0

0
0

文字

分享

0
0
0

以毒攻毒!教你用霍亂對付霍亂

昱夫
・2014/07/05 ・988字 ・閱讀時間約 2 分鐘 ・SR值 500 ・六年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

本文由民視《科學再發現》贊助,泛科學獨立製作

201426press

以其人之道,還治其人之身」— 朱熹《中庸集注》。以往為人處事的道理,現在被科學家們拿來對付霍亂!

霍亂是一種透過霍亂弧菌感染的疾病,往往來自不乾淨的飲水或受污染的食物,當細菌進入消化道,其釋放的霍亂毒素便會攻擊腸道細胞,引發急性腹瀉,能在數小時內造成脫水甚至死亡。傳統上治療霍亂的方法是使用抗生素,不過最近在Angewandte Chemie期刊上發表的研究提供了不一樣的途徑[1],科學家們改變以往針對霍亂弧菌的策略,轉而想直接對付霍亂毒素。

霍亂毒素的結構呈五角花瓣狀(花辦部分並不具毒性),它之所以能準確攻擊腸道,在於每片花瓣結構都能辨識腸道細胞表面的特殊醣酯-GM1,並與上面的醣類單元做結合,使毒性結構影響腸道。現在,科學家們反過來利用毒素結構與GM1連接的特性,他們設計了ㄧ種抑制劑,以原本的霍亂毒素為骨架,在五角花瓣部分分別接上五條醣類配基,該配基具備和GM1上相同的醣類單元;當毒素遇到抑制劑,毒素便會辨認出抑制劑上的GM1結構,進而捨棄腸道轉而與抑制劑結合。

由於毒素和抑制劑的結構大小、連接點之間的距離都完美對應,他們倆就像天生一對,如膠似漆。當使用抑制劑時,毒素會被它牢牢抓住,避免影響腸道。

雖然目前要合成抑制劑所需的醣類基團仍相對複雜,不過其蛋白質骨架已可達到工業量產的水平,科學家相信這種「以毒攻毒」的藥物設計概念,未來絕對可以更有效地應用到其他抑制劑開發上。

參考資料:

  1. A Protein-Based Pentavalent Inhibitor of the Cholera Toxin B-Subunit, Angewandte Chemie International EditionDOI: 10.1002/anie.201404397

資料來源:Binding at five sites: effective cholera inhibitor based on cholera toxins PHYS.ORG [July 4, 2014]

 

—————————–

延伸科學再發現@科技大觀園


更多內容也可以上科技大觀園搜尋「細菌」,或每週六上午8點收看民視53台科學再發現

文章難易度

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
161 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
4

文字

分享

0
4
4
霍亂也有自己的免疫系統?想要入侵人體,卻不想被感染!
寒波_96
・2022/05/19 ・3396字 ・閱讀時間約 7 分鐘

由霍亂弧菌(Vibrio cholerae)引發的霍亂,是常見的人類傳染病。有意思的是,霍亂弧菌這般能入侵生物體的細菌,本身也會被病毒等異形入侵,有免疫的需求。

引起霍亂的霍亂弧菌。圖 / Wikimedia

在最近發表的論文中,霍亂向我們展現了以前未知的免疫手法,不但能抵抗病毒,還能對付「質體」。霍亂究竟如何避免成為宿主的命運?質體又是什麼呢?[參考資料 1, 2]

細菌 vs 質體 vs 病毒大亂鬥:細菌也不想被寄生

細菌和人類一樣,都是用染色體上的 DNA 承載遺傳訊息。不過除了染色體以外,細菌也常常配備額外的「質體(plasmid)」,它們是 DNA 圍成的圈圈,獨立於細菌的染色體之外,具有自己的遺傳訊息,會自己複製。

細菌的遺傳物質,除了自己的染色體外,時常還額外攜帶數量不一的質體。圖/Bacterial DNA – the role of plasmids 

質體如果單方面依賴細菌供養、當個快樂的寄生蟲,那麼對細菌來說,質體就是個占空間的東西,只會耗費宿主的資源,對細菌是最差的狀況。但是,質體上也有基因,如果那些基因具備抗藥性等作用,那質體便對細菌有利。換句話說,質體和細菌的關係並不一定,有可能是有利、有害,或是沒有利也沒有害,視狀況而定。

細菌有時候具備攻擊質體的能力,例如近來作為基因改造工具而聲名大噪的 CRISPR,原本便是細菌用來抵禦病毒、質體的免疫系統。神奇的是,許多攻擊目標為質體的 CRISPR 套組,本身就位於質體上頭,令人懷疑其動機不單純。

比方說,A 質體攜帶一套攻擊 B 質體的 CRISPR,那麼 A 質體的目的,到底是保護自己寄宿的細菌不被 B 質體入侵,或是維護自己的地位不要被 B 質體搶走呢?不好說,不好說。

細菌對付質體的手段除了 CRISPR,還有一招是利用「Argonaute」蛋白質,啟動針對質體的排外機制;有時候兩者兼備,就是不給質體活路。[參考資料 3]

了解上述資訊,便能體會霍亂新研究的奧妙:質體無法生存的霍亂弧菌,既沒有 CRISPR,亦沒有 Argonaute,卻有以前不知道的另外兩招。

沒有質體的霍亂弧菌

儘管大家的印象中,霍亂就是一款危害人類的傳染病,不過野生的霍亂弧菌有很多品系,除了 O1 和 O139 兩個亞型之外,大部分其實不怎麼會感染人類。歷史上霍亂有過七次大流行,目前第七次大流行的型號為 O1 旗下的 E1 Tor,也稱作 7PET。

過往導致大流行的型號以及野生霍亂品系,細菌中一般都帶著質體,可是如今廣傳的 E1 Tor 卻常常沒有。假如人為將質體送進細菌體內,一開始倒是沒什麼阻礙,可是複製繁殖十代以後的細菌,卻幾乎不再擁有質體。

因此我們可以假設,霍亂第七次大流行的主角,可能比同類們多出些什麼,讓它新增了排除質體的能力。既然不是其餘細菌使用的 CRISPR 與 Argonaute,應該是某種目前未知的手段。

研究者一番搜尋後,從霍亂基因組上找到 2 處有關係的區域,稱它們為 DdmABC 和 DdmDE(Ddm 為 DNA-defence module 縮寫),兩者各自都有排擠新質體的能力,一起合作效果更好。

霍亂弧菌有 2 個染色體(左、右),DdmABC 位於第一號染色體(左)的 VSP-II 區域(圖中寫成 VSP-2),DdmDE 位於 VPI-2 區域。圖/Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae

兩套手法獨立運作,就是不要讓質體留下!

DdmABC 與 DdmDE 都能替霍亂細胞排除質體,但是運作方式不同。

DdmDE 會直接攻擊,令質體無法繼續在細菌體內生存,尤其容易攻擊比較小的質體;這個攻擊過程中,應該有其他蛋白質參與,不過詳細機制仍有待探索。

負責打擊質體的 DdmDE,其基因周圍還有兩套免疫系統的基因:R/M 與 Zorya,它們的任務都是消滅入侵的噬菌體(感染細菌的病毒)。因此霍亂的染色體上,這些基因共同構成一組對抗外來異形的陣地,稱為防禦島(defence island)。

DdmABC 則似乎更傾向「促進選汰」的手法,霍亂如果攜帶質體,不論質體自身大小,DdmABC 都會產生毒性;這使得質體數目較少的細菌,繁殖時產生競爭優勢,多代以後脫穎而出的霍亂,將剩下不再攜帶質體的個體。

有意思的是,霍亂細胞的 DdmABC 能排擠質體,也能屠殺入侵的噬菌體。所以它是一套雙重功能的免疫系統,同時防禦噬菌體和質體這兩種異形。

霍亂弧菌中 DdmABC 與 DdmDE 為兩套獨立運作的免疫系統,DdmABC 能排除入侵的病毒和質體,DdmDE 會直接攻擊質體。圖/參考資料 2

演化上 DdmABC 與 DdmDE 從何而來呢?在資料庫中比對 DNA 序列,ABCDE 這 5 個基因都找不到非常相似的近親基因,所以本題暫時不得而知。

其餘霍亂同類都沒有這兩串基因,所以它們是 E1 Tor 品系新獲得的玩意;幾個新基因組合形成新功能,或許有助於 E1 Tor 當年在霍亂內戰中勝出,成為第七次大流行的主角。總之,它們都通過長期天擇競爭的考驗,贏得一席之地。

質體對細菌可能有害也可能有利,若是通通不要,等於是徹底斷絕獲利的機會。如今廣傳的這款霍亂,為什麼演化成這般樣貌,值得持續探索。

一隻細菌配備對付不同入侵者的多款免疫系統,一如一艘巡洋艦配備的多款防禦系統,不論敵人從陸地、海面、空中發射飛彈,或是從海底用魚雷攻擊,都有防守的應變手段。然而,再怎麼周詳的防禦設計,都有被突破的機會。圖/wiki

戒備森嚴,多重防禦的細菌免疫

由這些研究我們可以觀察到,細菌儘管是只有一顆細胞的簡單生物,也配備多重免疫系統,抵抗各種入侵者。以極為成功的霍亂 E1 Tor 品系來說,它配備 R/M、Zorya、DdmDE 三款防禦病毒的機制,以及 DdmABC、DdmDE 兩套排擠質體的手法,能夠全方位對抗試圖入侵的病毒和質體。

霍亂弧菌之外的許多細菌,又配備記錄入侵者遺傳訊息的 CRISPR 系統,精準識別目標並且攻擊,類似人類的後天免疫。CRISPR 此一特質,使它變成智人的基因改造工具。

而類似先天免疫,無差別切割入侵者的 R/M 系統,其各種限制酶(restriction enzyme),早已從 1970 年代起成為常見的基因改造工具,可謂分子生物學實驗的元老。

新發現霍亂的 DdmABC、DdmDE 免疫系統,除了增加學術知識,也有應用潛力。探索細菌、質體、病毒間的大亂鬥,不只能認識更多免疫與演化,也可能找到對付細菌的新招,還有機會啟發分子生物學的新工具。

延伸閱讀

參考資料

  1. Jaskólska, M., Adams, D. W., & Blokesch, M. (2022). Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature, 1-7.
  2. Cholera-causing bacteria have defences that degrade plasmid invaders
  3. Kuzmenko, A., Oguienko, A., Esyunina, D., Yudin, D., Petrova, M., Kudinova, A., … & Kulbachinskiy, A. (2020). DNA targeting and interference by a bacterial Argonaute nuclease. Nature, 587(7835), 632-637.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
178 篇文章 ・ 709 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
追緝害死海地八千人的兇手
陳俊堯
・2013/11/09 ・2807字 ・閱讀時間約 5 分鐘 ・SR值 529 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

霍亂聽起來像是個有歷史的,早已離我們遠去的古老疾病。但是事實上直到今年,霍亂弧菌 (Vibrio cholerae)還是可以每年奪走 10 到 12 萬人的性命,繼續讓三百萬到五百萬人受到感染。這個星球上曾經出現過七次霍亂大流行,而這些有案底的霍亂弧菌卻只來自這個菌種裡的一個小分支,前六次的病原都屬於 O1 (是歐萬而不是零壹) 血清型,第七次則是源自 O1 的 O139 血清型。我們的自然環境裡其實住著不少無害的霍亂弧菌,不過因為它們都沒有繼承到能傷人的神力(毒力因子),而還只是自在地待在湖水土壤裡過著平凡的日子。

2010 年 10 月,海地爆發有史以來第一次霍亂大流行,在接下來兩年間造成超過 60 萬人感染。根據統計到 2013 年 8 月統計的數據,這次的霍亂已經奪走 8231 人的生命。這場大流行估計讓海地全國超過 6% 的人口受到感染,還向外波及鄰國多明尼加和古巴。當這種大流行發生後,當務之急當然是先搶救受到感染的人,但同樣重要的是要趕快找出病原菌的來源並且阻止它繼續散佈。美國的疾病管制中心在 2010 年 11月的一份報告裡指出這次的病原屬於 O1/Ogawa 血清型的 El Tor 生物型,是個能造成全球大流行的極度危險的傢伙。可是海地過去從來沒發生過霍亂,這病原菌是打哪來的?

http://www.flickr.com/photos/mediahacker/5200093479/sizes/z/in/photostream/
在海地當地簡陋的醫院接受治療的霍亂病患. 照片來自 Flickr, 是 mediahacker 的作品. 版權宣告.

亞洲這些年來霍亂不斷,像是孟加拉年年都在和霍亂搏鬥,尼泊爾也有疫情。這個闖入海地的死神,難道帶有亞洲的血統? 這種事,當然不能亂說,在要指控別人之前得要有充份的證據才行。專家們早就懷疑這次的霍亂是來自亞洲。為什麼呢?首先是現場來的線索。根據這份 2011 年的報導,海地首先出現霍亂的村莊正好在聯合國尼泊爾部隊營地的下游不遠處,而且在剛開始發病的那幾天,居民還看到部隊化糞池排出帶惡臭的污水。這些觀察讓尼泊爾部隊成為可疑的霍亂來源。不過可疑歸可疑,要怎麼證明在海地看到的細菌是不是亞洲細菌的後代?

藉由現在 DNA 科技的進步,科學家的確可以提出證據來回答這個問題。子孫經由遺傳得到親代的 DNA,而且會是完美(至少接近完美)的複製品。細菌是用二分法複製的,DNA 更應該是一模一樣. 如此一來,只要找個方法來檢查海地霍亂弧菌的序列跟全球哪個地方的細菌序列最像,答案就有個譜了。這就好像醫院會做的親子鑑定,把所有爸爸候選人的 DNA 排出來,誰跟小孩的 DNA 最像,就得準備面對接下來的狗仔和官司。不過親子鑑定和細菌鑑定用的 DNA 技術不太一樣,但都是以 DNA 序列像或不像來認祖歸宗就是了。

2011 年 8 月,一篇由丹麥、美國及尼泊爾的研究人員在發表在 mBio 期刊上的研究報告提供了有力的證據。他們使用 2010 年在尼泊爾採集的 24 株霍亂弧菌菌株,加上 3 株來自海地的菌株及 7 株來自其它地區的菌株,利用兩種 DNA 分析方法進行比較。他們用的第一種方法是脈衝場凝膠電泳(pulsed field gel electrophoresis)片段組成分析。這個方法是先用限制酶在 DNA 上找特定序列把它切斷,再用切出來的 DNA 長短組成來判定細菌是否相似. 這個技術大概就像讓一群人每人拿一張報紙,要他們在把報紙上只要看到 「拼經濟」這個詞就剪掉,然後比較每個人報紙上洞的分佈狀況. 如果有兩個人報紙的洞出現的位置一模一樣,那他們一定是拿到的就是同一天同一版的一模一樣的報紙。好了,說明完方法,那研究結果到底如何呢?他們發現尼泊爾收集到的菌株根據 DNA 片段組成可以被分成四群,其中一群和海地菌株是一樣的,另一群則是和海地菌株非常相近。

接著他們使用第二種方法,這是更複雜的全基因體序列比對(whole genome sequence typing)。這個方法是將這些細菌的 DNA 序列全部解碼讀出來,然後把不同菌株的序列拿來做比較。其它只看少數基因的方法可能出現瞎子摸象的問題,這個方法因為一次就比對了所有的序列,等於是把 DNA 上能看到的變異全部都拿出來研究了,所以是個解析度更高的方法。以這個方法得到的演化樹上,也可以清楚看到海地菌株和尼泊爾四群細菌中的一群是分不開的。

想要以序列分析來解開病菌來源的研究不只這一個。另一個主要來自美國的研究團隊也在 New England Journal of Medicine 期刊上發表了研究結果。他們拿 1588 段基因(約 40% 的基因)的序列來進行霍亂弧菌的菌株比對,得到的結果也顯示海地菌株與尼泊爾菌株非常相近。一篇 2011 年 9月發表在 Nature 期刊的研究做了全球各地霍亂弧菌全基因體序列比對,同樣發現跟海地菌株最像的親戚來自尼泊爾。有這些重量級研究來佐證,造成海地大流行的菌株,看來真的是在尼泊爾流竄的霍亂弧菌流亡海外後的成功子孫。 聯合國難辭其咎。

http://www.flickr.com/photos/mediahacker/6261610110/sizes/z/in/photostream/
2011/10/19 海地居民抗議聯合國部隊把霍亂帶進海地. 照片來自 Flickr, 是 mediahacker 的作品. 版權宣告.

這些研究證據讓海地政府可以和聯合國對抗了。2013 年 10 月,海地政府正式控告聯合國並且求償(請看這份BBC的報導)。聯合國的和平部隊原本是來海地協助 2010 年大地震後的重建工作,但是卻讓病原菌進入海地民眾的飲用水源,造成後續的大流行。這是聯合國始料未及的後果,原本是要來幫助這個處於困境的國家,沒想到卻造成八千個家庭的天倫夢碎。

現在又有一篇最新研究出爐了。在這篇作者群人數可以組棒球隊的研究報告裡,研究人員在海地這次疫情持續的 20 個月裡收集到 24 株菌株的基因體序列,和資料庫裡 108 個菌株的基因體序列做比較。他們得出的結論除了用更多證據支持海地菌株來自尼泊爾之外,也發現海地和尼泊爾這群菌株是霍亂弧菌裡的異類。他們發現海地菌株從環境撿一段 DNA 進來用的能力遠比一般霍亂弧菌還要差很多,外來 DNA 很難成功進入這群細菌的細胞裡。為什麼要看這項特徵呢? 當兩株細菌的基因序列相似時有兩種可能,一種是它們真的是近親所以相似,另一種可能則是 A 菌屍體裡的 DNA 被 B 菌撿來當做自己的來用。而這個實驗結果證明了海地霍亂弧菌菌株比一般霍亂弧菌更難經由水平基因傳遞(horizontal gene transfer)來得到基因,讓我們更相信海地和尼泊爾菌株間的相似是來自血緣上的相近。

到海地進行研究的法國流行病學專家 Renaud Piarroux 在他發表在 Emerging Infectious diseases 期刊上的研究報告裡指出, 從疫情判定當時從尼泊爾部隊的營區裡應該流出大量病菌,推測當時有數十人感染,可能是被高層壓下來處理,刻意隱匿疫情。不過從這次的事件可以知道就算是趁沒人看見時偷偷做的壞事,在現代的科學技術的幫忙下,真相還是可以被找出來的。做人還是誠實一點比較好。

陳俊堯
109 篇文章 ・ 17 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。