Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

「出埃及記」與「出台灣記」

Whyjay
・2013/03/29 ・2204字 ・閱讀時間約 4 分鐘 ・SR值 502 ・六年級

-----廣告,請繼續往下閱讀-----

人類的起源與遷徙一直是人類學家興致勃勃的課題。在台灣,學校的歷史課本會告訴你台灣的原住民屬於「南島語族」的一支,意謂台灣的原住民與東南亞島群的原住民是系出同源。如果把視角放大,不難查到目前全球的人類很有可能全部起源於非洲。不只如此,人類學者還可能會告訴你具體的遷出時間以及移動路徑(如下圖)。這真是神通廣大!到底是怎麼辦到的?

(黑色的箭頭代表人類遷徙的路徑,彩色的圈圈代表移動到這裡的時間點,單位是千年前。圖出處)

答案就藏在每個人身上的細胞裡。舉個例來講,我們已經知道女生的性染色體是XX,而男生是XY;換句話說,Y染色體只會出現在男人身上。這意味著男人細胞核裡面的Y染色體只能從爸爸身上遺傳得到,如果你是男生,那麼你的細胞核中的Y染色體應該會跟你爸爸的完全一樣。不過,由於DNA有些微的機會產生突變,所以你的Y染色體是有「一丁點的微小可能」跟你爸爸的不一樣。當時間拉得越長,產生差異的機率會越大,差異的數量也會越多;換句話說就是你的曾曾曾祖父的Y染色體完全跟你一樣的機率,會略小於你爸爸的Y染色體跟你一樣的機率。假設在路上隨便抓兩個男生分析他們的Y染色體,如果兩人的Y染色體越相似,代表他們的「共同父親」生活的年代離今天越近。

除了Y染色體,科學家更愛用的是「粒線體DNA」(Mitochondrial DNA,簡稱mtDNA)。粒線體DNA非常的奇怪,奇怪的點是它不在細胞核裡,而是在細胞質的一個叫做粒線體的胞器內。事實上,整個動物細胞也就只有細胞核和粒線體中有DNA的存在。(至於為什麼粒線體內會有DNA,那又是另一個故事了,暫且不提)更有趣的是,受精卵的粒線體是由卵子提供,所以粒線體DNA只能由母親繼承。因此,不管你是男是女,你細胞粒線體中的DNA一定跟你媽媽相同,除非你很幸運的「中獎」發生粒線體DNA的突變。有了這些追蹤工具,如果我們要調查世界上任意兩個人共同祖先的生活年代,可以先調查他們的Y染色體(當然,要兩個人都是男生才行)或粒線體DNA,然後找出DNA序列差異的數量,例如有多少個鹼基對是不一樣的。只要知道「平均來講這些DNA要花費多少代的時間才能夠突變一個鹼基對」,經由簡單的乘法,就可以知道兩人共同祖先的年代。

-----廣告,請繼續往下閱讀-----

由於粒線體DNA的平均突變速率比Y染色體DNA還要快,意謂著可以得出比較精準的共同祖先年代,因此成為了在人類遷徙問題上最熱門的研究工具。這種鑑定兩人共同祖先的年代的方法,稱為「粒線體分子鐘」(Mitochondrial Molecular Clock),它有一個技術性的參數,就是DNA的突變率。這個參數不容易求得,但是影響又很深遠;事實上去年就曾經有論文指出這個參數可能被高估了一倍,使得計算出來的年代比實際的年代近得多;但最近的一則論文,使用了不少經過放射性碳準確定年的人類化石標本以及這些標本上的粒線體DNA序列來校正突變速率,卻得到跟舊有的速率參數差不多的結果。

不過,雖然在突變速率上還有定量的問題待解決,但定性的現象卻很明確──藉由比較不同地方人民的共同祖先,除了可確定親緣關係遠近之外,還可以勾勒出遷徙的路徑。例如在圖1中,我們發現非洲人民的粒線體DNA平均上比其他洲人民較有差異,可推斷出:與其他洲人民共同祖先的生活年代相比,非洲人民和其他洲人民的共同祖先生活在更遙遠的古代;再加上一些人類遷徙上的人口成長假設,就可以知道所有人類距離現今最近的共同祖先(唔,也就是說是所有人類的「媽媽」)約在15萬年或遲至5萬年前生活在非洲。在這之後,有一群人類離開了非洲至別的地方生活,史稱「非洲出走」(Out of Africa)事件,也有人會拿聖經中的Exodus(出埃及記)來比喻。

讓我們再把視角縮小,移到「南島語族」上。人類學家當然不會放過這個課題,早在快二十年前就有利用粒線體DNA來研究南島語族的遷徙模式。令人驚訝的是,粒線體DNA的研究竟然發現台灣有可能是南島語族的發源地!這意謂著,現今東南亞與大洋洲的島嶼原住民,有可能是從台灣「移民」過去的。人類學家因此仿照非洲出走,創了「台灣出走」(Out of Taiwan)這個名詞。不過事情總沒有這麼簡單;隨著使用的遷徙模型不同,有些粒線體DNA的研究成果是不支持「台灣出走」理論,或是認為關聯性沒有那麼大。到底真相是如何?在期待更多的證據浮現之前,或許只能坐時光機去問當時坐著小船飄洋過海(抑或是走在冰河時期因海水面降低而露出的海床上)的南島語族原住民了!(台灣出走假說中,南島語族的遷徙路徑。圖出處)

如果您還想知道更多,請參考:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Whyjay
17 篇文章 ・ 10 位粉絲
透過我的眼睛、鏡頭的眼睛、還有衛星的眼睛看世界的地球科學研究者。期望與你分享冰川下封存的秘密或是火山上隱藏的故事;夜晚,我們更可以遙望皎潔的明月,更遠的木星與冰衛星,甚至更遠更遠──某顆系外行星上的生命,或許也正拿望遠鏡看著我們討論人類最終的歸宿。推特:https://twitter.com/WhyjayZ (英文)

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

1
0

文字

分享

2
1
0
語言也是一種證據!南島語族發源地竟在臺灣?——專訪語言學研究所張永利研究員
研之有物│中央研究院_96
・2023/08/27 ・4908字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|田偲妤
  • 美術設計|蔡宛潔

南島語族的起源與變遷

南島語族發源自何方?是學界長期探索的焦點,在眾多研究領域中,語言學界為分布在南太平洋與印度洋諸島的族群確立關係,分類命名為南島語族(Austronesian-speaking peoples) 。除此之外,還有許多語言證據指出,南島語族可能是從臺灣擴散出去。中央研究院「研之有物」專訪院內語言學研究所張永利研究員,為我們深入分析,臺灣南島語保存哪些其他南島語「丟失的現象」,可以藉此重建南島語族的發展源頭與遷徙路徑。

嘉義阿里山鄉新美國小學生獻唱鄒族古謠。圖|Wikimedia

南島語族的發源地究竟在何方?目前已有越來越多證據指出,南島語族可能是從臺灣出發,遷徙至廣大的南太平洋與印度洋島嶼開枝散葉。

考古學家在臺灣、呂宋島、大洋洲等地出土相似的陶器碎片,經年代鑑定後發現,最早的繩紋紅陶陶器來自 5、6 千年前的臺灣大坌坑文化。植物學家則對各地的構樹樣本進行分子親緣分析,發現南太平洋島嶼的構樹應源自臺灣,推測先民帶著樹皮衣材料構樹,自臺灣遷徙至南太平洋諸島。

除了上述證據,還有一樣活在生活周遭的非物質遺產,能作為南島語族「出臺灣說」的有力證據,那就是臺灣原住民族正在使用的「語言」!

-----廣告,請繼續往下閱讀-----

中研院語言學研究所是研究與推廣「臺灣南島語」的重要基地,走進語言所典藏豐富研究著作的展覽室,投身臺灣南島語研究近 30 年的張永利研究員,與我們熱情分享語言學家的工作。

各地南島語言的特徵與變遷,是語言學家長期探索的問題,多年來一位位研究者深入原住民族部落,用羅馬拼音一字一句記錄部落長者的口語發音,經由比較臺灣與其他地區南島語言的關連與特徵,南島語族的發展源頭與遷徙路徑就在歷代語言學家的重建下現形。

中研院語言學研究所張永利研究員,投身南島語言研究近 30 年,與我們熱情分享語言學家的工作。圖|研之有物

如何確定臺灣南島語更接近原始南島語?同源詞繁簡成線索

南島語族是總人口數近 4 億人的龐大族群,其分布範圍北到臺灣、南到紐西蘭、東到復活節島、西到馬達加斯加。臺灣是南島語族分布的最北界,目前官方認定的原住民族共有 16 族,每個族群都有自己的語言,在整個南島語族 10 個主要語言分支中,臺灣南島語就佔了 9 個分支,其語言多樣性與存古性為世界少見。

南島語族 10 個主要語言分支,臺灣南島語就佔了 9 個分支,其語言多樣性與存古性為世界少見。圖|研之有物    資料來源|Blust, 1999: 45

「曾有外國學者讚嘆:南島語言是上帝送給臺灣的禮物!」張永利逐步分析臺灣南島語的珍貴之處:「考古和語言證據推估,臺灣南島語至少有 5 千年歷史,而麻六甲海峽附近國家使用的馬來語只有 2 千多年而已。此外,臺灣南島語還保留一些其他語言丟失的現象。」

-----廣告,請繼續往下閱讀-----

所謂「丟失的現象」正是語言學家證實臺灣南島語較古老、可能是南島語族早期祖居地的關鍵證據。藉由歷史語言學方法比較南島語言之間的親緣關係與發展先後,丟失的現象慢慢浮現,成為值得研究的案例。

首先,語言學家特別構擬出一套「原始南島語」作為比較標準,音韻、構詞、句法越接近原始南島語者,就越有可能是族群發源地。

要構擬出原始南島語並不簡單,語言學家無法穿越時空回到 5 千年前,必須集結全球語言學家的力量,深入各個南島語族聚落採集語言材料,再從中找出語音、語意相似的「同源詞」做比較。由於語言變化的過程經常發生「由繁趨簡」現象,因此發音越複雜的語言通常越古老,語言學家再從較古老的語言構擬出原始南島語。

張永利舉同源詞「眼睛」為例,說明臺灣南島語較為古老的原因。眼睛的原始南島語是「maCa」(大 C 的發音為 ts 複合音,同注音符號ㄗ),而臺灣的排灣語是「maca」,其發音與原始南島語相同。

再看看馬來語的眼睛是「mata」,ts 複合音明顯簡化成 t,發生語言「由繁趨簡」的現象,證明臺灣南島語比馬來語更古老。

-----廣告,請繼續往下閱讀-----
從同源詞「眼睛」的語音變化可發現,排灣語、鄒語較接近原始南島語,而賽夏語、馬來語的發音出現簡化現象,從中可看出族群發展的先後順序。圖|研之有物    資料來源|張永利

張永利進一步解釋,為何「由繁趨簡」現象可看出語言發展的先後順序:「有人可能會質疑,為什麼語言不是從簡單變複雜,發音由 t 變成 ts?如果是這樣你要解釋,多出來的 s 音是怎麼無中生有。這就如同人類社會的變遷,從複雜變簡單通常有跡可循,但無中生有需要創新的力量,從來不是簡單的事。」

這些語言有畫面!從同源詞推測千年前的生活型態

同源詞還可以重建南島語族原初的生活環境。根據語言學家的觀察,能成為同源詞的單字通常是日常使用的基本詞彙,例如爸爸、媽媽等親屬稱呼、數字 1 到 10,或是眼睛、頭、手、腳等身體部位。

因此,如果還能發現動物、植物、生活器具的同源詞,代表這些事物是曾經長時間存在的文化,才得以跨越千年時空在語言中留下印記,成為一窺南島語族原初生活環境的線索。

語言學家從原始南島語、原始排灣語、原始泰雅語、原始鄒語彙整出 100 個基本同源詞,當中包含許多指稱農作物、野生動植物、生活日用品的字詞:

-----廣告,請繼續往下閱讀-----
原始南島語同源詞反映之自然與文化特徵。圖|研之有物    資料來源|何大安與楊秀芳, 2000: 17-22

從上述同源詞可推測,原始南島語族應該是以稻作維生,擅長紡織與編織技藝,生活周遭可見「露兜樹、甘蔗、藤」、「河鰻、田鼠、蒼蠅」等主要分布在亞熱帶地區的動植物。這些同源詞所反映的自然與文化特徵,對解答南島語族發源地問題具有相當大的啟發。

此外,從某些同源詞的語意轉變還可看出指稱的是外來事物。例如鄒語的「水牛」叫作「’ua chumu」,「chumu」是指「水」,但「’ua」最初並不是指「牛」,其真正的意思是「鹿」。換句話說,水牛應該是外來物種,推測鄒族先民看到外來的牛,跟鹿一樣都是四隻腳的大型哺乳類動物,因而發生「指鹿為牛」的情形。

講話講重點!第一個字就表明重點的「焦點系統」

除了從同源詞可以證明臺灣南島語較接近原始南島語,語言學家還發現,比起其他地方的南島語言,臺灣南島語保存最完整的「焦點系統」。這是一種非常古老的文法,在世界其他語言中並不常見。

焦點系統是用來凸顯一句話中想要強調的焦點,主要分成主事、受事、處所、工具共 4 種焦點,每種焦點都有相對應的動詞詞綴變化,並會在重點字詞前方加上格位標記 a。

-----廣告,請繼續往下閱讀-----

由於南島語言習慣將動詞置於句首,等於你聽到第一個字就知道說話者想強調什麼。以下為 4 種焦點在排灣語的使用方式:

排灣語焦點系統應用,句首動詞 qaljup(打獵)會因應不同焦點而加上不同詞綴,焦點前方也會加上格位標記 a 來指稱重點。圖|研之有物    資料來源|何大安與楊秀芳, 2000: 8

古老的修飾用語:副動詞

最後一個臺灣南島語較為古老的證據在於,其詞類相當有限,主要是動詞、名詞的應用,沒有真正的副詞、形容詞等修飾詞。但是當有需要用到修飾用語時該怎麼辦?這就輪到特殊的「副動詞」登場!

副動詞顧名思義是指:具副詞作用的動詞,是臺灣南島語經常使用的詞類。張永利秀出排灣語和馬來語的句子,進一步說明副動詞與一般副詞的不同:

圖|研之有物    資料來源|張永利

排灣語的「g<em>alju」就是一個副動詞,意思是「慢」,之所以看出它是一種動詞,關鍵在於它跟後頭表示「吃」的動詞「k<em>an」有一樣的詞綴變化「em」。而中間的連繫詞 a 亦可應證「g<em>alju」與「k<em>an」應同屬於動詞。此外,「g<em>alju」的後面連接附著代詞「aken」表示「我」的意思,附著代詞一般會貼在動詞上。

-----廣告,請繼續往下閱讀-----

值得注意的是,古老的副動詞在臺灣南島語言普遍保留下來,但是在臺灣之外的南島語言,如馬來語,卻通常都已經丟失。

綜上所述,從同源詞複雜度、焦點系統完整性、使用詞類有限等語言證據可知,臺灣南島語在目前已知的上千種南島語中,其古老排名可說名列前茅,也代表臺灣可能是南島語族早期的祖居地。

張永利表示:「綜合歸納現在的語言和考古證據,我們可以畫出南島語族遷徙路徑,基本上是從臺灣遷徙出去,先遷往菲律賓群島,再往南到婆羅州一帶,隨後一分為二,分別往東方太平洋和西方印度洋遷徙。」

南島語族遷徙路徑。圖|研之有物    資料來源|Bellwood, 2011

用「說」的文化資產——母語

對張永利來說,越深入研究就越能體會,臺灣南島語真的是臺灣千年不墜的國寶!除了持續在學界發表臺灣南島語的概念運用規則,張永利也會到原住民部落推廣族語,多年來也跟國內語言學家一起編寫鄒語、噶瑪蘭語、賽德克語等族語教科書。

張永利研究員持續研究臺灣南島語的概念運用規則,多年來編寫多本族語教科書,更前往部落推廣族語。圖|研之有物

在與族人互動的過程中,張永利發現,年輕族人為了溝通方便,有簡化族語的傾向,以致某些傳統用語漸漸流失。

-----廣告,請繼續往下閱讀-----

以鄒語為例,傳統上在說 11 這個數字時,老人家會講 maskx veiya ucni,「maskx」是 10、「ucni」是 1,中間的「veiya」是「回來」的意思,翻譯成中文就是「10 回 1」,可見鄒族會使用十進位來算數,可是現在的年輕人通常會省略「veiya」的用法。

另外名字的說法也發生簡化現象,例如有一位鄒族人的名字是 Pasuya、家族名是 Tiakiana,老人家會講 Pasu’e Tiakiana,大致的意思是「來自 Tiakiana 家族的 Pasuya」。但是現在的年輕人就直接講 Pasuya Tiakiana,身分證上的名字也這樣登記。

面對日漸普遍的族語簡化現象,張永利有感而發的說:「年輕人覺得只要聽得懂就好,但我會跟他們說,語言也是文化的一部分,而且很多說法只存在特定族群中,想復振傳統文化就要講道地的族語。」

一般人常將語言視為溝通工具,認為只要能有效溝通就好,然而深諳語言奧妙的張永利卻有不同看法:

語言也是一種文化資產,不論是臺灣南島語、華語、臺語或客語都有其文化特色,具有身分識別作用。

「母語能留著就是你的寶藏,現在『特色』就是你最重要的資產!」母語是臺語的張永利不僅在學術場域研究語言,更在日常生活中透過多使用母語來保存語言資產。「語言不是只寫在教科書、或在課堂上唸,一定要積極使用,這樣語言才能真的活起來!」

千年以來,臺灣這座南島語族的原鄉發展出眾多語言文化各具特色的族群,如今在族人及語言學家的努力下,族語的復振工作正如火如荼進行,許多正名成功的族群紛紛從族語找回身分認同,找回值得守護的南島語族寶藏。

噶瑪蘭族自 2002 年 12 月 25 日正式被認定為原住民的第 11 族,其族語至今依然被族人保存使用,並編印成噶瑪蘭語辭典、語法書,作為學校鄉土教學的教材。圖|Wikimedia
-----廣告,請繼續往下閱讀-----
所有討論 2
研之有物│中央研究院_96
296 篇文章 ・ 3789 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook