Loading [MathJax]/extensions/tex2jax.js

0

3
0

文字

分享

0
3
0

人類潛能大解密:關於「記得順序」這件事

雅文兒童聽語文教基金會_96
・2022/11/27 ・2899字 ・閱讀時間約 6 分鐘

  • 文/羅明|雅文基金會聽語科學研究中心研究員

「默記電話號碼」經常在介紹記憶的科普文章中出現,做為生活中一般人能夠馬上記下一段訊息的例子,而能夠記得「多少個」號碼也往往是討論的焦點。

然而,在記下數字的時候,其實還要記得數字之間的「順序」,才算是成功的記下這組號碼。記錯電話號碼而撥話給陌生人,還算小事,一句抱歉就能化解一場尷尬。如果是發票的中獎號碼記錯了,那可是失之毫釐、差之千里,結果或許是空歡喜一場,要是與大獎擦身而過,那可真是捶胸頓足也揮之不去的懊惱啊。

對獎的號碼需要數字和順序都符合才算中獎。圖 /SAPLING

無形中記得「順序」的先天能力:統計式學習

研究人類發展的科學家發現,人從訊息中掌握「順序」的能力,可能是天生的。最有名的例子,莫過於 Saffran、Aslin 及 Newport [1] 以八個月大的嬰兒為對象所進行一個研究。

Saffran 等人製作了四個具有三個英語音節(syllable)的無意義詞(例如:bidaku),並以隨機的順序將這四個詞串接成一段兩分鐘不中斷的語音刺激。這個兩分鐘的音檔中,音節與音節之間在順序上有一定的規律。舉例來說,音節 bi 之後一定是 da,而 da 之後也一定是 ku,但是 ku 之後的音節則不一定,音節 pa 或 go 都可能。

-----廣告,請繼續往下閱讀-----

八個月大的嬰兒聽完 Saffran 等人製作的語音刺激之後,對於音節順序是否符合規律(如:bida vs kupa),會有不同的反應,顯示小嬰兒「認得」符合規律的音節組合。這個研究結果不只顯示了人類在毫無所悉的情況下能夠自動發現訊息中的規律性,而且在自己與環境互動之前,已經具備了掌握規律的能力。

統計式學習很可能是先天的能力。圖/Scientific American

人類語言的語法其實就在描述語言的規律性。不論是哪一個語言,詞彙與詞彙之間,總是遵循著某一種規律,然後串接成句。當然,語法的規律性有其嚴謹性,而其程度與面向又隨語言的種類而異。但不論是哪一個語言,如果只是把選好的詞彙隨機的排列成串,恐怕語文造詣再高也很難參透這「句」話的意思。

Saffran 等人[1] [2] [3]所發現的認知能力,學界稱之為統計式學習(statistical learning),它所指的是當某一類訊息出現的機會有一定的規律時,人會從接受到的訊息裡掌握這種規律,並據以發展出有關該類訊息的知識。

就語言學習而言,語言是一種人會從環境中接受的訊息,而這個訊息的背後也有某一種機率的分配。以口說語言為例,每一個語言有其使用的語音,多個語音結合後組成詞,再由多個詞構成語句,但只有某些排列組合才符合規律,使得一個語言從語音到語句由下而上形成一個有規則的系統。

-----廣告,請繼續往下閱讀-----

比如以語句的詞序(word order)為例,英語中最典型常見的型態是名詞—動詞—名詞的順序,而這種規律用以表達主詞(第一個名詞)透過動作(動詞)影響著受詞(第二個名詞)的意義,而其他種詞序母語者聽起來可能會感到不那麼直覺。

Saffran 等人認為,語言習得是統計式學習發揮作用的過程,人透過該過程整理語言刺激,並累積出關於語言的知識,進而展現出聽與說的行為。換句話說,語言習得所涉及的是一種通用的學習能力,且普遍存在每一個人的身上,因此我們可以觀察到,來自於不同語言、社會及文化的人,在一般的情況下都能夠發展出語言能力。

感覺剝奪會不會影響統計式學習的能力?

當感官系統在個體發展的早期出現缺損時,直接的影響是個體從外在環境接收的刺激與累積的經驗在質量上與同儕相比較為匱乏,亦即感覺剝奪(sensory deprivation)。一般而言,刺激與經驗是個體發展認知功能的基石,感覺剝奪在認知發展中可能帶來的負面影響,讓研究者開始思考影響的層面:是僅限於特定領域?還是擴及一般領域?

先天聽力損失的影響,是這個議題最直接的例子之一:聽力問題會不會影響孩子基本的認知能力?有研究者提出 Auditory Scaffolding Hypothesis(本文直譯為「聽覺鷹架假說」),其主張:聽覺訊息有一重要特質是訊息片段之間有其序列性,如果個體發展的早期缺乏聽覺上的刺激,其認知系統中負責掌握訊息序列性的功能在發展上將有所延遲[4] [5]

-----廣告,請繼續往下閱讀-----

依照聽覺鷹架假說的想法,無論是聽覺或視覺的形式,在面對訊息且需要追蹤其序列性的情況下,聽力先天缺損的孩童其表現將落後聽力正常的同儕。有一些新近研究的結果,似乎符合這樣的想法。

有的研究者採用一種聽打節拍的作業,過程中讓孩子先聽一小段節奏,然後用敲食指的方式,盡可能重複剛剛所聽到的節拍;結果發現,相較於同儕,聽損孩子打出的節拍比較容易和題目有所出入[6]。有的研究者則以色塊序列出題,再由孩子依照剛剛看到的順序點按色塊[7],或另外在體感動作的層面上,觀察孩子複製肢體動作的表現[8],結果都看到了聽損孩子與同儕有所差異。

然而,研究資料並非一面倒的支持聽覺鷹架假說。就在本文撰寫之際,知名期刊《認知》(Cognition)刊登了一篇主題為「先天聽損是否影響統計式學習」的研究。

研究者採用三種動物(貓、狗及鳥)的聲音,然後讓三種聲音前後出現的順序有一定的規律性。按照統計式學習的想法,這些聲音在孩子聽了一段時間之後,其中的規律性會在孩子的身上留下印象。實驗結果也確實如此,先天聽損的孩子與年齡匹配的同儕,都在行為的反應上顯示出兩組孩子都學到了三種動物聲音前後順序的規律性[9]。另一方面,兩組孩子也有表現不同的地方。雖然兩組孩子皆能學會動物聲音和地點的配對關係,但是聽損組的反應慢於同儕組。

-----廣告,請繼續往下閱讀-----

或許我們可以這樣猜測,聽損孩子也如同儕一般,訊息的處理引擎仍然可以消化序列性資訊,只是在處理的效率上,聽損孩子可能來的低一些。這也許能夠解釋,為何有聽損的孩子在面對訊息且需要追蹤其序列性的表現會有所落後。

感覺剝奪帶給認知發展的潛在阻礙仍有許多未知之處。圖/PNGKIT

能夠「記得順序」看起來稀鬆平常,其實並不如想像中的簡單,而且它的影響不容小覷。它所反映的認知能力,關係到個人與環境互動的經驗能否進一步轉化為知識。對於身心發展早期就遭遇感覺剝奪的個體來說,感覺剝奪帶給認知發展的潛在阻礙仍有許多未知之處,而這些阻礙可能會在哪些層面,以及衍生的風險與副作用,有待更多的研究加以釐清。

  1. Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month old infants. Science, 274, 1926–1928.
  2. Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27-52.
  3. Saffran, J., Hauser, M., Seibel, R., Kapfhamer, J., Tsao, F., & Cushman, F. (2008). Grammatical pattern learning by human infants and cotton-top tamarin monkeys. Cognition, 107, 489-500.
  4. Conway, C. M., Kronenberger, W. G., & Pisoni, D. B. (2020). Letter to the editor: Do Pediatric Cochlear Implant recipients display domain-general sequencing difficulties? A comment on Davidson et al. (2019). Ear & Hearing, 41(4), 1051–1054.
  5. Conway, C. M., Pisoni, D. B., Anaya, E. M., Karpicke, J., & Henning, S. C. (2011). Implicit sequence learning in deaf children with cochlear implants. Developmental Science, 14(1), 69–82.
  6. Hidalgo, C., Zécri, A., Pesnot-Lerousseau, J., Truy, E., Roman, S., Falk, S., Dalla Bella, S., & Schön, D. (2021). Rhythmic Abilities of Children With Hearing Loss. Ear and Hearing, 42(2), 364–372.
  7. Gremp, M. A., Deocampo, J. A., Walk, A. M., & Conway, C. M. (2019). Visual sequential processing and language ability in children who are deaf or hard of hearing. Journal of Child Language, 46(4), 785–799.
  8. Bharadwaj, S. V., Matzke, P. L., & Daniel, L. L. (2012). Multisensory processing in children with cochlear implants. International Journal of Pediatric Otorhinolaryngology, 76(6), 890–895.
  9. Pesnot Lerousseau, J., Hidalgo, C., Roman, S., & Schön, D. (2022). Does auditory deprivation impairs statistical learning in the auditory modality? Cognition, 222, 105009.
-----廣告,請繼續往下閱讀-----
文章難易度
雅文兒童聽語文教基金會_96
61 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
3

文字

分享

0
4
3
前額葉皮質的奇蹟:如何保養你的記憶引擎!——《記憶決定你是誰》
天下文化_96
・2024/08/04 ・2641字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

憂鬱症或阿茲海默症?前額葉皮質的雙面效應

額葉損傷病患遇到的記憶問題,跟我們在日常生活中所面對的記憶挑戰有著直接的關聯,而這個關聯成為我對前額葉皮質深感興趣的原因之一。即使在沒有具體損傷的情況下,前額葉皮質的功能仍會受到許多因素影響,進一步導致顯著的記憶問題,例如我在埃文斯頓醫院神經心理學診間測試的許多病患,轉介過來是為了評估阿茲海默症的可能性,但在進一步測驗後,卻發現是臨床上的憂鬱症。

在年紀較長的成人身上,憂鬱症有可能看起來很像早期的阿茲海默症,好比我曾經測驗過一名剛退休不久的學校老師,他一向以頭腦清晰自豪,現在卻難以專注,一直忘東忘西。儘管從磁振造影看不出明顯的腦部損傷,但他的認知卻不比前額葉皮質受損的人好上多少。他和醫生都沒想到,這些認知問題可能與他剛經歷一場離婚,以及幾十年來第一次獨居的情況有關。

前額葉皮質是腦部最晚成熟的區域之一,在整個青春期會持續調整與其他腦區的聯繫。兒童雖然學習很快,卻不擅長專注在應該專注的事物上,因為容易分心。這對於有 ADHD(注意力缺失/過動障礙症)的兒童更是嚴重,他們在學校表現不佳並不是因為缺乏理解力,而是因為在教室裡難以集中注意力、培養有效的學習習慣,以及利用可以應付考試的策略。有大量證據顯示,ADHD與前額葉皮質的異常活動有關。

前額葉皮質也是我們進入老年時,首先開始衰退的區域之一,我們因此覺得自己變得比較健忘。幸好,對多數年長的人來說,形成記憶的能力不會有問題,倒是專注力的改變會影響我們記憶事件的方式。舉例來說,你可能記不住你在表妹婚禮上遇到的某個人叫什麼名字,卻可以記得你們會面時各式各樣的其他資訊,諸如他臉上有雀斑,戴著鮮黃色的領結,或不停說著他最近到田納西州那許維爾(Nashville)的事。

-----廣告,請繼續往下閱讀-----

隨著年齡變長,我們想起瑣事卻想不起重要事情的傾向也會提高。已經有無數研究顯示,在必須專心、忽視干擾的情況下記憶時,年長者表現得比年輕人要差,然而他們記得干擾訊息的能力卻與年輕人一樣好,有時甚至更好。隨著年歲漸長,我們依然能夠學習,卻較難專注於想要記住的細節,反倒常常記住無關緊要的事情。

多工殺手:為什麼一心多用讓你大腦退化

除了年齡之外,讓你覺得自己的前額葉皮質有問題的因素多得不得了。在現代世界裡,一心多用恐怕是最常見的罪魁禍首。我們的對話、活動和會議不斷受到簡訊、電話的干擾,而我們本身又常把注意力分散在好幾個目標上,使得問題更加嚴重。就算是神經科學家也無法免於多工作業--在今天,幾乎每一場學術演講中,都能發現臺下的科學家(包括我自己)拿出筆記型電腦,時而聽講、時而回電子郵件。

很多人甚至對一心多用的能力很自豪,但同時做兩件事很難不用付出代價。為了達成目標,前額葉皮質能幫助我們專注在所需的事情上,但如果我們在不同目標間迅速換來換去,這項美妙的能力就會消失。

加州大學舊金山分校神經科學家安卡佛(Melina Uncapher)的團隊便指出,「媒體多工」(media multitasking)對記憶不利,意思是在不同媒體的訊息間切換會妨礙記憶,例如一下子看簡訊、一下子看電子郵件。更嚴重的是,習慣重度媒體多工的人,平均而言前額葉皮質的某些區域會變得較薄。

-----廣告,請繼續往下閱讀-----

至於額葉的功能失常究竟是媒體多工的原因或是結果,還需要更多研究才能了解,但不管如何,這裡傳達出來的訊息相當一致。我的樂團夥伴米勒爾(Earl Miller)是世界頂尖的前額葉皮質專家及麻省理工學院的教授,他經常這樣說:

「沒有所謂一心多用;你只是輪流把不同的事情做得很糟。」

前額葉的功能也會遭到一些健康問題的破壞。例如高血壓和糖尿病會傷害大腦各區域間相互溝通的神經纖維通路,也就是白質。我和同事發現,與年齡相關的白質損傷,似乎會讓前額葉皮質失去跟大腦其他部分的聯繫--試想這名執行長被單獨鎖在房間裡,無法使用電話和網路。

感染疾病後如果造成腦部的發炎,也可能導致相似的結果,例如在新冠肺炎流行早期受到感染的人,注意力和記憶力等執行功能出現衰退,而且前額葉皮質部分區域的結構發生改變。

一旦前額葉的運作發生改變,就可能導致「腦霧」(又稱為「長新冠」)--當感染的時間很長,或罹患慢性疲勞症候群(chronic fatigue syndrome)等與感染相關的病症時,有機率出現腦霧的症狀。

-----廣告,請繼續往下閱讀-----
感染或罹患慢性疲勞症候群,都可能影響到前額葉皮質。圖/envato

養成健康生活:強化前額葉皮質的簡單步驟

如果我們生活時忽視自己的身心健康,也可能使前額葉皮質暫時失能。例如睡眠剝奪可能對前額葉皮質和記憶造成毀滅性的打擊。酒精也對前額葉皮質帶來負面影響,有些研究顯示這些影響在大量喝酒後還會持續好幾天。我們在後面的章節將探討,壓力會破壞前額葉的運作。如果你在充滿壓力的一週工作之後,熬夜喝酒又不停滑手機看網路新聞,然後整個週末都在跟腦霧奮戰,不用太驚訝。

幸運的是,我們確實可以做一些事來增進前額葉皮質的運作,雖然那些事可能跟你想的不一樣。你的腦是身體的一部分,所以任何對身體有幫助的事情,對你的腦都有幫助,進一步也對記憶有幫助。例如充足的睡眠、適度的運動、健康的飲食,這些事物都有益於你的生理和心理健康,也有益於你的前額葉皮質。

有氧運動如跑步,能促進腦部化學物質釋放,進而提升神經可塑性,改善為腦運送氧氣和能量的血管系統,降低發炎並減少罹患腦血管疾病和糖尿病的可能性。運動也會改善睡眠、降低壓力,而睡眠不足和壓力過高正是耗盡前額葉資源的兩大元凶。

這些因素會一同作用,影響記憶功能在我們年齡增長時的維持狀況。有一項令人敬佩的研究,追蹤了多達兩萬九千人的記憶表現,發現那些在生活方式裡包含上述某些有益因素的人,在十年期間記憶能力的維持狀況也較佳。

-----廣告,請繼續往下閱讀-----

——本文摘自《記憶決定你是誰:探索心智基礎,學習如何記憶》,2024 年 7 月,天下文化,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
0

文字

分享

0
2
0
掌控注意力與動機:終結找不到東西的困擾!——《記憶決定你是誰》
天下文化_96
・2024/08/03 ・1563字 ・閱讀時間約 3 分鐘

為什麼我們總是找不到鑰匙?

讓我們想像一個日常中會發生的情況。你下班回家,用手機確認電子郵件,同時把鑰匙插入鑰匙孔,打開大門。你踏入家中,家裡那隻不久前才認養、還沒訓練好規矩的好動小狗撲過來,纏著你跳來跳去,搞得你身上沾滿狗兒的口水。

你聽到女兒的房間大聲傳出卡加咕咕樂團(Kajagoogoo)的歌曲,一小段極易琅琅上口的重低音合成流行音樂鑽進你的腦門。你疲憊的走進廚房,裡面有股腐臭味,告訴你昨晚忘記把垃圾拿出去。然後,忽然一個抽痛,提醒你要冰敷幾週前扭傷的腳踝。

現在,不要轉頭,試著回想你把鑰匙放在哪裡。如果你想起自己把鑰匙留在鎖孔上,那很好,但如果實在想不起來,你也並不孤單。你可能只是被太多事情轉移了注意力,一旦有一大堆訊息襲來,我們對單一事件的記憶會變得混亂。

有時候就是無法想起自己將物品放在哪裡。 圖/envato

更糟的是,當我們試圖回想自己最後把鑰匙放在哪裡時,會一一過濾各式記憶,包括自己以前曾放置鑰匙的所有地方,以及我們把鑰匙放在各個地方的各種不同情況,不管那些事件是發生在昨晚、上個星期,甚至去年。會有很多這樣的干擾,所以諸如鑰匙、手機、眼鏡、皮夾,甚至車子等常用的東西,我們經常忘記它放在哪裡。競爭的記憶那麼多,能夠記住這些東西放在哪裡才奇怪。

-----廣告,請繼續往下閱讀-----

破解記憶混亂:注意力如何幫助你記住重要細節

試著把記憶想像成一張桌子,上面雜亂的放滿皺皺的紙片。如果你把網路銀行的密碼隨手抄在這種紙片上,要重新找到這張紙片,不僅需要耗費一番努力和運氣,同時也在挑戰你的記憶力。這類經驗就像艾賓浩斯努力背誦的無意義三字母組,要找到當下所需的正確記憶,難度會不成比例的增加。

但如果你把密碼寫在一張亮眼的桃紅色便利貼,要找到就變得格外容易,因為桃紅色便利貼會從桌上所有其他紙片之中凸顯出來。記憶以同樣的方式運作。愈特殊的經驗愈容易記得,因為它會從所有其他記憶裡凸顯出來。

愈特殊的經驗愈容易記得,就像一張亮眼的便條紙。 圖/envato

那麼,要如何使記憶從我們堆滿雜亂事物的腦袋中凸顯出來呢?答案是「注意力」和「動機」。利用注意力,大腦能把我們看到、聽到、想到的事情提高優先順序。我們隨時都可能把注意力放在四周的諸多事物上,而環境裡發生的事情常常會吸引我們注意。

在前面描述的假想情況中,你的注意力可能短暫的放在鑰匙上,接著注意力就被門打開後遇到的許多事情給轉移。即使你留意著應該記住的重要事物(一小時後得去機場接妻子,你需要那串鑰匙,否則會遲到),也不見得能幫你建立特殊的記憶,足以對抗各式各樣吸引你注意的干擾(好動的狗、廚房裡的垃圾臭氣,或女兒房間傳出的樂團聲音)。

-----廣告,請繼續往下閱讀-----

這就是「動機」登場的時候了。你需要利用動機來引導注意力,讓注意力鎖定在某個特定的事物上,好製造一個之後能找得到的記憶。下次你放下鑰匙這類經常找不到的東西時,花一點時間專注在當時和當地的某個獨特事物,例如檯面的顏色,或鑰匙旁邊那疊未拆封的信件。只要一點點專心的動機,就能對抗大腦忽略日常事件的天性,建立較為明顯的記憶,如此便有機會戰勝那些干擾的喧囂。

——本文摘自《記憶決定你是誰:探索心智基礎,學習如何記憶》,2024 年 7 月,天下文化,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。