1

3
2

文字

分享

1
3
2

狗用來標記地盤,老鼠用來求偶,但人類很可能沒有?神奇的化學分子費洛蒙——《完美歐姆蛋的化學》

日出出版
・2023/01/01 ・1841字 ・閱讀時間約 3 分鐘

可以傳染的「興奮感」:費洛蒙

費洛蒙是一種非常大的分子,會從動物體內散發出來並影響其他動物身體的行為。

這種物質當初是在 1959 年由德國生物化學家阿道夫.布特南特(Adolf Butenandt)發現, 這位科學家在二十年前就因為首次合成出性激素而獲得諾貝爾化學獎,說他是化學界的搖滾巨星都還不足以形容他的貢獻。

阿道夫.布特南特首次合成出性激素。圖/wikipedia

他的研究發現,費洛蒙的功能和激素一樣,但是只對附近的相同物種個體有效。

舉例來說,如果動物 A 在動物 B 附近釋放出性費洛蒙,動物 B 的身體會吸收這些分子,整體行為也會受到影響。這其實代表動物 A 具有像丘比特的能力,只不過用的不是箭,而是分子。

基於以上的原因,費洛蒙有時會被稱為「環境激素」(eco-hormone),因為這類分子的運作方式就像是體外的激素。

-----廣告,請繼續往下閱讀-----

和激素相同的是,費洛蒙有各式各樣的結構。有些分子非常小,有些則相當大,不過全都是揮發性分子,這表示分子在特定條件下會輕易蒸發。揮發性物種通常很好辨識,因為會帶有強烈的氣味(像是汽油或去光水)。

汽油帶有強烈的氣味。圖/pixabay

研究人員決定把這種分子命名為費洛蒙(pheromone),是因為字面上的意思是「轉移興奮感」,而這正是費洛蒙的功能。

動物間的費洛蒙功用

強大的費洛蒙分子可以傳送幾種不同主題的訊號給附近的同類,例如食物、安全狀況或者性。舉例來說,螞蟻會在巢穴和食物之間的路徑散發費洛蒙,來通知彼此食物來源在哪裡。

狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。就連雄鼠也會散發出性相關的費洛蒙來吸引雌鼠,同時也會導致附近的雄鼠變得更有攻擊性。

-----廣告,請繼續往下閱讀-----
狗在散步時對消防栓撒尿是為了標示自己的領域,這時釋放的就是領域費洛蒙。圖/pixabay

那麼人類呢?

人也會散發出任何一種類型的性費洛蒙嗎?

出乎意料的,人類不會散發任何一種形式的性費洛蒙。不過我們自以為有費洛蒙的原因在這裡:1986年,溫尼弗雷德.卡特勒(Winnifred Cutler)發表的研究宣稱,她成功分離出第一種人類性費洛蒙。

在這項研究計畫中,她蒐集、冷凍並解凍來自幾位不同對象的性費洛蒙。一年之後,她將這些分子塗在許多女性受試者的上唇,接著便宣稱她觀察到和大自然的動物類似的結果。

事實上,卡特勒的研究完全是一派胡言。她根本沒有分離出人類性費洛蒙;而只是把奇怪的氣味塗在隨機受試對象的上唇,其中包括——請做好心理準備——腋下的汗水。

-----廣告,請繼續往下閱讀-----

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。

與其說是分離出純費洛蒙,不如說她蒐集的是人流汗時排出的電解質,而且還抹在別人的臉上。圖/pixabay

直到今天,卡特勒的噁心科學研究還流傳在網路上的各個角落,這表示如果有人在 Google 上搜尋「人類性費洛蒙」,就會和得到一堆錯誤資訊。有些研究人員堅信我們總有一天會發現性費洛蒙,不過在這本書出版的當下,科學界尚未找到任何人類性費洛蒙。

一直以來有不少相關研究在執行和重複進行,也盡可能針對各種變數進行調整,而所有的研究團隊都得出相同的結論:二十一世紀的人類大概沒有性費洛蒙。

但人類有史以來就是這樣嗎?如果大多數的其他哺乳類都有性費洛蒙,包括兔子和山羊,為什麼我們沒有?

-----廣告,請繼續往下閱讀-----

答案其實意外簡單:人類學會了溝通。

我們可以用語言(和蠟燭……還有性感內衣……)告訴伴侶我們有興趣滾床單,而雪貂則必須往理想交配對象的方向散發性分子。

——本文摘自《完美歐姆蛋的化學》,2022 年 12 月,日出出版出版,未經同意請勿轉載。

文章難易度
所有討論 1
日出出版
13 篇文章 ・ 7 位粉絲

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
1

文字

分享

0
0
1
為什麼腿短短,走路還搖搖晃晃?解密企鵝賣萌的背後真相!——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/24 ・1652字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

企鵝搖搖晃晃地走路

圖/giphy

說到用兩隻腳走路的鳥類,就不得不提企鵝。企鵝用兩隻腳在冰上搖搖晃晃走路的樣子非常可愛。在水中卻可以自由自在地高速游泳、追捕魚,這兩種樣子帶給人的印象有非常大的不同。

話說,企鵝意外地可以走很長一段距離。牠們會在地上蒐集石頭來作巢,所以當然要可以走到築巢的地點。通常企鵝類的繁殖群會位在距離海岸線幾百公尺的地方,但有時會在距離海岸 3 公里以上的內陸,想像企鵝排成一列搖搖晃晃地走 3 公里,實在是可愛至極。

說是這樣說,但是走 3 公里,我們人類都覺得有點遠了,企鵝真的可以搖搖晃晃走過去嗎?

牠們的走路方式感覺效率很差,好像很累。企鵝走路時腳會使用的力量以及計算其所需能量的研究顯示,企鵝的走路方式一如外表印象,效率很差。大概所有人都會覺得「我想也是」吧,但我們不妨來仔細思考為什麼會效率很差。

-----廣告,請繼續往下閱讀-----
圖/giphy

鵝生好累!企鵝其實一直蹲著?

在討論企鵝的步行時,首先得要知道的是其獨特的體型。企鵝看起來是用兩隻腳站著,腳感覺極端的短。大概因為身上的毛色彷彿穿著燕尾服一樣,總覺得像是人類的喜劇演員一般。

但是牠嚴格說來並不是「站著」。看企鵝的骨骼圖(圖一)就很清楚。髖關節跟膝關節強烈彎曲的姿勢,以人類來說就是「蹲著」。換言之,企鵝時時刻刻都是蹲著的,連走路時也是蹲著的狀態。試著自己蹲著走路看看,就會像企鵝那樣搖搖晃晃地。牠們搖搖晃晃的姿態,背後的祕密就是體型與姿勢。

而由此延伸,企鵝的步行方式非常沒效率的理由,可能就是身體橫向搖擺和轉動幅度非常大。搖擺跟旋轉的動作,對前進而言怎麼看都是不必要的舉動,但是根據之前的研究,其實企鵝不搖晃反而效率會更差。之前也說過雙足步行的動能跟位能要有效率地轉換,才能有效率地運動,但企鵝似乎是用橫向搖擺的動作來進行這種能量轉換。

圖一、企鵝的樣子跟人很像,所以如果讓企鵝在山手線月台上排隊,也不會有人發現(右),但是如果看骨骼(左),企鵝蹲下來就可以跟站著的人類簡單區分開來。

短腿優先?

也就是說,企鵝走路效率不佳的理由,跟牠們這種體型跟姿勢有關。

-----廣告,請繼續往下閱讀-----

企鵝的腳確實很短,以現在還活著的企鵝種類來說,體型最大的皇帝企鵝的體重將近 20 公斤,和澳洲的平胸鳥類鶆䴈幾乎相同,然而比較這兩種鳥類的腿長的話,鶆䴈的髖關節大概在 80 公分高的位置,而皇帝企鵝大概在 30 公分高左右。明明體重差不多相同,企鵝的腳的長度卻只有鶆䴈的一半以下,步行效率差也是沒辦法的事。

本章已經反覆提過好幾次,腿愈長一般來說會步行速度愈快、效率也愈好,企鵝的短腳和蹲下的姿勢非常不適合走路,這點沒有人能否定。

圖/giphy

企鵝的腳會這麼短,恐怕是為了在寒冷地帶保住體溫。雖然也有棲息在熱帶的企鵝,但多數企鵝都棲息在極地,在水中跟地面上不失去體溫就是牠們最重要的課題。四肢末梢要是比較長,就會因為體積的表面積變大,容易失去體溫。所以在寒冷地帶演化的物種,耳朵等突出部位通常都會比較小。

雖然意外地能走很長距離,但企鵝仍然主要屬於在寒冷地區游泳的鳥類,為此演化出的短腿跟蹲著的姿勢,必須讓身體左右搖晃走路來補足才更有效率。

-----廣告,請繼續往下閱讀-----

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

晨星出版
12 篇文章 ・ 3 位粉絲

0

0
1

文字

分享

0
0
1
動物移動方式大不同!獵豹為什麼跑這麼快?——《鴿子為什麼要邊走邊搖頭?》
晨星出版
・2023/10/23 ・1560字 ・閱讀時間約 3 分鐘

動物的移動方式及進化

動物會使用肌肉骨骼系統來進行各種運動,有時是只動身體的一部分,有時則是移動整個身體,讓自己移往其他地方的情況。理所當然的是,動物將自己整個身體移動到其他地方,會比只有動一部分身體需要更多的能量。所以移動時會特別需要注重效率。

動物們在進化過程中獲得各種生活形態,以及適合該生活形態的移動方法。只要看看動物們的走路方式,就能理解這個進化過程。

像山椒魚等兩棲類動物,以及蜥蜴、壁虎等爬蟲類,都是從軀幹伸出四肢來撐起身體,並扭動身軀,一一藉著四肢的支點往前方移動(圖一)。扭動軀體的運動跟魚在游泳時的軀幹動作很類似。兩棲類和爬蟲類是脊椎動物進化過程中最初上陸的動物們,本來就擁有類似魚那樣扭動身軀的身體構造,要善用這種構造在陸地上運動,就演化出了這樣的走路方式吧。

圖一、壁虎的步行姿勢。隨著步伐,脊骨(白線)會左右大大彎曲。

後來兩棲類中有一部分軀幹變短、後肢也變得發達,那就是蛙類(圖二)。長長的後肢可以產生強大的跳躍力。說到彈跳,身體要是扭來扭去的穩定性就不好,要是身體變短,就不會扭來扭去的了。因為獲得了短身軀跟長後肢,使得蛙類可以進行大幅度跳躍。

-----廣告,請繼續往下閱讀-----
圖二、青蛙的骨骼標本。長腳可以進行強力跳躍,短短的軀幹則讓跳躍時可以保持身軀穩定。

一部分的爬蟲類(恐龍類)和哺乳類的四肢又更加發達,可以進行多樣化的運動。他們的四肢不只是變長,還跟兩棲類或蜥蜴等爬蟲類不一樣,四肢不是生長在身體兩側,而是下方。往下生長的四肢可以高高舉起軀幹,只要前後擺動四肢就能移動了。

比起移動整個身體,只有四肢動作的效率會比較好。另外,體幹如果可以不激烈動作,身體就可以比較安定,而且更容易控制。結果就能實現高速運動。另外,像鹿或是馬等擅長跑步的動物,牠們的四肢,特別是末端部分會很長(圖三)。腳變長的話,跨一步的距離也就會變長,可以跑得比較快。

圖三、馬(左)和人(右)的骨骼,馬的掌骨跟肱骨差不多是同樣長度,人的骨骼圖為臼田隆行作畫。

本來哺乳類也不是軀幹就保持不動,而是軀幹跟四肢經常一起協調地動作,但是方向跟魚或蜥蜴的橫向運動不同,是身體往腹背方向彎曲再伸直,像是為人熟知的貓科動物跑步時的動作。例如,獵豹跑步時,身體會大大彎曲再伸直,用全身力氣來有力地跳躍並讓步伐加大,創造出陸地上最快生物才有的跑步速度。(圖四)

圖四、跑步中的獵豹。跑步時脊骨(白線)會往腹背方向大大彎曲再伸直,讓每一步的步伐距離變長。

所有哺乳類雖有程度差別,但似乎都有像這樣身體往腹部方向屈伸的動作。前面所述的馬跟鹿等動物,雖然看起來軀幹動作沒這麼大,但脊骨還是會反覆進行彎曲再伸直的動作。只是活動程度比貓科動物少得多了。

-----廣告,請繼續往下閱讀-----

稍微離題一下,從陸地再度回到水中的哺乳類也不例外,海豹或海狗、鯨魚等動物,游泳時的脊椎也是往腹背方向屈伸的。魚類一般是身體往兩側扭動來游泳,所以我們可以說水棲哺乳類的身體往腹背方向屈伸,是因為從腳配置在軀幹下方的哺乳類演化而來,可以說水棲哺乳類才有這樣的特性吧!

——本文摘自《鴿子為什麼要邊走邊搖頭?》,2023 年 8 月,晨星出版,未經同意請勿轉載。

晨星出版
12 篇文章 ・ 3 位粉絲