Loading [MathJax]/extensions/tex2jax.js

1

4
1

文字

分享

1
4
1

金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量

鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

文章難易度

討論功能關閉中。

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3235字 ・閱讀時間約 6 分鐘

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

5
4

文字

分享

0
5
4
快閃記憶體的原理:我們常用的 USB 記憶體與記憶卡——《圖解半導體》
台灣東販
・2022/11/22 ・3591字 ・閱讀時間約 7 分鐘

快閃記憶體常被用在個人電腦的 USB 記憶體、數位相機或智慧型手機的記憶卡等地方。即使切斷電源,記憶內容也不會消失,屬於非揮發性記憶體,且與 DRAM 的隨機存取類似,可讀取、擦除、寫入內容。不過,快閃記憶體的動作較慢,無法取代 DRAM。

快閃記憶體由東芝的舛岡富士雄於 1984 年發明。

DRAM 會透過記憶體電容器累積的電荷來記憶資訊。而快閃記憶體則會透過 MOSFET 內的懸浮閘極累積電荷。

快閃記憶體的結構。圖/東販

圖 4-11 為快閃記憶體的結構。MOSFET 的閘極與 Si 基板之間,有個不與任一方相連的懸浮閘極。

這個懸浮閘極就是快閃記憶體的特徵。電荷儲存在這裡時,因為周圍是由氧化膜(SiO2)構成的絕緣體,所以電荷(電子)不會跑到其他地方。即使切斷電源,記憶體內的資訊也不會消失,為非揮發性記憶體。

快閃記憶體的懸浮閘極帶有電荷時,儲存的是「0」;無電荷時,儲存的是「1」。懸浮閘極可透過累積或釋放電子,來記錄或保存資訊。

資訊的寫入與消除。圖/東販

圖 4-12(a) 為寫入「0」的情況。此時源極、汲極、基板皆為 0V,並對控制閘極施加正電壓。

於是,Si 基板內的電子就會穿過氧化膜,於懸浮閘極內蓄積。「電子可穿過絕緣體氧化膜」聽起來有些不可思議,不過氧化膜相當薄,厚度只有約數 nm,所以電子可以透過穿隧效應穿過氧化膜。

因此,Si 基板與懸浮閘極之間的氧化膜也叫做穿隧氧化膜。寫入資訊「1」時,懸浮閘極不會蓄積電子,所以什麼事都不會發生。

當我們想要消除資訊,也就是消除懸浮電極蓄積的電子時,需讓控制電極電壓為 0V,並對源極、汲極、基板施加正電壓,如圖 4-12(b) 所示。這麼一來,懸浮電極內蓄積的電子就會透過穿隧效應穿過氧化膜,移動到電壓較高的基板一側。於是,原本蓄積於懸浮電極的電荷就會消失。

讀取已記錄的資訊。圖/東販

另一方面,當我們想要讀取資訊時,只要在控制電極施加一定的正電壓,便可透過從源極流向汲極的電流,讀取儲存單元內的資訊(圖 4-13)。

若懸浮閘極內有蓄積電子(「0」的狀態),這些電子的負電會抵消掉控制閘極施加的正電壓,使電流難以通過底下的通道。

利用懸浮電荷量不同來控制記憶體

若懸浮閘極內沒有累積電子(「1」的狀態),閘極電壓就會直接影響到基板,與 MOSFET 的情況一樣,故下方會有電流通過。所以由電流的差異,就可以判斷儲存單元的資訊是「0」或「1」。

即使懸浮閘極內有蓄積電荷(圖 4-13 的「0」狀態),要是對控制閘極施加的電壓過高,源極與汲極之間還是會有電流通過。

也就是說,懸浮電荷量不同時,使電晶體開始產生電流的閾值電壓(Vth,參考第 89 頁)也不一樣。故我們可藉由懸浮電荷量的控制來記憶資訊。

快閃記憶體的 SLC 與 MLC。圖/東販

由前面的說明可以知道,像圖 4-14(a) 這樣的單一儲存單元,只能記錄 1 個位元,可能是「0」或「1」。

用閾值電壓判斷單元狀態

不過,如果閾值電壓可任意控制,就可以將懸浮閘極依儲存的電荷量,從滿電荷到無電荷分成 4 個等級,如圖 (b) 所示。4 個等級可分別對應「01」、「00」、「10」、「11」。這麼一來,1 個儲存單元就可以記錄 2 位元的資訊。

因為每種狀態所對應的閾值電壓都不一樣,Vth01>Vth00>Vth10>Vth11,所以讀取資訊時,可以由閾值電壓判斷該儲存單元處於何種狀態。

可分成 4 種狀態的單元稱為 MLC(Multi Level Cell)。另一方面,只有 2 種狀態的單元稱為 SLC(Single Level Cell)。

MLC 的 1 個儲存單元可以記錄 2 位元的資訊。如果將 Vth 分成更多區間,還可以記錄 3 位元、4 位元的資訊,進而提升容量。不過,MLC 懸浮閘極寫入電壓的控制技術相當困難,MOSFET 對干擾現象又特別敏感,所以要做成增加更多層相對困難。

快閃記憶體的缺點

另外,快閃記憶體在記錄、消除資訊時,需使用 10V 之類相對較高的電壓,電子才能突破穿隧氧化膜。因此,反覆讀寫會造成氧化膜劣化,最後使儲存單元無法保留電子。也就是說,快閃記憶體的壽命比其他記憶體還要短。寫入速度較慢也是一項缺點。

另一方面,快閃記憶體與 DRAM 不同,不使用電容器,所以1個晶片可搭載的儲存單元較多,較容易提升容量。

快閃記憶體的組成——NAND 型與 NOR 型

NAND 型與 NOR 型。圖/東販

快閃記憶體與 DRAM 一樣,都是由許多儲存單元排列成矩陣的樣子。快閃記憶體可依組成分成 NOR 型與 NAND 型 2 種(圖 4-15)。

NOR 型的快閃記憶體結構。圖/東販

圖 4-16 為 NOR 型的快閃記憶體結構。除了字元線與位元線之外,還有「源極線」存在,且源極線需通以電流。

NOR 型的快閃記憶體運作方式與 DRAM 相近,較好理解。以圖中圈出來的儲存單元為例,讀取單元內的數值時,會在對應的字元線施加讀取用電壓,然後透過位元線讀取資訊。另一方面,消除或寫入資訊時,會對位元線施加寫入用電壓,字元線也會施加寫入用電壓。

實際上的運作相當複雜,所以不像 DRAM 那樣只有 0 與 1 的 2 種數值,不過和 DRAM一樣是一個個單元讀取、寫入。換言之,可以隨機存取儲存單元。

NAND 型快閃記憶體的結構。圖/東販

另一方面,NAND 型快閃記憶體的結構則如圖 4-17 所示。

NAND 型的結構中,同一條字元線串聯起許多儲存單元,稱為 1「頁」(page),多條字元線有許多頁,稱為 1 個「區塊」(block)。

NAND 型的頗面圖。圖/東販

圖 4-18 中,1 條位元線可串聯起許多儲存單元。這種結構有個特徵,那就是同一條位元線上,各個 MOSFET 的源極與汲極皆串聯在同一列上。這一列MOSFET製作在半導體基板上時,剖面圖如下。

基板上,1 個電晶體的源極,與相鄰電晶體的汲極共用同一個n區域,所以表面不需設置電極。少了電極而多出來的空間,就可以用來提升電晶體的聚積密度。

不過這種結構下,1 條位元線的電流比 NOR 型的電流還要小,所以讀取速度比較慢。另外,因為 1 個儲存單元比較小,所以懸浮閘極保留的電荷也會比較少,使資料保存的可靠度較差。

NAND 型的擦除與寫入步驟

NAND 型快閃記憶體需以 1 個區塊(含有許多頁)為單位進行擦除,以 1 頁為單位進行寫入。

因此,要更改 1 頁的內容時,必須將含有這 1 頁之整個區塊的資訊暫時複製存放到外部的其他地方,然後刪去整個區塊的資料,然後再把區塊資料複製回來,同時把要更改的內容寫進去。

也就是說,即使只是要改寫 1 位元的內容,也必須將整個區塊的資料都刪除掉才行。因為必須一次刪除廣大範圍的資料,所以被取了「快閃」這個名字。

快閃記憶體的主要用途是 USB 記憶體或 SSD 等資料儲存裝置。圖/pexels

不過,寫入資料時是一次寫入一整頁資料,所以寫入速度比 NOR 型還要快。

若比較 NOR 型與 NAND 型,會發現 NOR 型的優點是讀取較快,資料的可靠度較高。所以像是家電的微處理器、含有簡單程式的記憶體等裝置,對讀取的需求大於寫入,便會採用 NOR 型快閃記憶體。雖然容量不大,寫入較慢,但這些裝置幾乎不會進行寫入動作,所以高可靠度、較快的讀取速度對它們來說比較重要。

然而,快閃記憶體的主要用途是 USB 記憶體或 SSD 等資料儲存裝置,常需改寫儲存單元內的資料。此時,NAND 型的高聚積化就會是很大的優點。因此 NAND 型目前才是快閃記憶體的主流。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 3 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。