聚集較多物質就會形成星系團,波節部份不足以形成星系就形成孔洞,是不是覺得我們的宇宙就像是一鍋湯,而我們只是裡面毫不起眼的一顆胡椒粒呢?不過即使是連一粒胡椒都不如的我們,透過觀測宇宙星系分布並透過理論計算,人類科學家還是可以得知這些結構的大小,並且推知這些結構上的星系距離我們多遠,最後再搭配紅移光譜,一樣可以算出宇宙膨脹的速度。今年七月升空,11 月 8 號從太空傳回第一張照片的歐幾里得太空望遠鏡,它的其中一項任務,就是專門觀測重子聲學振盪,來研究宇宙大尺度結構。歐幾里得太空望遠鏡有望帶給我們對宇宙的全新認知,關於這一部分,我們很快會再來深入介紹。

第三種方法是透過觀測宇宙微波背景輻射,它是宇宙的第一道曙光,在此以前,宇宙能量很高,光和電漿相互作用,不會走直線。但是到了宇宙三十八萬歲時,宇宙已經冷卻到足以讓電子與原子核結合,宇宙終於變得乾淨了,光也終於可以走直線。而三十八萬歲時的早期宇宙的畫面,至今仍不斷經過遙遙 137 億年的時間抵達地球,被我們觀測到,稱為宇宙微波背景輻射。有趣的是,根據這些照片,我們能發現早在 137 億年前,宇宙各處就不是均勻的。透過分析這些微波的分布,科學家能計算出當時宇宙的組成成份。這時我們發現,目前的已知物質,也就是元素週期表上看得到的原子,只佔所有能量的 4.93%,而看不到的暗物質,佔 27.17%,那還有 67.9%,將近七成的組成分是什麼?科學家認為就是暗能量。

宇宙微波背景輻射。圖/wikimedia

哇!暗能量佔的比例這麼高?那我們未來有機會從空間中汲取無限的能量嗎?先不要想的這麼美,其實暗能量在宇宙中的密度很低,依照質能等價公式,質量跟能量是可以互相換算的。換算下來暗能量每立方公分只有 10 的負 24 次方公克,相比之下,水的密度是立方公分 1 公克!真的微乎其微。之所以暗能量在宇宙中佔的能量比這麼大,是因為它均勻的存在在廣大無垠的宇宙中,不像一般的物質,只集中在一些星系和星體中。

現在我們知道暗能量存在,而且量也不少,但回到最關鍵問題,這些暗能量到底是怎麼來的呢?

-----廣告,請繼續往下閱讀-----

宇宙與暗能量的未來

科學家普遍認為暗能量是來自「真空能量」,根據量子力學,我們過往認為的真空,其實會不斷短暫的出現粒子並消失。而這些量子漲落便會產生真空能量。雖然這聽起來很玄,但各位看完我們的影片並按下訂閱之後,這些訂閱數就一定會是真的。都看到影片最後一段了,就拜託大家再多動一下手指吧!

而量子力學除了能在真空中產生真空能量以外,這個過程甚至可能幫助我們開啟蟲洞!關於真空能量與時空旅行的關係,可以參考我們的這一集哦(閃電俠)。

為了重新認識我們的宇宙,科學家此時再次拿出了宇宙常數 Λ 和 Fridemann 方程式,建立了一個可以完美解釋前面三種觀測結果的模型-ΛCDM 模型。

ΛCDM 是近代在解釋宇宙微波背景輻射、宇宙大爆炸時,最常被使用的理論。目前對於宇宙歷史與加速膨脹的圖像,也都基於此模型。

-----廣告,請繼續往下閱讀-----
ΛCDM模型,加速擴張的宇宙。圖/wikimedia

不過 ΛCDM 理論仍有兩個致命的問題待解決。第一個是理論中的宇宙常數 Λ,應該要與位置、時間無關,是一個不隨時間變化的常數。然而針對觀測早期和晚期宇宙所計算出來的宇宙常數數值卻不一樣,要如何解釋這個觀測差異?第二個問題是,假設暗能量是真空中的量子漲落所造成,依此推算出的宇宙常數數值,還跟觀測差了 120 個數量級!也就是 10 後面有 120 個零,整個宇宙中的原子數量也才 82 個數量級而已!

因此科學家也提出其他可能的暗物質理論。比如認為暗能量不是來自真空能量,而是由一種未知的粒子場所驅動,而這個場與時間有關,導致早期和晚期宇宙的觀測結果有差異。還有人認為根本沒有暗能量存在,宇宙會膨脹,是因為愛因斯坦的廣義相對論在宇宙學這種大尺度中是不適用的!就像牛頓的萬有引力公式在地球上管用,到了太陽系規模就會出現誤差。或許在宇宙規模還有比廣義相對論更完備的其他理論等待我們發現!另一派科學家也認為沒有暗能量,我們會看到加速膨脹,只是因為銀河系剛好位於宇宙大尺度結構的孔洞中,也就是葡萄乾麵包裡面空氣比較多,口感比較鬆的地方,由於這個地方總體重力比較小,天體也就是葡萄乾之間向外膨脹的速度比較快,但不代表整個葡萄乾麵包都在加速膨脹,宇宙加速膨脹只是局部觀測的假象。

這些理論或許可以解釋部份的問題,但沒有一個能解釋所有觀測數據,而且由於觀測的限制,這些理論都缺乏數據的佐證。因此目前我們只能說,暗能量的效應確實存在,但我們還不知道它確切是什麼。

有人可能想問,研究暗物質對我們真的那麼重要嗎?其實,它不只影響了宇宙過去演化的歷史,也影響著我們將來的命運。由於宇宙膨脹,物質的密度會因為膨脹被稀釋,但如果暗能量是常數,就代表密度不會改變,因此宇宙會膨脹的愈來愈快,導致遙遠的星系加速離我們遠去,最後暗能量會超過所有的基本作用力,包括重力、電磁力和核力,星系、太陽系、地球都將被拉開,甚至中子和質子都互相分離,使原子不復存在,進入大撕裂時期,也將是宇宙最孤獨的結局。不過這是一百多億年後的事情,在那之前地球會先被死去的太陽吞沒,我們應該要先煩惱的是要如何移民其他星球才是。

-----廣告,請繼續往下閱讀-----

最後總結一下,暗能量到底是什麼?很抱歉,經過了幾十年的努力,這個問題依舊是一個問號,但藉由宇宙學的研究,使我們更謙卑更加發覺自身的渺小,我們或許已經掌握許多物質運作的原理,也開發出許多高科技產品,但這些只是整個宇宙的 5% 仔,宇宙中還有許多未知等待我們去探索,而它深深關係到我們的過去和未來。

最後也想問問大家,你覺得當一切真相大白之時,我們會發現暗能量是什麼呢?

  1. 符合最直覺的 ΛCDM 理論,它就是宇宙加速膨脹的元凶!
  2. 它根本不存在,我們甚至需要比廣義相對論更強的理論來解釋!
  3. 依照人類這個物種的感知等級,可能永遠無法了解暗能量的真相!
  4. 我、我已經無法抑制我左手的暗能量了!啊啊啊~

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
E10 低碳汽油:台灣減碳新契機,為何我們應該接受?
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/17 ・3468字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與美國穀物協會合作,泛科學企劃執行。

台灣將在 2040 年禁售燃油車。但別急,現在路上開的舊有車款不會馬上報廢消失,因為舊有的車輛會繼續開到年限結束。根據計算,當禁售燃油車的那一天來臨時,還有大約 60% 的車輛是燃油車。這時,在多數交通工具還是燃油的情況下,美國、歐盟等國已經開始使用酒精燃料來減少碳排放,那麼,台灣也能做到嗎?

你聽過 E3、E10 汽油嗎?

這是指在汽油中加入酒精,E3 代表有 3% 的汽油被酒精取代,而 E10 則是 10% 的汽油換成酒精。酒精是一種抗爆震性能更好的燃料,且比化石燃料更環保,因為它可以來自生質燃料,碳排放也較低。即便算上運輸和加工的碳足跡,用玉米製造的乙醇仍比傳統汽油的碳排放低了 43%。其實,在美國、歐洲、澳洲等地,E10 或更高比例的酒精汽油早已廣泛使用,這在我們之前的影片中也有提過。

現在,台灣有 14 間加油站可以加到 E3 汽油,而中油也正積極促使相關部門開放 E10 汽油的銷售。

-----廣告,請繼續往下閱讀-----

不過,在推動這項改變之前,仍有許多民眾對酒精汽油有疑慮。大家最關心的問題是,把不是汽油的燃料放到引擎中,到底會不會對車輛引擎造成不良影響?例如會不會影響引擎運行,甚至影響里程數?
其實,換燃料確實會對引擎有影響,因為不同燃料燃燒後所產生的能量與副產物都不一樣。但別擔心,根據我們之前的討論,2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。換句話說,除了少數舊車或特殊車型,約 95% 的汽機車都不需要擔心這個相容性問題。

2011 年以後生產的所有汽車,還有大部分 1990 年代後期生產的汽機車,都能直接相容 E10 汽油。圖 / 美國穀物協會提供

E10 汽油在效能上的表現,會不會受到影響?

學過化學的人都知道,燃燒其實是一種氧化反應,可以用化學式表達。也就是只要汽缸的大小是固定的,就能算出空氣中能參與氧化反應的氧氣分子有多少,進而推算出每次汽缸燃燒時,應該搭配多少的燃料。

當引擎運作時,汽缸內的氧氣分子會與燃料反應,產生動力。為了最佳化效能,引擎的噴油嘴會精準控制每次的進油量,確保空氣和燃料的比例,稱為「空燃比」。接著調整噴油嘴的設定,讓出油量符合我們的需求。

每當空氣成分改變,燃料量或燃料的種類更換時,空燃比就會產生變化。在燃料相對空氣來說比較多時,我們通常稱為「富油」;相反的,如果燃料相比空氣來的少,就稱為「貧油」。如果我們把汽油換成百分之百的酒精,因為酒精每單位體積所需要的氧氣比較少,而且熱值比較低,因此會產生貧油現象,推力感受起來自然也會比較低。

要解決這個問題,方法其實不難,只要增加燃料量即可。而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。

而巴西早已證明,使用 E100 汽油是可行的。巴西近 50 年來推動 E85、E100 燃料車輛,並展示了彈性燃料引擎的優勢。圖/美國穀物協會

這類交通工具被稱為彈性燃料引擎,顧名思義,能很彈性的使用汽油、E100 酒精汽油、或是任何比例的甲醇、乙醇、汽油的混合物。彈性燃料引擎跟一般引擎最大的差別,就是內建了「燃料成分感測器」。能透過判斷燃料的種類與比例,調整噴油嘴的出油量設定以及點火正時,讓引擎的輸出動力維持在最佳狀態,確保引擎效能不受影響。

-----廣告,請繼續往下閱讀-----

所謂的點火正時,指的是火星塞點火的時機。不同的燃料,化學反應的速度與膨脹的體積不同,當然會對應不同的點火時機。

但是 E100 其實也不是純酒精?

大家都知道,蒸餾酒需要經過多次反覆蒸餾,為什麼不能只蒸餾一次就好呢?原因在於,酒精與水的沸點雖然不同,但它們不完全互斥,會產生交互作用。在蒸餾過程中,即使酒精的沸點較低,水仍然會在加熱的過程中,隨著酒精部分蒸發進入容器中。

事實上,當酒精濃度達到 95.63% 時,不論再怎麼蒸餾,濃度也不會再上升。這是因為當酒精濃度接近這個比例時,酒精與水的沸點非常接近,這種現象稱為「共沸」,意思是酒精和水的混合物會一起沸騰,無法再進一步蒸餾分離。

共沸現象的結果,就是為什麼市面上銷售的藥用酒精,濃度最高都是 95%,而非 100%。因為更高濃度就必須使用脫水劑等方式處理,成本會提高,或是因為有添加物而不符合藥用標準。所以當然,E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。

-----廣告,請繼續往下閱讀-----
E100 汽油裡面,實際上使用的也是濃度 95% 的酒精,而不是 100%。 圖 / 美國穀物協會提供

解決迷思:酒精汽油是否容易因吸收水分,而產生油水分離?

事實上,酒精和水是高度互溶的,這使得高比例的酒精在汽油中有更高的水分耐受性。簡單來說,進入油箱的水氣,會溶在酒精汽油中而不會產生油水分離。

根據美國國家可再生能源實驗室的研究,即使在高溫高濕的極端環境下,E10 酒精汽油也需要經過三個月才會出現明顯的油水分離。而三個月也是一般汽油建議最長的保存時間,因為汽油放太久就會氧化。

也就是說,酒精與水混和物的特性,不是把酒精和水的相加除以二那麼簡單,它們的交互作用更加複雜。

一篇刊登在《國際能源研究期刊》的研究指出,在可變壓縮比引擎中的實驗結果,加入酒精後,引擎的功率會逐漸升高,在 E10 酒精時為最佳比例效果。

-----廣告,請繼續往下閱讀-----

當然,實際情況和實驗室當然不能直接類比。大多數汽車和機車並未專門為酒精汽油做調整,那這樣會有多大影響呢?根據英國政府的官方結論,直接使用 E10 汽油與一般汽油相比,每公升的里程數大約會降低 1%,但在日常駕駛中,這個差異幾乎不會被察覺。實際上,載貨量和駕駛習慣對油耗的影響,遠遠大於是否使用 E10 汽油的影響。

更好的一點是,酒精其實是一種常見的工業用品,以每美國為例,在過去一年中,酒精的離岸價格實際上都比汽油還低,因此不用擔心酒精會讓油價變貴。

此外,經過調校的引擎也不必擔心推力問題。事實上,F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。

F1 賽車從 2022 年開始使用 E10 作為燃料,納斯卡賽車更早在 2011 年就採用了 E15 燃料,運行上沒有太大問題。圖/unsplash

最重要的是,使用 E10 燃料的好處明顯更多。由於酒精和烷類燃料的分子式不一樣,酒精分子式中多了一個氧原子,這使得燃燒過程中反應會更完全,能夠產生更多二氧化碳而非有毒的一氧化碳,同時降低一氧化氮和二氧化氮等氮氧化物的產生。

-----廣告,請繼續往下閱讀-----

最關鍵的一點,酒精與化石燃料相比,能夠更快速地幫助減碳。只要確保使用永續農法、不與糧食競爭土地的前提下,所製造的玉米乙醇,碳排量就是比化石燃料還要低。

E10 低碳汽油是填補減碳缺口的最快方案,挑戰只在接受度

英國引入 E10 後,每年減碳 75 萬噸,相當於減少 35 萬輛汽車的碳排量。而台灣呢?目前根據政策規劃,台灣 2040 年起將新售的汽機車全面電動化。依照這個目標進程,在 2025 年將達成減碳 288.6 萬噸的目標。然而,這距離運輸部門須減少 487 萬噸碳排量目標,還差 198 萬噸。

如果燃油車全面改用 E10 低碳汽油,則能減碳 202 萬噸,幾乎能完全彌補缺口。這項方案的優勢在於,E10 與一般汽油性質相近,不需更換新的引擎設計或架設特規加油站,執行門檻低。

實際上,目前推動低碳汽油最大的瓶頸,大概就是民眾對於這個新燃料的接受度了吧!如果接受度提升,購買量上升,成本也有機會進一步再下降。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
用科學定義左邊:當宇稱對稱被顛覆時,物理學如何重新書寫規律?
PanSci_96
・2024/12/16 ・1888字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

揭開宇宙的對稱之謎

如果有人問你:「什麼是左邊?」你可能會說:「左手那邊就是左邊。」但如果對方問:「左手是哪一隻?」你可能回答:「心臟那邊的手就是左手。」這樣的回答對人類來說很容易理解,但如果對方是一個從未見過人類的外星人,該怎麼解釋呢?

這個問題看似簡單,實際上涉及了物理學中的深奧話題。1956 年,三位華人科學家楊振寧、李政道和吳健雄,通過實驗揭示了一個驚人的事實:我們的宇宙對「左」與「右」其實並不完全對稱。這一發現推翻了人類長期以來對對稱性的認識。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

宇稱對稱性:鏡子中的世界會一樣嗎?

要了解這個發現,我們需要先認識「宇稱」的概念。宇稱(Parity)是物理學中用來描述對稱性的一種方法。它的意思是,如果我們把空間中的座標 (x, y, z) 反轉成 (-x, -y, -z),自然界的規律應該還是一樣的。例如,當一顆蘋果從樹上掉下來,我們用鏡子看時,蘋果還是會掉向地面,而不是飛向天空。這說明鏡像中的世界和真實世界是對稱的。

很長一段時間裡,科學家認為這種對稱性適用於所有自然現象,無論是在宏觀還是微觀世界。然而,到了 1950 年代,一些基本粒子的行為挑戰了這種觀點。

-----廣告,請繼續往下閱讀-----

宇稱不守恆:弱交互作用的例外

在物理學中,有四種基本交互作用:重力、電磁力、強交互作用和弱交互作用。弱交互作用是描述粒子衰變的力量,比如中子會通過弱交互作用衰變成質子、電子和一個反微中子。

1956 年,楊振寧和李政道提出一個大膽的假設:在弱交互作用中,宇稱對稱性可能並不成立。他們指出,雖然大多數物理現象在鏡像中是對稱的,但弱交互作用的某些過程可能偏好「左手性」。

楊振寧與李政道提出一個大膽的假設,指出在弱交互作用中可能破壞宇稱對稱性。圖/envato

為了驗證這個假設,他們邀請吳健雄設計了一個關鍵實驗,這就是後來著名的「吳氏實驗」。

吳氏實驗:揭示宇宙偏愛左手性

吳健雄選擇使用鈷-60 原子的 β 衰變作為實驗對象。鈷-60 是一種不穩定的同位素,會釋放出電子和反微中子。她將這些原子冷卻到極低溫,並用強磁場讓它們的自旋方向統一。

-----廣告,請繼續往下閱讀-----

實驗的關鍵是觀察電子的發射方向。如果宇稱守恆,那麼電子應該會均勻地向各個方向發射。然而,吳健雄的實驗結果卻顯示,電子有明顯的偏向,總是傾向於與原子自旋方向相反的方向發射。

這一結果證明,在弱交互作用中,鏡像世界與真實世界並不對稱,宇稱不守恆。而且,它表明自然界偏好「左手性」,或者說弱交互作用是一個「左撇子」。

為什麼這個發現重要?

宇稱不守恆的發現改變了我們對宇宙基本規律的理解。物理學家過去認為自然界的規律應該是完全對稱的,但這一發現表明,在某些情況下,對稱性會被打破。

這項研究還引發了更多的問題。例如,為什麼宇宙會偏愛「左手性」?是否還有其他交互作用也會破壞對稱性?隨後的研究顯示,如果將宇稱(P 對稱)和電荷共軛(C 對稱)結合在一起,則可以恢復某種對稱性,這被稱為「CP 對稱」。

-----廣告,請繼續往下閱讀-----

然而,1964 年的實驗又發現,CP 對稱在某些情況下也會被打破,這進一步推動了對基本物理規律的研究。特別是 CP 對稱破壞可能與宇宙中物質多於反物質的原因有關,這是當代物理學的一個重要課題。

CP 對稱破壞揭示了宇宙偏愛「左手性」與物質多於反物質的可能原因。圖/envato

用科學解釋左與右

回到最初的問題:如果我們需要向外星人解釋「左邊」的概念,該怎麼做呢?現在我們知道,可以通過像吳氏實驗這樣的方法,用弱交互作用來區分左與右。簡單地說,只要觀察粒子的衰變方向,就能定義出哪一邊是「左」。

這個發現讓我們更深入地理解了自然界的基本規律。它不僅是一次物理學的重大突破,也讓我們重新認識到宇宙的奇妙與複雜。

歡迎訂閱 Pansci Youtube 頻道 鎖定每一個科學大事件!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。