0

6
2

文字

分享

0
6
2

出來單挑啊!同樣都是鼎鼎大名的太空望遠鏡,哈伯與韋伯到底誰比較強?

htlee
・2022/09/21 ・2026字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

最近,韋伯太空望遠鏡發布首批科學影像,終於看到敲碗好久的結果——韋伯拍到了人類從未見過的許多東西!有人說,韋伯是哈伯的繼任者,但不知道大家是否好奇過,哈伯和韋伯到底誰比較強?

哈伯望遠鏡和韋伯望遠鏡之戰,正式開打!

這個問題有點難回答,因為兩部望遠鏡都是當代科技的結晶。哈伯是 1990 年升空的王者,韋伯是 30 年後科技進步下的產物,我試著用客觀的方式來比較這兩部太空望遠鏡。

哈伯觀測可見光,韋伯觀測紅外光

哈伯的主鏡直徑是 2.4 公尺,韋伯則是 6.5 公尺,韋伯的主鏡直徑比哈伯大 2.7 倍,這也是大家最常比較的部分。可是,如果主鏡大就比較厲害,那麼夏威夷大島上的凱克 10 公尺望遠鏡,不就比哈伯和韋伯更強?

哈伯的主鏡直徑是 2.4 公尺(左),韋伯的則是 6.5 公尺(右)。圖/維基百科

哈伯與韋伯觀測的波段不同,用途也不一樣。哈伯主要觀測的波段在可見光,可見光是指人類眼睛可以看見的光或顏色範圍,也就是紅、橙、黃、綠、藍、靛和紫。從紅光到紫光,光的波長由長到短,紅光的波長大約是 0.62–0.74 微米(1 微米=0.001 公釐),紫光的範圍則是 0.38–0.45 微米。

紅外光是指比紅光波長更長的光,也就是波長比 0.7 微米更長,這是韋伯望遠鏡主要觀測宇宙的波段。

哈伯和韋伯太空望遠鏡觀測的波段,一個在可見光,另一個在紅外光,所以在功用上本來就不一樣,如果要比較的話就要小心,不然就像拿橘子跟蘋果相比,拿不同的東西做比較顯得很突兀。

誰看得比較清楚?來比一比解析度吧!

哈伯與韋伯可以拿來做比較的是解析度,解析度的值(角秒)愈低,表示能看到天體愈細微的部分,解析度跟主鏡直徑和觀測的波長有關。望遠鏡主鏡愈大,解析度愈好;另外也跟觀測的波長成正比。

解析度的計算公式。

以下兩張影像分別是史匹哲太空望遠鏡(Spitzer Space Telescope)和韋伯拍的天空中同一區域紅外光影像,拍攝的紅外波長也差不多(史匹哲:8 微米,韋伯 7.7 微米),不過兩幅影像的解析度卻差很多,韋伯的影像中可以看到更多的細節,史匹哲則好像糊成一團。

史匹哲與韋伯望遠鏡的影像解析度比較,顯然韋伯的影像解析度高很多。圖/NASA

當觀測的波長一樣時,解析度跟觀測望遠鏡的主鏡直徑成反比。史匹哲的主鏡是 0.85 公尺,所以韋伯的解析力是史匹哲的 6.5/0.85=7.8 倍!主鏡的大小直接反應在解析度上,韋伯與史匹哲在解析度上高下立判!

解析度除了跟主鏡的直徑成反比,也跟觀測的波長成正比。所以同一面主鏡觀測天體,用愈短的波長觀測解析度愈好。下圖是史匹哲望遠鏡觀測 M81 星系的結果,同樣 0.85 公尺的主鏡觀測,隨著觀測波長的增加,解析度變差。

史匹哲望遠鏡拍攝的 M81 星系,拍攝的波段是 24(上)、70(中)、160 微米(下),拍攝的波段愈長,解析度愈差。圖/NASA

答案揭曉——哈伯的解析度略勝一籌!

前面提到解析度跟主鏡直徑與觀測波長的關係有一個重要前提,主鏡必須研磨到完美、光滑,也就是主鏡上不能出現高低起伏。如果主鏡不完美,像遊樂場裡的哈哈鏡,不能聚焦成像,解析度自然不好。

波長愈短對鏡面的要求愈高。哈伯太空望遠鏡的鏡面對 0.5 微米波長更長的光是完美的,比 0.5 微米波長更短的光波則呈現不完美,韋伯望遠鏡的主鏡則是對 2 微米更長的波長是光滑的。(光學上,物理學家的說法是哈伯和韋伯分別在 0.5 和 2 微米達到繞射極限。)

哈伯和韋伯望遠鏡最佳解析度分別在 0.5 微米和 2 微米,根據前面的解析度公式,哈伯在 0.5 微米的解析度是 0.05 角秒,而韋伯在 2 微米的解析度是 0.08 角秒,結論是哈伯的解析度比韋伯稍微好一點!也就是哈伯老當益壯,一點也不比韋伯差。

史蒂芬五重星系,哈伯(左)與韋伯(右)拍攝的影像,從解析度來看,兩部太空望遠鏡不相上下。圖/NASA

從哈伯到韋伯,有如長江後浪推前浪

天文學家從 1990 年開始,透過哈伯望遠鏡研究宇宙,這三十年來科學家已經把哈伯的功能發揮到極致,我們對宇宙的了解很多都來自哈伯的觀測。不過這三十年的努力也讓天文學家發現哈伯不足的地方,科學家知道關鍵在紅外線觀測能力。前一代的紅外望遠鏡史匹哲無法達到需求,天文學家只能殷殷期盼韋伯。

韋伯首批公布的影像中,幾乎都是哈伯曾經拍過的天體,從科學上來說,比較可見光和紅外影像資料可以對目標天體更多了解,不過我認為這應該是韋伯對哈伯致敬的方式,感謝哈伯三十多年的貢獻!

韋伯站在巨人的肩膀上,必定能看得更暗、更遠!

文章難易度
htlee
19 篇文章 ・ 8 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!

0

5
3

文字

分享

0
5
3
解析韋伯太空望遠鏡第一批影像背後的科學意義
EASY天文地科小站_96
・2022/07/14 ・4350字 ・閱讀時間約 9 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

萬眾矚目的詹姆士韋伯太空望遠鏡,在經過半年的校準與測試後,終於公開了它拍攝到的第一批成果。這些五彩斑斕、美麗絕倫的照片究竟是什麼樣的天體,照片的背後又有哪些深藏的意義?就讓我們一起深入解密,韋伯的第一批照片吧!

韋伯望遠鏡是什麼?

詹姆士.韋伯太空望遠鏡是美國、歐洲與加拿大太空總署合作開發的新一代旗艦級紅外線太空望遠鏡,也是無數天文學家夢寐以求、能幫助人類破解許多未解天文迷團的利器。

韋伯的研發其實早從 1996 年就已經開始,但是由於開發時遇到諸多困難,導致嚴重的預算超支與進度延宕,這台耗資上百億美金的超級望遠鏡,直到去年年底才終於從法屬圭亞那發射中心,用一枚亞利安 5 號運載火箭發射升空,前往距離地球 150 萬公里的日地第二拉格朗日點。

拉格朗日點是什麼?

日地拉格朗日點一共有五個。當物體在這些點上,其受到來自太陽與地球的重力恰到好處,因此太空船只需要少量的燃料,就可以長期與地球和太陽保持穩定的相對位置,可謂是地球軌道附近的風水寶地。

而韋伯繞行的,是位於地球後方的第二拉格朗日點,簡稱 L2。之所以選擇這裡,是因為只有 L2 的位置剛好會讓地球、太陽、月亮都在同一側,而這三個星體正是天文望遠鏡的主要紅外線光害來源。位在 L2 的韋伯,就可以用它的遮陽帆一次把三顆星體全部擋住,認真凝望遠方而不受干擾,因此 L2 可以說是觀測宇宙的絕佳地點。升空的幾個月之間,韋伯已經完成一系列的儀器校準工作,一步步把望遠鏡調整到最佳狀態。

相比知名前輩「哈伯太空望遠鏡」,韋伯的優勢不只是擁有比哈伯大六倍的鏡面,更重要的是它是以紅外線為主力觀測波段。宇宙膨脹造成嚴重紅移,但哈伯望遠鏡的守備範圍主要是可見光,波長範圍是 90 – 2500 奈米,可說是鞭長莫及啊。

這時換上以波長 600 – 28500 奈米的紅外線為守備範圍的韋伯,就可以讓我們看到更遙遠、更古老的宇宙。此外,同一個天體在可見光和紅外線看起來,往往長得相當不一樣。這個強大的紅外線觀測能力,正是韋伯最引以為傲的武器。

作為深具儀式感的第一批科學影像,韋伯這次公布的影像分別對應四個主要科學主題:早期宇宙星系演化恆星的生命循環系外行星

1. 早期宇宙—— 星系團 SMACS 0723 與重力透鏡效應

星系團 SMACS 0723。圖/Webb Space Telescope

畫面中心黃白色的天體,是由成百上千的星系共同組成的星系團 SMACS 0723。在韋伯之前,哈伯太空望遠鏡就曾經花費數個禮拜的時間拍攝這個星系團。然而擁有更大鏡面、更精良儀器的韋伯,僅用了 12.5 個小時就拍出了解析度更高、畫面品質更好的照片,讓我們看到許多以前難以辨識的黯淡星系。可見哈伯與韋伯在觀測能力上的差距。

對天文學家來說,圖中最令人興奮的其實不是前景壯闊的星系團,而是後方這些經過重力透鏡扭曲和放大的小小星系們。星系團龐大的質量扭曲了周圍的時空,讓整個星系團好像一塊巨大的放大鏡一樣,可以偏折和聚焦通過的星光,稱為「重力透鏡效應」。

當星系團後方更遙遠、更古老的星系發出的光線通過星系團時,就會被星系團的重力透鏡效應偏折和聚焦,形成而圖中無數弧形的扭曲影像。

紅圈為照片上受重力透鏡影響的區域之一,可以看到星系被拉長。

這些仍在襁褓中的小小星系,往往正在快速的孕育新的恆星,或是互相合併,因此有著混沌不規則的形狀。離我們越遠的星體發出的光,需要越長的時間才能到達我們的眼中。因此研究這些遙遠且古老的星系,能幫助天文學家理解宇宙早期的模樣。

2. 星系演化——史蒂芬五重奏(Stephan’s Quintet)

上一張照片讓我們認識星系的起源,這張「史蒂芬五重奏(Stephan’s Quintet)」則可以讓天文學家更仔細地研究星系內的複雜結構,以及星系與星系之間的交互作用。

史蒂芬五重奏(Stephan’s Quintet)。圖/Webb Scape Telescope

正如其名,「史蒂芬五重奏(Stephan’s Quintet)」是由五個視覺上相當靠近的星系所組成。但其實最左邊的這個星系(NGC7320)與另外四者並無關聯,只是從地球上看剛好位在天空中差不多的位置而已。

圖片中偏向黃白色,感覺如絲綢般順滑的部分是在近紅外線波段拍攝,主要顯示的是星系中恆星的分布;而醒目的橘紅色,則是來自中紅外波段的資料,展示的是星系中的高溫塵埃,以及星系中的氣體高速對撞時產生的震波(Shock wave)。

除了影像,韋伯還使用光譜儀仔細檢視了影像中右上方的星系(NGC 7319)中心,因為那裏有一顆比太陽重 2400 萬倍的超大質量黑洞,正在吸食周遭的氣體,並在過程中釋放巨大的能量。

藉由觀察光譜的細節,韋伯可以分辨出像是氬離子、氖離子或是氫分子等等化學組成,甚至知道氣體的溫度、運動速度這些從一般照片難以辨識的資訊。

史蒂芬五重奏就像一個天然的實驗場,讓天文學家研究星系演化的詳細過程。

3. 系外行星——WASP-96 b 的大氣光譜

這一張照片可能是整批影像中,視覺上最不起眼的一張,它是系外行星 WASP-96 b 的大氣光譜。

WASP-96 b 的大氣光譜。圖/Webb Scape Telescope

最近 20 多年來,人類對太陽系以外行星的認識越來越多。截至今日,人類已經發現超過 5000 顆系外行星。然而,以現有的觀測技術,天文學家通常只能用一些間接的方法,測量它們的質量、半徑、軌道週期等粗略的特性。想知道這個行星是否適合生命生存,就不能少了行星大氣層的化學組成和溫度資訊。

那要怎麼取得行星的大氣資訊呢?當行星通過恆星跟地球中間時,恆星的一部分星光將會通過行星的大氣層,並被行星的大氣吸收。吸收的多寡和波段,取決於行星大氣層的溫度和化學組成等特性。此時,天文學家就可以藉由分析光譜中的各種特徵,去回推行星大氣層的性質。

圖片中的白點,即是韋伯實際觀測 WASP-96 b 時取得的光譜資訊。而藍色的線,則是天文學家認為最貼合觀測數據的理論模型。

根據這個觀測結果,天文學家計算出 WASP-96 b 的大氣溫度約為 725°C,大氣中明顯有著水氣,並推測可能還有雲和霾存在。未來進一步的分析和觀測,將為世人揭開更多系外行星的神祕面紗。

4. 恆星的生命循環——「南環狀星雲」與「船底座大星雲(Carina)」

最後兩張照片都與恆星的生命循環有關。正如人會有生老病死,恆星也是一樣。

恆星一般誕生在巨大分子雲中,氣體在重力吸引下逐漸塌縮、升溫並點燃核融合,成為一顆恆星。

當小質量的恆星步入晚年,其結構容易變得不穩定,最終將自己的外層氣體拋射出去,形成美麗的行星狀星雲,也將氣體吐回到星際空間中,成為下一代恆星的養分。氣體都拋射完之後留下的核心,就是白矮星。

各位現在看到的,是暱稱「南環狀星雲」的行星狀星雲,左右兩張圖分別於近紅外線與中紅外線拍攝。

南環狀星雲。圖/Webb Scape Telescope

我們可以看到,左圖中的影像比右圖要更清晰一些,這是因為在相同的望遠鏡口徑下,波長越短所能達到的理論解析度就越高。

有趣的是,在左圖中看起來位於星雲中心的明亮恆星,其實並不是行星狀星雲的核心。真正的核心其實是在其左下方,一顆被塵埃包裹著的黯淡白矮星。在近紅外線波段的影像中,這顆白矮星幾乎淹沒在隔壁恆星的炙烈星芒之中。

但在中紅外波段,由於恆星的亮度相對降低,包裹著白矮星的塵埃發出的光就變得清晰可見。再次展示即使是同一個天體,使用不同的波段進行觀測,往往可以看到不同的東西。

最後這片壯麗的宇宙山崖,則是位於「船底座大星雲 Carina」西北角的 NGC3324 恆星形成區。在這裡,源自星雲中無數初生恆星所發出的炙烈輻射、恆星風與噴流,吹散、游離了星雲中原有的濃密氣體與塵埃。交織出這片壯闊而複雜的結構。

船底座大星雲(Carina)。圖/Webb Scape Telescope

這張照片一共結合了這六個不同的濾鏡的影像拍攝而成。每個濾鏡涵蓋的波段各不相同,代表的物理意義也不一樣。比如(F090W、F200W、F444W)這三個寬帶濾鏡,分別在影像中按照波長順序,以藍色、綠色和紅色這三原色呈現,為照片打下骨幹。而在此之上,照片的製作團隊又疊上青色代表氫原子的(F187N)濾鏡影像,以黃色代表氫分子的(F470N)濾鏡影像,以及用橘色代表甲烷和多環芳香烴的 (F335M) 濾鏡影像,為照片再添更多的細節。

想要將這麼多個波段的影像全部結合起來,仔細調整讓細節更加突出,最終呈現出一張如此絢麗又震撼的照片,是非常不容易的。這展示了韋伯太空望遠鏡不僅在科學上相當重要,在藝術上也價值非凡。

最後別忘了,以上只挑選介紹了第一批資料中最具代表性的幾張,更多關於五個目標的照片和光譜,可以在韋伯的官網上找到。而這批照片,又只是韋伯未來二十年服役生涯中,前兩個月的小試牛刀而已。韋伯的時代,才剛剛要開始!

EASY天文地科小站_96
20 篇文章 ・ 672 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

5
2

文字

分享

0
5
2
用黑白相機拍出色彩繽紛的宇宙
全國大學天文社聯盟
・2022/04/30 ・2550字 ・閱讀時間約 5 分鐘

  • 文/邵思齊,現就讀臺大地質科學系,著迷於大自然的鬼斧神工。

現代的人們生活在充滿明亮人造光源的城鎮中,難以想像純粹的夜空是什麼樣子。對宇宙中天體的印象,多半來自各地天文台與太空望遠鏡所捕捉的絢麗星雲、星團、星系。但這些影像中的顏色是真實的嗎?如果我們能夠用肉眼看到這些天體,它們的顏色真能如影像中如此的五彩繽紛嗎?

色彩的起源:為什麼人眼能看到顏色?

電磁波跨越各種尺度的波段,有波長遠小於 1 奈米的伽瑪射線,也有波長數百公里長的無線電波。但人類眼睛中的的感光細胞僅能感測到波長介於 400-700 奈米之間的電磁波,也就是僅有這段電磁波能夠以紅到紫的色彩出現在人類的視野當中,所以我們對外界的認知就受限於這小一段稱為可見光(Visible Light)的視窗。人之所以能夠辨識不同的顏色,靠的是人眼中的視錐細胞。視錐細胞分成 S、M、L 三種,分別代表 short, medium, long,其感測到的不同波長的光,大致可對應到藍色、綠色、紅色。

S、M、L 三種視錐細胞可以感測不同的顏色,後來的相機設計也以此為基礎。圖/Wikipedia

肉眼可以,那相機呢?

在還沒有電子感光元件的時代,紀錄影像的方法是透過讓底片中的銀離子曝光、沖洗後,變成不透光的金屬銀(負片),但這樣只能呈現出黑白影像。於是,歷經長時間的研究與測試,有著三層感光層的彩色底片誕生了。它的原理是在不同感光層之間加上遮色片,讓三層感光片能夠分別接收到各自顏色的光線。最常使用的遮色片是藍、綠、紅三色。進入數位時代,電子感光元件同樣遇到了只有明暗黑白、無法分辨色彩的問題,但這次,因為感光元件無法透光,不能像底片一樣分層感光,工程師們只好另闢蹊徑。

於是專為相機感光元件量身打造的拜爾濾色鏡(Bayer Filter)誕生了,也就是由紅色、綠色、藍色三種方形濾光片相間排列成的馬賽克狀濾鏡,每一格只會讓一種顏色通過,如此一來,底下的感光元件就只會接收到一種顏色的光。接著,再把相鄰的像素數值相互內插計算,就可以得到一張彩色影像。由於人的視錐細胞對綠色特別敏感,因此拜爾濾色鏡的設計中,綠色濾光片的數量是其他顏色的兩倍。

這種讓各個像素接收不同顏色資訊的做法,雖然方便快速,卻需要好幾個像素才能還原一個區塊的顏色,因此會大幅降低影像解析度。這對寸解析度寸金的天文研究來說,非常划不來,畢竟我們既想得知每個像素接收到的原始顏色,又想獲得以像素為解析單位的最佳畫質,盡可能不要損失任何資訊。

藍綠紅相間的拜爾綠色鏡,廣泛用於日常使用的彩色感光元件,例如手機鏡頭、單眼相機等裝置。圖/Wikipedia

要怎麼讓每個像素都能獨立呈現接收到的光子,而且還能夠完整得到顏色的資訊呢?最好的方法就是在整塊感光元件前加上一塊單色的濾色鏡,然後輪流更換不同的濾色鏡,一次只記錄一種顏色的強度。然後,依照濾鏡的波段賦予影像顏色,進行疊合,得到一張還原真實顏色的照片。如此一來,我們就能用較長的拍攝時間,來換取最完整的資訊量。以天文研究來說,這種做法更加划算。

另外,由於視錐細胞並不是只對單一波長的光敏感,而是能夠接收波長範圍大約數百奈米寬的光,因此若是要還原真實顏色的影像,人們通常會使用寬頻濾鏡(Broadband filter),也就是波段跨足數百奈米的濾鏡進行拍攝。

美麗之外?濾鏡的科學妙用

雖然還原天體的真實顏色是個相當直覺的作法,但既然我們有能力分開不同的顏色,當然就有各式各樣的應用方法。當電子從高能階躍遷回到低能階,就會釋放能量,也就是放出固定波長的電磁波。若是受到激發的元素不同,電子躍遷時放出的電磁波波長也會隨之改變,呈現出不同顏色的光。

如果我們在拍攝時,可以只捕捉這些特定波長的光,那我們拍出的照片,就代表著該元素在宇宙中的分佈位置。對天文學家來說,這是相當重要的資訊。因此,我們也常使用所謂的窄頻濾鏡(Narrowband filter),只接收目標波段周圍數十甚至數個奈米寬的波長範圍。常見的窄頻濾鏡有氫(H)、氦(He)、氮(N)、氧(O)、硫(S)等等。

有時候,按照原本的顏色疊合一組元素影像並不是那麼妥當,例如 H-alpha(氫原子)和 N II(氮離子)這兩條譜線,同樣都是波長 600 多奈米的紅色光,但如果按照它們原本的波長,在合成影像時都用紅色表示,就很難分辨氫和氮的分布狀態。這時候,天文學家們會按照各個元素之間的相對波長來配製顏色。

以底下的氣泡星雲(Bubble Nebula, NGC7635)為例,波長比較長的 N II 會被調成紅色,相對短一點的 H-alpha 就會調成綠色,而原本是綠色的 O III 氧離子則會被調成藍色。如此一來,我們就可以相對輕鬆地在畫面中分辨各個元素出現的位置。缺點是,如果我們真的用肉眼觀測這些天體,看到的顏色就會跟圖中大不相同。

由哈伯太空望遠鏡拍攝的氣泡星雲,使用了三種波段的窄頻濾鏡。圖/NASA

當然,這種人工配製顏色的方法也可以用來呈現可見光以外的電磁波,例如紅外線、紫外線等。舉哈伯太空望遠鏡的代表作「創生之柱」為例,他們使用了兩個近紅外線波段,比較長波的 F160W 在 1400~1700nm,比較短的 F110W在900~1400nm,分別就被調成了黃色和藍色。星點發出的紅外光穿越了創生之柱的塵埃,與可見光疊合的影像比較,各有各的獨特之處。

三窄頻濾鏡疊合的可見光影像與兩近紅外線波段疊合的影像對比。圖/NASA

望遠鏡接收來自千萬光年外的天體光線,一顆一顆的光子累積成影像上的點點像素,經過科學家們的巧手,成為烙印在人們記憶中的壯麗影像。有些天體按照他們原始的顏色重組,讓我們有如身歷其境,親眼見證它們的存在;有些影像雖然經過調製,並非原汁原味,卻調和了肉眼所不能見的波段,讓我們得以一窺它們背後的故事。

全國大學天文社聯盟
6 篇文章 ・ 12 位粉絲

0

6
0

文字

分享

0
6
0
順利升空只是開始!韋伯太空望遠鏡升空後「必須完美」的 29 天旅程
楊燿綸_96
・2021/12/29 ・2569字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

  • 作者/楊燿綸|美國維吉尼亞大學天文系博士後研究員
  • 作者/張珮綺|自由撰稿人

“ trois, deux, unités, top ” ​

美東時間 12 月 25 日的清晨,亞利安五號火箭在任務指揮官 Jean-Luc Voyer 的倒數下點火。 ​

歷經 20年、100 億美元設計建造,即將成為世界上最大的太空望遠鏡 — 詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope)緩緩升空,揭開人類對宇宙了解的下一個篇章。​

繼哈伯之後,次世代太空望遠鏡

​韋伯太空望遠鏡提供了前所未有的觀測能力,讓我們可以看到宇宙大爆炸之後的初代星系、橫跨宇宙時間的星系演化、系外行星的大氣組成、以及恆星行星形成的過程。​​​不同於哈伯太空望遠鏡以及大部分在地表的望遠鏡,韋伯太空望遠鏡主要觀測紅外光。

史無前例的望遠鏡設計,史上最高靈敏度

由於任何有溫度的物體(包括望遠鏡本身)都會放出紅外光,為了提高觀測的靈敏度,望遠鏡必須越低溫越好。 因此韋伯太空望遠鏡攜帶了各種「冷卻設備」,以及五層如隔熱紙一般薄、如網球場一樣大的「遮陽膜」。 ​ 

望遠鏡的位置也是一大關鍵,需要放在長期背向太陽、距離地表 150 萬公里的軌道中,讓韋伯太空望遠鏡可以繞行在太陽與地球重力影響的一個穩定點 L2。​相較之下,哈伯太空望遠鏡則是距離地表 545 公里。

韋伯望遠鏡的遮陽帆將望遠鏡分為面光側和背光側兩個部分,而望遠鏡的本體長期都會處在黑暗且低溫的背光側。圖/NASA

韋伯太空望遠鏡主鏡的直徑是 6.5 公尺,哈伯太空望遠鏡為 2.4 公尺,另外一個去年退役的紅外光太空望遠鏡 史匹哲(Spitzer) 的主鏡只有 0.85 公尺。望遠鏡的鏡面越大,能夠收集到的光也越多,讓望遠鏡更靈敏。​韋伯太空望遠鏡的靈敏度比現有的望遠鏡高 50 – 100 倍,空間解析度在中紅外光也提升了 2.5 到 7 倍。​

太空工程大躍進

​工程技術層面,這次的任務需要挑戰把一座網球場大小的望遠鏡發射到太空中。目前載貨空間最大的火箭亞利安五號(Ariane 5)只能容納約 5 公尺大小。 因此,韋伯太空望遠鏡必須要像「摺紙」一樣,折成可以放入火箭的大小,進到太空中以後再展開。 ​這是太空工程的極大挑戰, 韋伯太空望遠鏡的展開的過程必須要「萬無一失」。

摺疊裝入亞利安五號火箭整流罩中的韋伯望遠鏡。圖/ArianeSpace, NASA, ESA

必須完美的 29 天旅程

從發射開始,韋伯太空望遠鏡要經歷長達 29 天的旅程,到達 L2 並展開到可以運行的樣貌。 有幾個時間點特別關鍵:​

⏱ 發射後 27 分鐘:韋伯太空望遠鏡脫離發射的火箭,脫離後望遠鏡就要靠自己了!​
⏱ 發射後 33 分鐘:展開太陽能板讓韋伯太空望遠鏡有電可用​
⏱ 發射後 12.5 小時:第一次的軌道修正(也是最關鍵一次), 韋伯太空望遠鏡要用攜帶的燃料推進到前往 L2 的軌道​
⏱ 發射後 5-8 天:展開五層網球場大小的遮陽膜。展開的過程中有 107 個機關必須要同時啟動去鋪開這五層遮陽膜,任何一個機關失敗,韋伯太空望遠鏡就沒有辦法進行原定的科學任務了​
⏱ 發射後 10 天:放下第二反射鏡​
⏱ 發射後 13 天:展開主要反射鏡。這時候韋伯太空望遠鏡就完全展開了!​
⏱ 發射後 29 天:進行最後的軌道修正進入 L2​

​這段旅程中有超過 300 個「必須成功的步驟」!當韋伯太空望遠鏡到達 L2 後,科學任務就正式展開!儀器團隊會先花幾個月校正各項儀器,確保韋伯太空望遠鏡一切如設計般的運作,發射後六個月「觀測任務」將會正式展開。​

主要研究方向

韋伯太空望遠鏡的設計可以用來進行各種的觀測計畫,包含前所未見的觀測計畫,大幅地推進我們對於宇宙的了解。​

  1. 了解宇宙誕生的過程:高靈敏度的紅外光觀測可以看到大爆炸之後初代的星系。​
  2. 了解星系的演化:觀測宇宙不同時期的星系,像是暗物質對於星系的影響等等。​
  3. 也許會知道哪些行星是否適合人類居住:在紅外光可以看到很多不同分子(像是二氧化碳、水、甲烷等)獨特的光譜,透過韋伯太空望遠鏡我們可以量測系外行星的大氣組成。​
  4. 恆星與行星形成的過程:恆星與行星剛形成時多半環繞著塵埃組成的雲氣,有點像是我們常看到的雲霧,擋住了視線。而紅外光觀測可以看透這些雲氣。​

相關連結:

延伸閱讀:

  1. 出事了哈伯!細數哈伯太空望遠鏡 31 年來的維修升級史 – PanSci 泛科學
  2. 天文學未來 10 年的 3 大目標:探索適居行星、動態宇宙與星系演化—— Astro2020 報告 – PanSci 泛科學
楊燿綸_96
1 篇文章 ・ 2 位粉絲
天文物理學家,目前於美國維吉尼亞大學天文系擔任博士後研究員,期待扮演天文學家跟大眾的翻譯蒟蒻,讓大家能更了解我們的宇宙。本身研究專注於透過紅外光、遠紅外光及無線電波觀測,了解恆星及行星長大的過程,也特別關注恆星誕生時伴隨的化學演變。