Loading [MathJax]/extensions/tex2jax.js

1

3
2

文字

分享

1
3
2

狗用來標記地盤,老鼠用來求偶,但人類很可能沒有?神奇的化學分子費洛蒙——《完美歐姆蛋的化學》

日出出版
・2023/01/01 ・1841字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

可以傳染的「興奮感」:費洛蒙

費洛蒙是一種非常大的分子,會從動物體內散發出來並影響其他動物身體的行為。

這種物質當初是在 1959 年由德國生物化學家阿道夫.布特南特(Adolf Butenandt)發現, 這位科學家在二十年前就因為首次合成出性激素而獲得諾貝爾化學獎,說他是化學界的搖滾巨星都還不足以形容他的貢獻。

阿道夫.布特南特首次合成出性激素。圖/wikipedia

他的研究發現,費洛蒙的功能和激素一樣,但是只對附近的相同物種個體有效。

舉例來說,如果動物 A 在動物 B 附近釋放出性費洛蒙,動物 B 的身體會吸收這些分子,整體行為也會受到影響。這其實代表動物 A 具有像丘比特的能力,只不過用的不是箭,而是分子。

基於以上的原因,費洛蒙有時會被稱為「環境激素」(eco-hormone),因為這類分子的運作方式就像是體外的激素。

-----廣告,請繼續往下閱讀-----

和激素相同的是,費洛蒙有各式各樣的結構。有些分子非常小,有些則相當大,不過全都是揮發性分子,這表示分子在特定條件下會輕易蒸發。揮發性物種通常很好辨識,因為會帶有強烈的氣味(像是汽油或去光水)。

汽油帶有強烈的氣味。圖/pixabay

研究人員決定把這種分子命名為費洛蒙(pheromone),是因為字面上的意思是「轉移興奮感」,而這正是費洛蒙的功能。

動物間的費洛蒙功用

強大的費洛蒙分子可以傳送幾種不同主題的訊號給附近的同類,例如食物、安全狀況或者性。舉例來說,螞蟻會在巢穴和食物之間的路徑散發費洛蒙,來通知彼此食物來源在哪裡。

狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。就連雄鼠也會散發出性相關的費洛蒙來吸引雌鼠,同時也會導致附近的雄鼠變得更有攻擊性。

-----廣告,請繼續往下閱讀-----
狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。圖/pixabay

那麼人類呢?

人也會散發出任何一種類型的性費洛蒙嗎?

出乎意料的,人類不會散發任何一種形式的性費洛蒙。不過我們自以為有費洛蒙的原因在這裡:1986年,溫尼弗雷德.卡特勒(Winnifred Cutler)發表的研究宣稱,她成功分離出第一種人類性費洛蒙。

在這項研究計畫中,她蒐集、冷凍並解凍來自幾位不同對象的性費洛蒙。一年之後,她將這些分子塗在許多女性受試者的上唇,接著便宣稱她觀察到和大自然的動物類似的結果。

事實上,卡特勒的研究完全是一派胡言。她根本沒有分離出人類性費洛蒙;而只是把奇怪的氣味塗在隨機受試對象的上唇,其中包括——請做好心理準備——腋下的汗水。

-----廣告,請繼續往下閱讀-----

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。圖/pixabay

直到今天,卡特勒的噁心科學研究還流傳在網路上的各個角落,這表示如果有人在 Google 上搜尋「人類性費洛蒙」,就會和得到一堆錯誤資訊。有些研究人員堅信我們總有一天會發現性費洛蒙,不過在這本書出版的當下,科學界尚未找到任何人類性費洛蒙。

一直以來有不少相關研究在執行和重複進行,也盡可能針對各種變數進行調整,而所有的研究團隊都得出相同的結論:二十一世紀的人類大概沒有性費洛蒙。

但人類有史以來就是這樣嗎?如果大多數的其他哺乳類都有性費洛蒙,包括兔子和山羊,為什麼我們沒有?

-----廣告,請繼續往下閱讀-----

答案其實意外簡單:人類學會了溝通。

我們可以用語言(和蠟燭……還有性感內衣……)告訴伴侶我們有興趣滾床單,而雪貂則必須往理想交配對象的方向散發性分子。

——本文摘自《完美歐姆蛋的化學》,2022 年 12 月,日出出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
日出出版
13 篇文章 ・ 7 位粉絲

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
毒藥的歷史:死亡、救贖與科學的交匯點——《毒藥的滋味》
PanSci_96
・2024/09/03 ・2429字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

奪命計劃的冷酷藝術

在犯罪史上,謀殺是特別令人髮指的罪行;而在各種殺人手法之中,只有寥寥幾種會像毒藥那樣,令人有如此奇特的病態迷戀。與一時腦熱的衝動謀殺相比,毒殺所涉及的事前規劃與冷酷的算計,完全符合法律術語中的「惡意預謀」(malice aforethought)定義。毒殺需要預先籌畫並了解受害者的習慣,也必須考慮如何下毒。有些毒藥只要幾分鐘就能奪人性命,其他則可以長期慢性下毒,逐漸在體內積累,最終導致受害者必然的死亡。

這本書沒有要列出下毒者及受害者的清單,而是要探討毒物的性質,以及它們如何在分子、細胞和生理層面影響人體。每種毒藥都有獨特的致死機制,受害者所經歷的各種症狀往往都是線索,有助於抽絲剝繭找出他們被下了什麼毒。在少數情況下,這些知識有助於給予適當的治療,讓受害者能完全康復。但在大多數情況下,就算知道是什麼毒物對於治療也沒有幫助,因為根本沒有解藥。

毒殺因冷酷計劃與預謀惡意而特別令人髮指。 圖/envato

雖然毒物(poison)和毒素(toxin)這兩個詞經常互換使用,但嚴格來說它們並不相同。「毒物」是任何會對身體造成傷害的化學物質,可以是天然的,也可以是人造的,而「毒素」通常是指生物所製造的致命化學物質。不過如果你是被下毒的一方,那麼兩者的差異就只是學術討論了。

毒物的兩面性:從致命陷阱到救命藥

toxikon 這個字源自古希臘文,意思是「箭頭浸泡的毒物」,指的是塗抹在箭頭上以導致敵人死亡的植物萃取物。當 toxikon 這個字與希臘文的「研究」logia 相結合,就成為我們現在的「毒理學」或「毒素研究」(toxicology)這個詞。毒物一詞源自拉丁語的 potio,意思是「喝」,之後慢慢演變成古法語中的 puison 或 poison。「毒物」這個字在一二○○年首次出現在英語中,意思是「致命的藥水或物質」。

-----廣告,請繼續往下閱讀-----

從生物體中獲得的毒物通常是許多化學物質的混合物。例如,致命的茄科植物(也稱為顛茄)的粗萃物相當危險,從這些萃取物中也可以純化出化學物質阿托品(atropine)。同樣的,毛地黃花(foxglove)的植物本身也有毒,還能從中萃取出單一的化學物質毛地黃(digoxin)。

有一些歷史悠久的毒藥是混合幾種不同的毒物製作而成,例如「托法娜仙液」(Aqua tofana)就是混合了鉛、砷和顛茄的毒藥。

在瓶子裡人畜無害的化學物質最後怎麼會變成屍體裡發現的毒?無論是哪一種毒藥,在死亡發生之前都會有三個不同階段:下毒、行動和效果。

下毒有四種途徑:消化、呼吸、吸收或注射。也就是說,它們可能是被吃掉或喝掉,透過腸道進入體內;吸入肺部;直接透過皮膚吸收;或是透過注射到肌肉或血液中進入體內。兇手選擇何種方式讓毒物進入受害者體內,取決於毒物的性質。儘管有毒氣體已被用於殺戮,但這涉及一定程度的技術難度,因此並不實用,而且這種手法通常難以針對特定個人。

-----廣告,請繼續往下閱讀-----

透過眼睛和嘴巴的皮膚或黏膜吸收可能非常有效:兇手不必與受害者有任何接觸,甚至在中毒當下還能留在附近。光是將毒藥塗抹在受害者即將接觸的物品上就足以導致死亡。混合在食物或飲料中為大多數毒物提供了一條簡單的途徑,特別適用於固體結晶毒物,因為它們可以簡單灑在飯菜上或溶解在飲料中就好。

不過有一些毒物必須注射到體內才能發揮作用,有時候這是因為毒藥是一種蛋白質,如果加入食物攝取,就很容易被腸胃分解。此外,兇手一定要離受害者夠近才能注射毒物。

毒藥可透過皮膚、食物、或注射進入體內,兇手無需直接接觸即可致命。 圖/envato

毒藥如何摧毀人體機制?

現在我們來看毒物的核心:它們如何破壞身體的內部運作?

毒物確切的作用方式五花八門,而它們的效果則揭曉了許多人類生理學的奧秘。許多毒物會攻擊神經系統,破壞控制身體正常功能且高度複雜的電子訊號:如果阻斷的是心臟各部分之間的交流,可以視為毒物使心臟停止跳動並導致死亡;如果破壞控制呼吸的橫隔膜肌肉調節,同樣也會使呼吸停止,導致窒息而亡。

-----廣告,請繼續往下閱讀-----

也有些毒物會偽裝,隱藏真實身分後進入身體細胞,這些毒物的外型與細胞的重要成分極為相似,但不完全相同,因此可以進入細胞的新陳代謝過程,但無法執行正確的生化功能。毒物會假冒體內的細胞分子,使得細胞的化學作用緩慢停止,最終死亡。當死亡的細胞夠多,整個身體就會跟著死去。

如果不同的毒物以不同的方式發揮作用,不難想像受害者所經歷的症狀也會不同。以大多數消化型的毒物而言,無論作用方式為何,人體的第一反應通常是嘔吐和腹瀉,試圖藉此從體內清除毒物;影響心臟神經和電流訊號的毒物則會導致心悸,最終導致心跳停止;影響細胞化學性質的毒物通常會引起噁心、頭痛和嗜睡的症狀。毒物的作用及可怕後果的故事在本書中比比皆是。

雖然大多數人認為毒物是致命的藥物,但科學家也已經使用與毒物完全相同的化學物質來梳理細胞和器官內部的分子和細胞機制,利用這些資訊開發能夠治療和治癒多種疾病的新藥。舉例來說,科學家透過研究毛地黃植物中的毒物如何影響身體,成功研發出了治療充血性心臟衰竭的藥物。

現代外科手術時使用的常規藥物,同樣也是透過了解顛茄如何影響人體運作後問世,這種藥物除了能預防術後併發症,甚至還能治療在化學戰中受害的士兵。由此可知,化學物質的本質沒有好壞之分,它只是一種化學物質。造成差異的是使用這種化學物質的意圖:是要保護生命,或是奪去生命。

-----廣告,請繼續往下閱讀-----

——本文摘自《毒藥的滋味:11種致命分子與使用它們的凶手》,2024 年 7 月,方舟文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
1

文字

分享

0
0
1
為什麼腿短短,走路還搖搖晃晃?解密企鵝賣萌的背後真相!——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/24 ・1652字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

企鵝搖搖晃晃地走路

圖/giphy

說到用兩隻腳走路的鳥類,就不得不提企鵝。企鵝用兩隻腳在冰上搖搖晃晃走路的樣子非常可愛。在水中卻可以自由自在地高速游泳、追捕魚,這兩種樣子帶給人的印象有非常大的不同。

話說,企鵝意外地可以走很長一段距離。牠們會在地上蒐集石頭來作巢,所以當然要可以走到築巢的地點。通常企鵝類的繁殖群會位在距離海岸線幾百公尺的地方,但有時會在距離海岸 3 公里以上的內陸,想像企鵝排成一列搖搖晃晃地走 3 公里,實在是可愛至極。

說是這樣說,但是走 3 公里,我們人類都覺得有點遠了,企鵝真的可以搖搖晃晃走過去嗎?

牠們的走路方式感覺效率很差,好像很累。企鵝走路時腳會使用的力量以及計算其所需能量的研究顯示,企鵝的走路方式一如外表印象,效率很差。大概所有人都會覺得「我想也是」吧,但我們不妨來仔細思考為什麼會效率很差。

-----廣告,請繼續往下閱讀-----
圖/giphy

鵝生好累!企鵝其實一直蹲著?

在討論企鵝的步行時,首先得要知道的是其獨特的體型。企鵝看起來是用兩隻腳站著,腳感覺極端的短。大概因為身上的毛色彷彿穿著燕尾服一樣,總覺得像是人類的喜劇演員一般。

但是牠嚴格說來並不是「站著」。看企鵝的骨骼圖(圖一)就很清楚。髖關節跟膝關節強烈彎曲的姿勢,以人類來說就是「蹲著」。換言之,企鵝時時刻刻都是蹲著的,連走路時也是蹲著的狀態。試著自己蹲著走路看看,就會像企鵝那樣搖搖晃晃地。牠們搖搖晃晃的姿態,背後的祕密就是體型與姿勢。

而由此延伸,企鵝的步行方式非常沒效率的理由,可能就是身體橫向搖擺和轉動幅度非常大。搖擺跟旋轉的動作,對前進而言怎麼看都是不必要的舉動,但是根據之前的研究,其實企鵝不搖晃反而效率會更差。之前也說過雙足步行的動能跟位能要有效率地轉換,才能有效率地運動,但企鵝似乎是用橫向搖擺的動作來進行這種能量轉換。

圖一、企鵝的樣子跟人很像,所以如果讓企鵝在山手線月台上排隊,也不會有人發現(右),但是如果看骨骼(左),企鵝蹲下來就可以跟站著的人類簡單區分開來。

短腿優先?

也就是說,企鵝走路效率不佳的理由,跟牠們這種體型跟姿勢有關。

-----廣告,請繼續往下閱讀-----

企鵝的腳確實很短,以現在還活著的企鵝種類來說,體型最大的皇帝企鵝的體重將近 20 公斤,和澳洲的平胸鳥類鶆䴈幾乎相同,然而比較這兩種鳥類的腿長的話,鶆䴈的髖關節大概在 80 公分高的位置,而皇帝企鵝大概在 30 公分高左右。明明體重差不多相同,企鵝的腳的長度卻只有鶆䴈的一半以下,步行效率差也是沒辦法的事。

本章已經反覆提過好幾次,腿愈長一般來說會步行速度愈快、效率也愈好,企鵝的短腳和蹲下的姿勢非常不適合走路,這點沒有人能否定。

圖/giphy

企鵝的腳會這麼短,恐怕是為了在寒冷地帶保住體溫。雖然也有棲息在熱帶的企鵝,但多數企鵝都棲息在極地,在水中跟地面上不失去體溫就是牠們最重要的課題。四肢末梢要是比較長,就會因為體積的表面積變大,容易失去體溫。所以在寒冷地帶演化的物種,耳朵等突出部位通常都會比較小。

雖然意外地能走很長距離,但企鵝仍然主要屬於在寒冷地區游泳的鳥類,為此演化出的短腿跟蹲著的姿勢,必須讓身體左右搖晃走路來補足才更有效率。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----