5

38
4

文字

分享

5
38
4

How To 正確乾燥食物保留最高營養?乾燥法大解析!

鳥苷三磷酸 (PanSci Promo)_96
・2020/12/04 ・2336字 ・閱讀時間約 4 分鐘 ・SR值 512 ・六年級

本文由 安麗紐崔萊 委託,泛科學企劃執行。

  • 作者/陳亭瑋

在農業大規模革命、跨國貿易興起之前,夏秋季豐收的農產品經常為人們帶來另一種煩惱:該怎麼將新鮮的蔬菜水果保存到天寒地凍的冬天享用呢?

利用各種方式將食物中的水份減少,防止微生物或酵素所造成的腐敗變質,是人類很早期就會使用的食物保存方法。時至今日,乾燥技術除了用於保存食物,也用於減小體積、減輕重量方便食品包裝與運輸,而由此也發展出許多便利的食品,如咖啡粉、泡麵等,攜帶方便、沖泡熱水就能夠食用。

而乾燥的方式有分許多種,可被分為兩大類:自然乾燥與人工乾燥

-----廣告,請繼續往下閱讀-----

自然乾燥法:利用環境的陽光與風

自然乾燥法利用環境中的陽光、風來替食物乾燥,主要包括日曬風乾陰乾。常見柿餅、蘿蔔乾、香菇、筍乾、葡萄乾等就是以日曬來製成;傳統新竹米粉則是以風乾來乾燥。

既然是利用環境能量,優點就是不耗能、最為經濟、操作簡單,也不需什麼技術或設備就可以進行。但主要的缺點就是「天有不測風雲」,需要依賴環境氣候,有太陽或大風才方便進行。由於自然環境不易控制,難以掌握乾燥速率、衛生條件、場地需求大、需要人工輔助整理等,因此不利於大量生產。

人工乾燥法:人工提供熱源,利用空氣加熱乾燥

自然乾燥需要依賴自然環境的條件,而人工乾燥當然就是人工以各種技術,提供想要加工的食品適合的乾燥環境囉,一般會有不同的壓力環境,以傳導、對流、輻射,或以電磁波加熱的方式乾燥食品。這裡的技術種類非常多,受限於篇幅,本篇主要介紹在常壓下,以空氣為媒介的乾燥技術,其他如加壓乾燥、減壓乾燥、電磁波乾燥就暫不介紹了。

最古老的人工乾燥法被稱為「窯式乾燥法」。簡單來說,就是設置一個密閉空間,分成上下兩層,上層是待乾燥的食物,下面擺放爐火熱源,經由熱空氣將食品慢慢地烘烤至全乾。這個乾燥法常見於乾燥水果等食品。現在也有用同樣原理推出的小家電「食物乾燥機」,讓你在家裡就可以自製果乾或是肉乾等。

-----廣告,請繼續往下閱讀-----

新興乾燥技術:噴霧乾燥與折射窗乾燥

前面介紹的乾燥法,主要處理的成品是屬於顆粒體積較大者,大如蔬菜乾、水果乾,小如肉丁、砂糖等。如果要處理相對液態或糊狀等產品又該怎麼辦呢?以下要介紹兩種常應用於液狀食品的乾燥技術。

噴霧乾燥法(Spray Drying)

「噴霧乾燥法」(spray drying)的特性就是由噴霧器擔當了重要角色。機器內的噴霧器會將液狀或糊狀的原料噴出為小液滴,藉由熱空氣作用,在幾秒鐘的時間內將小液滴乾燥為細粉狀。噴霧乾燥機主要分為空氣加熱與循環系統、噴霧裝置、乾燥倉本體以及產品回收裝置。

因為液滴表面積大、乾燥速度很快,實際上食品本身的溫度不會升到很高,對於保存食品原有的營養有很大的幫助,常用於食品、飲料、保健食品和藥品的製作。這個方法製作的常見產品有奶粉、咖啡粉、豆漿粉、蛋白粉等,只要加水就可以飲用的粉末。

折射窗乾燥法(Refractance Window Drying)

另外一種更嶄新的食品乾燥方法則是「折射窗乾燥法」(Refractance window drying),將想乾燥的材料放在透明聚脂膜的「折射窗」上,折射窗下有使用 95-97℃ 的熱水作為熱源,同時會抽風去除多餘水分,最後把薄膜和材料分離就完成乾燥啦!

-----廣告,請繼續往下閱讀-----
圖/ 安麗紐崔萊

雖然步驟有點多,但實際上因為同時有傳導、對流、輻射三種導熱模式介入,所以進行乾燥的速度相當快;又以熱水做為熱源,產品溫度也不會升到太高,因此適合使用於對溫度敏感、需要保存更多營養成分的產品。有研究指出,可藉由「折射窗乾燥法」保留植物蔬果類產品容易流失的天然色素分子,也能保留植物蔬果中較多的營養價值。此乾燥技術不止應用於食品工業,亦可見於保健食品、製藥、化妝品等各方面的應用。

食品科學中的乾燥方法非常多種多樣,不同的乾燥方式亦有不同的適用對象、與成本考量。如何選擇適合的乾燥方法,應用於加工品,其中也牽涉到許多專業。而隨著食品科學的進展,過往天然食品經過加工後,必然會損失許多營養元素的情況,已經越來越能夠避免。

請與我們一同期待新興的萃取與乾燥技術,能夠帶來哪些更健康、更營養的食品吧!


秉持科學嚴謹精神,安麗紐崔萊研究植物營養的科學家們持續革新技術,為了從植物蔬果中萃取最多的營養價值,從原物料篩選到萃取生產,每道程序皆嚴格把關。在萃取階段,安麗紐崔萊以獨家萃取技術——「噴霧劑乾燥法」「折射窗乾燥法」,保留植物蔬果中最多的營養素,提供消費者營養充足、純淨安全的保健食品。

-----廣告,請繼續往下閱讀-----

本文由 安麗紐崔萊 委託,泛科學企劃執行。

參考資料

  1. 施明智、蕭思玉、蔡敏郎(2017 年 9 月)。食品加工學,188-213。
  2. Refractance window drying of foods: A review
  3. Refractance window drying of fruits and vegetables: A Review
文章難易度
所有討論 5
鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 308 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
用塑膠容器會吃到塑化劑?都是擴散作用搞的鬼! ──「PanSci TALK:餐具都會釋放間接添加物?」
衛生福利部食品藥物管理署_96
・2017/12/11 ・4855字 ・閱讀時間約 10 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

本文由衛生福利部食品藥物管理署委託,泛科學企劃執行

撰文/李允誠 │ 自由寫手

編按:近一年來許多人重新討論起美耐皿、烤肉墊、塑膠湯匙碗盤等器具對食品安全的影響,這次,我們將「間接添加物」定義為非刻意添加之成分,而是食品製作過程、環境、餐具中產生或接觸的物質。除了本場講座活動紀實,此主題亦針對外食與自炊二種情境分別推出主題文章:外食篇自己煮篇

「塑膠包裝的食品放進微波爐加熱,會吃到塑化劑!」、「常用美耐皿餐具恐致癌!」大家對這類說法應該不陌生,有關餐具、廚具的食安新聞每隔一段時間就會重新出現。但是這些言論的依據究竟為何?可信度又有多高?食安系列講座的最後一場「PanSci TALK:餐具都會釋放間接添加物?如何避開這些潛在的食安風險?」邀請到了輔仁大學食品科學系的陳政雄老師,來跟大家一同解析食品包裝下的神秘面紗。

塑化劑是什麼?使材質軟化與可塑型

「食品包裝又稱為包材,主要有四種功用,可以盛裝、保護食物、增加方便性、提供食品成分資訊。」陳政雄老師在開場時介紹到。

-----廣告,請繼續往下閱讀-----

除了少數選項 ── 如用來盛裝鹽酥雞的一次性紙袋 ── 其他食物盛裝容器大都為塑膠材質,而「塑化劑」也是大家最常聽聞的間接添加物之一。要解釋這個現象,陳政雄老師首先說明,這是因為大部分食品包裝的結構都是「高分子結構」。如下圖所示,高分子結構是從很小的單體透過「聚合化」所組成,「聚合化」的過程就像是磁鐵相吸一般,彼此南北極互相吸引,形成長條的線狀結構物件。假若這些分子的單位空間排列緊密,所形成的包裝材質會是相當堅硬、不易變形的;單位空間較鬆散的,材質便相對柔軟。

高分子結構由許多小單體「聚合化」組成。圖片來源:陳政雄老師簡報

而為了產生彈性、以便做為包材使用,製造者會在這些包裝中加入「塑化劑」,能夠讓材質變得柔軟、易變形,使用上更加方便。陳政雄老師指出,最常見的例子就是 PVC(聚氯乙烯),原始的 PVC 是相當堅硬的,多為製作硬式包裹水管、電線的原料;不過,只要在這類材質中加入塑化劑,便能夠將其形塑成如保鮮膜如此「柔軟」的產品,而一些需要密封包裝的產品便能充分利用保鮮膜可伸縮的特性,以達到包裝封口的目的,免於其受到空氣中水氣的影響,甚而產生微生物,破壞食品本質。同樣是 PVC,一下子有了完全不同的應用場域,關鍵就在於材質裡面的結構被修飾、改變了。

加入塑化劑可以讓塑膠變得柔軟且有可塑性。圖片來源:pixbay

-----廣告,請繼續往下閱讀-----

轉移機制:擴散作用、脫附作用、吸附作用、分散作用

看到這裡你可能會想問:難道只要產品的製作過程裡添加了塑化劑,人們就一定會吃到嗎?陳政雄老師表示,這就要回到「擴散作用」與「轉移機制(migration)」的討論了。

所謂擴散作用,就是分子從高濃度區域往低濃度區域移動,並在長時間下達到平衡狀態;而轉移機制就是擴散作用的一種延伸,很多食品包裝上會有放入添加劑的特殊需求,以上述的塑化劑為例,一旦包材接觸到沒有塑化劑的食物,就產生了相對高濃度與低濃度的環境,產生濃度差。因此,內部的添加物慢慢從包材往介面移動,到了介面上,食品系統與添加物就會互相吸引,「這種添加物從包裝上脫離、往食品系統擴散的步驟,就稱之為脫附作用。」

物質從包材中轉移至所盛裝的食物上的現象,稱為轉移機制(migration)。圖片來源:陳政雄老師簡報

而從食物的角度來看,有物質從包材過來,若彼此之間吸引力很大,就會將該物質吸收,稱之為吸附作用;接著,食物內部所吸收的元素亦會從高濃度處往低濃度移動,稱為為分散作用。 影響整體轉移機制的因素主要有兩者:假若接觸面積夠大,轉移的量就會很多;另一種則是吸引力,如果所接觸的物質吸引力比包材更強,元素便會逐漸往該物質移動。

-----廣告,請繼續往下閱讀-----

「大部分包材結構是由碳跟氫組成,又稱為脂肪族。脂肪族多不溶於水,因此包材內部材質大多不與水相溶(也所以才能防水),包材與水要互相吸引是相當困難的;但如果包材碰到油,由於彼此都具有脂肪族,就較容易互相吸引。」陳政雄老師解釋,「另外,也有許多其他因素會加速轉移作用,例如溫度,生活中多數的化學反應都和溫度上升成正相關。」

以寶特瓶為例,塑膠寶特瓶內部裝水,水與脂肪並不互溶,因此塑化劑轉移到水中的量並不會很多。但若寶特瓶內部裝的是油,這就有待商榷了,尤其是許多油品都會被儲放在家中廚房等較易產生高溫之處,可能更容易加速其內部作用。另外有趣的是,近年對於包材中塑化劑的研究發現,影響較大的是「瓶蓋」中的塑化劑,瓶子內部的塑化劑反而影響不大。

研究發現,影響較大的是「瓶蓋」中的塑化劑,瓶子內部的塑化劑反而影響不大。圖片來源:Pixbay

包材中的添加物有哪些?

「包材中會有些主動添加的物質,以便產生特定作用,稱之為有意添加物(Intentionally added substances)。」陳政雄老師舉例,像是有些包材會時常於太陽底下曝曬,造成溫度提高、加速內部的化學反應,因此這類包材會添加抗 UV 及抗氧化的物質,來減少太陽曝曬的影響。除此之外,先前所提過的塑化劑,或是能改變顏色的物質等都是包材中常見的有意添加物;其中值得一提的是,為了降低製造過程中結合反應所需的能量,「催化劑」也常會被用在包材的製造上,但後續清洗若不完善徹底,就可能會殘留在包材中。

-----廣告,請繼續往下閱讀-----

陳政雄老師接著補充,除了以上人們刻意加入的添加物,其他比較特殊的則是反應過程不完全中所產生、裂解出的中間產物。「舉例來說,包材如果經過不適當的處理,像是把紙盒、紙袋拿去微波加熱,上面又含有不耐熱的染料,它們經過加熱後裂解產生的物質就不一定是安全的。」

簡而言之,即使原始物質並沒有食用疑慮,一旦經過不當使用,裂解後仍可能產生不可食用的新物質,這些物質如果和食品接觸久了,就會有食安疑慮,這種「不是我們想要的添加物,卻不幸跑進食品裡」的狀況就被稱之為「間接添加」。

輔仁大學食品科學系的陳政雄老師與大家分享餐具與間接添加物的相關知識。圖片來源:Pansci

 

轉移作用的三大要素

陳政雄老師指出,轉移作用是否發生,主要有三點要素需要考量:食品、條件以及包材。

-----廣告,請繼續往下閱讀-----
  1. 食品本身
    食品本身有兩種類型,親水性或親油性。理論上食品親油性越高,包材添加物轉移的機會就越大。「目前生活中的食物多為油水混合,稱之為乳化系統,因此或多或少都有包材添加物轉移的可能。」陳政雄老師說明。
  1. 條件
    影響轉移作用的條件可分為三種:接觸方式、接觸時間、接觸溫度。接觸方式的不同,也會造成轉移作用的差異。最常被討論的便是直接接觸(包材直接接觸食物),其中又以「液體」的接觸面積最大,最容易增加轉移作用的效果。而有些包材內含裂解後可揮發的物質,可能會造成包裝內部產生異味。第二,接觸時間越長,也越可能發生轉移作用。最後,接觸溫度越高,越容易加速轉移作用的發生,所產生問題自然也越多。
  2. 包材性質
    包材本質會對轉移作用造成影響。陳政雄老師解釋,「例如保鮮膜等較軟的 PVC 材質,因為其成分較為鬆散,內含的塑化劑在合適條件下(溫度夠高、脂肪夠多)就會比較容易轉移出去。另外,轉移的物質,分子量越大,越不容易轉移;而放在包材裡的東西越多,轉移問題自然也就會越嚴重。」

哪些因素會影響轉移的程度?

影響「轉移程度」的五項因素。圖片來源:陳政雄老師簡報

另外,陳政雄老師也列出會影響「轉移程度」的相關因素:

  1. 溫度
    像是利用電鍋蒸食物,隔水利用水蒸汽加熱,最高溫度約 100℃ 上下,這類加熱對於大部分的包材(一號、二號、四號、五號、七號)都能夠承受,且加熱時間通常並非長時間持續,轉移問題通常不會太嚴重。但若把剛炸好的炸物放進微波用包材像是美耐皿等,油的沸騰溫度至少超過 190℃,就算放進包材前已經降溫,至多降溫 30、40℃ 而已,殘溫仍是遠遠超過美耐皿所能承受的。
  2. 接觸時間與面積
    很直觀的,接觸時間越長、接觸面積越大,添加物就有更多機會從包材跑到食物上,轉移程度就會越高,增加風險。
  3. 脂肪含量
    如同先前所說,包材內部的添加物大多屬於「脂肪族」,與高脂肪含量的食物本身具有相吸性,因此添加物轉移的程度就會更高。
  4. 材質完整性
    就像人體受傷一樣,受傷的部位有更高的機會受到感染。包材也是同樣道理,當包材有破損時,內部的添加物便更有可能轉移至食品上。

剛炸好的食物高溫且多油,不適合馬上放到不耐高溫的容器中。圖片來源:Free-Photos@Pixabay BY CC0 Creative Commons

面對這些潛在風險,我們該如何面對?

當然,一般民眾最在意仍是該如何避免這些風險,對此陳政雄老師指出,有兩個觀念可以由大家共同建立:使用方法劑量

-----廣告,請繼續往下閱讀-----

「舉例來說,欲使用微波爐加熱食物,如果是單純由澱粉和水組成的米飯(澱粉),最高就是 100℃,對於能夠耐熱 100~110℃ 的美耐皿來說,並不是什麼問題。但如果放進去的是一塊排骨,骨頭中間有許多金屬離子會和微波產生反應,使該處溫度提高,甚至超過美耐皿所能夠承受之溫度,就有造成添加物轉移的風險。」因此某種餐具究竟安不安全,也取決於人們的使用方法與是否具備相關知識。 Our partner: http://whatismyip.name/ – find your IP address.

法規方面,以美耐皿為例,其規定的轉移量為 2.5ppm,每日允許的食用量(TDI)是每公斤 0.2 毫克美耐皿。且通常法規所制定的標準是以較保守與安全的前提做為參考,因此對於大部分人來說,只要在法規基準下,食用低於其所規定的量,原則上都還是安全的。(延伸閱讀:怎麼決定多少「劑量」對人體有害?

「重點在於不要輕易被網路上的謠言所影響、人云亦云。舉例來說,一般人可以先建立對『溫度』的概念,像是水沸騰溫度約 100℃,能夠就口的溫度大約 40℃,藉此簡單判斷有沒有在包材可承受的溫度範圍內正當使用。」

通常法規所制定的攝取量標準是以較保守與安全的前提做為參考。 圖片來源:Dwight Burdette@wikipedia BY CC 3.0

-----廣告,請繼續往下閱讀-----

注意大原則,就能減少轉移問題的發生

講座最後,陳政雄老師不忘再次提醒現場觀眾幾點重要觀念。在避免轉移問題上,主要有幾點大原則需要注意,「熱」絕對是第一優先考慮的面向;「脂肪」則是第二重要的,熱的脂肪更是需要想辦法避免;「包材本身性質」同樣也需要注意,像是塑膠類包材在洗滌時,假若長期使用菜瓜布等器材刷洗,久而久之材質也會受到破壞,增加轉移作用發生的機率。而「接觸時間」看似很重要,但多數人在使用這些包材的時間不會太長,因此並非優先考量的要素。

我會建議大家比起網路傳言,可以更相信法規!」陳政雄老師不忘強調,網路上許多傳言並沒有科學根據,而法規是透過許多相關專業學者所擬定而成,這些標準是相對可信的。

只要群眾關心,專家學者就會開始著手探討

會後問答時間,現場觀眾提到,近年受推崇的「矽膠類」餐具是否真正安全?對此,陳政雄老師老師簡單說明到,矽膠類餐具能夠耐熱到 200℃ 以上,而至目前為止,矽膠的添加物都還算單純,所以除非是直接將矽膠物質放入鍋中烹煮,否則添加物的轉移作用應該是不大。「另外,目前並沒有太多對於像是鍋鏟等含矽膠餐具的研究,但如果這類議題越來越受到關注,後續一定會有科學家去做研究。」

講座的中場休息時間,有許多參與者上前與陳政雄老師繼續討論。圖片來源:Pansci

衛生福利部食品藥物管理署_96
65 篇文章 ・ 23 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

0

0
0

文字

分享

0
0
0
一定要吃現撈的?水產加工食品也一樣生猛! ──「PanSci TALK:我們為什麼需要食品加工?」
衛生福利部食品藥物管理署_96
・2017/09/21 ・3939字 ・閱讀時間約 8 分鐘 ・SR值 535 ・七年級

本文由衛生福利部食品藥物管理署委託,泛科學企劃執行

撰文/李允誠 │ 自由寫手

你是否也曾經疑惑,吃新鮮的魚有什麼不好?為什麼要把它們製成水產加工食品呢?這些水產加工食品究竟從哪裡來、經過了什麼加工流程,安不安全呢?

前陣子泛科學以〈魚丸魚板黑輪甜不辣…這些魚漿製品是怎麼煉成的?〉一文介紹了 Q 彈可口的魚漿製品,這次,在食安系列講座第三場「PanSci TALK:我們為什麼需要食品加工?」,我們邀請到海洋大學食科系的陳泰源老師,與大家分享水產原料的來源、加工過程與產銷狀況,以及最重要的,一般人該如何挑選水產製品。

-----廣告,請繼續往下閱讀-----

海洋大學陳泰源老師與大家分享水產加工食品的知識。圖 By PanSci

水產物易腐敗、具季節性

「水產物雖然種類繁多、營養價值大,但是容易腐敗變質,且漁獲不穩定、有季節性,保存其實相當不易。」陳泰源老師解釋,以魚介類為例,生物本身酵素作用強,皮膚、鰓及消化器官上容易附著細菌,加上表皮較薄導致細菌易侵入,且常溫之下細菌在魚死後繁殖得特別快,因此魚介類是最需要低溫物流的食品;然而,船上的保鮮作業不易、亞熱帶高溫多濕的氣候不利保存、低溫保鮮流程(冷凍鏈)未完全確立,若低溫物流的品管不好,整個水產品的鮮度就會較差。另一個層面,像是秋刀魚屬於秋季盛產魚種,春天或夏天很難捕獲到好吃的秋刀魚,但如果經過加工,便能保存至淡季食用。「因此,水產物十分需要加工技術處理。」

不過,整件事並沒有我們想像的簡單,特定魚種屬於洄游性,整個生命週期中可能會橫跨好幾個州;也有底棲性魚種,終其一生待在同一個地方,這兩種魚吃起來的味道就完全不同。陳泰源老師說道,「哪種能做醃製品、哪種適合做乾製品,都是充滿學問、需要從源頭開始了解的。」

養殖漁獲比例增加、 23% 用於加工

首先,他帶著大家從世界漁業的狀況了解起。在 2014 年,全世界的捕撈漁獲(深色柱狀圖)約有 9000 萬噸、養殖漁獲(淺色柱狀圖)則有 7000 萬噸,五大洲中,亞洲地區的漁獲占了最高的比例,是全球最重要的漁業生產地區。 近年來,亞洲地區的養殖漁獲已經超越捕撈漁獲,陳泰源老師說:「由此可知,現在我們所吃的大多都已經是養殖魚類,養殖魚類只要養得好,品質也不會輸給捕撈漁獲喔。」

-----廣告,請繼續往下閱讀-----

從圖中可看出養殖漁獲(淺色柱狀圖)的比例逐年增加。圖 By 陳泰源老師簡報

在魚種方面,捕撈魚類以「沙丁魚類」產量最多;養殖類則是「鯉魚科類」為大宗。

圖 By 陳泰源老師簡報

圖 By 陳泰源老師簡報

-----廣告,請繼續往下閱讀-----

接著,陳泰源老師指出,臺灣一年的總漁獲量約有 130 萬噸,在世界排名第 25 名。外銷水產品主要有活魚貝、冷藏冷凍生鮮、乾製品、調理產品及魚飼料等,並以日本、中國、泰國為主要出口地。進口部分則有活魚貝、冷藏冷凍生鮮、乾製品、調理產品、鹽製品及飼料原料。

整體漁獲利用情形上,37% 會在遠洋基地捕獲後立即賣出,此時的漁獲價值是最高的、4% 會運用在鮮魚出口上、36% 用於在地的銷售、投入於加工品的則占約 23%

臺灣的水產加工發展沿革

「臺灣水產加工的起源,可追朔至荷鄭與清治時期,當時主要的產品是鹽產品及乾製品,像烏魚子,且多以家庭式加工為主。後來隨著加工產業需求的增長,許多機構成立相關研究部分,開發新的加工方式。」

水產加工產品的原料主要有幾種特性:大宗魚貨、價格低廉(如沙丁魚)、來源穩定(養殖魚類)、魚體大(如鮪魚類)、製成率高(鯊魚類)、產品價位高(蝦類)以及最重要的鮮度良好,假若鮮度不好,那前幾項條件滿足再多也於事無補。

-----廣告,請繼續往下閱讀-----

『鮮度不可逆性』是一項需要建立的觀念。有坊間傳聞,生產者都把鮮度較差的魚製成魚漿;但其實,想要製作出鮮度高的水產加工品,首先便要有新鮮的原料,水產物的鮮度一旦消失了就無法復原,加工技術還沒有這麼神奇。」陳泰源老師笑著解釋。

圖 By 陳泰源老師簡報

接著,他為大家歸納出水產加工幾項主要目的:

  1. 延長魚貨貯存期限
  2. 有效利用漁獲物以提高其價值
  3. 具有調節供需、穩定魚價之功能
  4. 藉加工去腥、除刺、調味以促進消費
  5. 增進魚貨消費與貯存之方便性
  6. 增進魚貨輸送與內外銷之功能
  7. 促使產品精緻化、多樣化、休閒化

他也進一步指出,冷凍加工品的原理主要是將產品品溫下降至凍結點以下的溫度,使產品水分大部分凍結,水活性降低,從而抑制與變質有關的化學反應、酵素與微生物作用,達到長時間儲存的效果。產品的凍結速度,則會影響到整個加工品的品質,越快速的凍結時間,冰晶的生成會越小,反之亦然。而越大的冰晶,會加大產品細胞的空隙,使得產品的汁液變多,解凍後的肉質會變得軟爛,降低了產品價值。

-----廣告,請繼續往下閱讀-----

在越短的時間內凍結,所形成的冰晶越小,也就越不會影響食品口感。圖 By 陳泰源老師簡報

「另外值得一提的是,多數人對於水產加工品的理解不外乎冷凍加工品、罐頭、乾製品、燻製品等種類,但其實非食用品的加工產品如飼料等,在先進國家也是越來越熱門。」他說。

而到了現今,加工產業越來越多樣,除了傳統的食品加工,業者還會為了增加水產品附加價值,導入保健、醫療、美容等生物科技;同時,因應民眾對食品安全的重視,產業界對於衛生檢測、認證與履歷等管理也日趨健全。「目前水產品產銷開始導入履歷資訊系統國際條碼,讓購買者能夠清楚了解魚的來源、養殖單位、飼料出處等資訊,整個水產品產銷資料庫已經越來越完整。」

如何判辨魚的鮮度?

了解水產加工的發展過程後,便要來討論消費者最關心的:該如何判別水產加工食品的鮮度?首先,我們可以來看看魚類死亡後的狀態變化。

-----廣告,請繼續往下閱讀-----

魚類死亡後的狀態變化。圖 By 陳泰源老師簡報

魚類死亡後的鮮度變化主要有三大階段,死後硬直期,解硬、軟化期,以及腐敗期。死後硬質階段的魚並不好吃,肉質偏硬且鮮度中等,因此多數人所吃的魚產品多介於死後硬質期與解硬期之間。之後則會進入自家消化階段,許多酵素及細菌開始作用,導致最後的產品腐敗,進入腐敗期,這時魚肉會發臭、出汁,肉味軟爛,已經無法挽回。

至於挑選腐敗之前的水產物,陳泰源老師建議大家可以參考漁業局整理出的鮮度判定方法:

圖 By 陳泰源老師簡報。資料來源:漁業局,表格重製:泛科學

-----廣告,請繼續往下閱讀-----

另外,他也介紹了蝦類的鮮度判別方式。「隨著時間過去,蝦頭內的酵素會讓蝦頭變黑,因此冷凍的蝦子往往是被去除蝦頭的。」不過,黑色的蝦頭並不代表這隻蝦不可食用,只是代表它有經過一段時間的冷凍而已,陳泰源老師補充道:「反而是有些商人會因此用添加物去除蝦頭的黑色,讓蝦子看起來像是剛捕獲一樣。」

同樣在 4℃ 保存下,蝦頭會隨著時間變黑。圖 By 陳泰源老師簡報

當然,水產加工食品千千百百種,很難將選購指標全部記起、瞭解,因此我們可以選擇購買有認證商標的產品,藉由第三方公正機關的專家學者與不同驗證流程制度把關,雖然難保完全沒有問題,但至少能夠降低所產生的風險。

可以參考的水產加工品認證標章。圖 By 陳泰源老師簡報

比起食品添加物,更應注意糖、鹽分攝取

讓人流口水的鮮蝦丸。圖/ Johnson Wang @Flickr

在分享後的問答時間,陳泰源老師也回應了該如何面對「食品添加物很恐怖」、「少吃加工食品」之新聞一問。「目前國際上與臺灣皆有在推行『clean label(潔淨標示)』的概念,旨在把化學步驟降到最低,像是如何有效安全的使用殺菌劑,取代現行的漂白水。此概念的關鍵仍在於,如何把生鮮的水產品、農蔬水果一開始進入加工過程的總生菌數就降到最低,從源頭就開始做起,最終到消費者手上時自然相對安全,也就不用額外增加添加物;再來則是後端面,如何把生鮮、低溫物流、冷藏做得更好。」

他提到,有調查報告發現,生鮮食品最容易腐敗的階段其實是「購買到上桌」這段過程,例如從賣場買牛奶,回程路上還吃了飯、去了其他地方,放在車內的牛奶就可能會因溫度變化發生腐敗,因此消費者的食品安全觀念也十分重要。

「至於食品添加物,坦白說要能夠吃到致癌的劑量並不容易、還要累積很久。我反而會提醒大家注意外食、飲料中糖分與鹽分的攝取,是否會造成代謝上的問題,也就是大家說的『生活飲食文化病』。」陳泰源老師說,「重要的還是在不違背生活品質下,能夠飲食均衡、並盡量做到少油少糖少鹽,與大家共勉之。」

講座活動後的自由交流時間。圖 By PanSci

衛生福利部食品藥物管理署_96
65 篇文章 ・ 23 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

5

38
4

文字

分享

5
38
4
How To 正確乾燥食物保留最高營養?乾燥法大解析!
鳥苷三磷酸 (PanSci Promo)_96
・2020/12/04 ・2336字 ・閱讀時間約 4 分鐘 ・SR值 512 ・六年級

本文由 安麗紐崔萊 委託,泛科學企劃執行。

  • 作者/陳亭瑋

在農業大規模革命、跨國貿易興起之前,夏秋季豐收的農產品經常為人們帶來另一種煩惱:該怎麼將新鮮的蔬菜水果保存到天寒地凍的冬天享用呢?

利用各種方式將食物中的水份減少,防止微生物或酵素所造成的腐敗變質,是人類很早期就會使用的食物保存方法。時至今日,乾燥技術除了用於保存食物,也用於減小體積、減輕重量方便食品包裝與運輸,而由此也發展出許多便利的食品,如咖啡粉、泡麵等,攜帶方便、沖泡熱水就能夠食用。

而乾燥的方式有分許多種,可被分為兩大類:自然乾燥與人工乾燥

-----廣告,請繼續往下閱讀-----

自然乾燥法:利用環境的陽光與風

自然乾燥法利用環境中的陽光、風來替食物乾燥,主要包括日曬風乾陰乾。常見柿餅、蘿蔔乾、香菇、筍乾、葡萄乾等就是以日曬來製成;傳統新竹米粉則是以風乾來乾燥。

既然是利用環境能量,優點就是不耗能、最為經濟、操作簡單,也不需什麼技術或設備就可以進行。但主要的缺點就是「天有不測風雲」,需要依賴環境氣候,有太陽或大風才方便進行。由於自然環境不易控制,難以掌握乾燥速率、衛生條件、場地需求大、需要人工輔助整理等,因此不利於大量生產。

人工乾燥法:人工提供熱源,利用空氣加熱乾燥

自然乾燥需要依賴自然環境的條件,而人工乾燥當然就是人工以各種技術,提供想要加工的食品適合的乾燥環境囉,一般會有不同的壓力環境,以傳導、對流、輻射,或以電磁波加熱的方式乾燥食品。這裡的技術種類非常多,受限於篇幅,本篇主要介紹在常壓下,以空氣為媒介的乾燥技術,其他如加壓乾燥、減壓乾燥、電磁波乾燥就暫不介紹了。

最古老的人工乾燥法被稱為「窯式乾燥法」。簡單來說,就是設置一個密閉空間,分成上下兩層,上層是待乾燥的食物,下面擺放爐火熱源,經由熱空氣將食品慢慢地烘烤至全乾。這個乾燥法常見於乾燥水果等食品。現在也有用同樣原理推出的小家電「食物乾燥機」,讓你在家裡就可以自製果乾或是肉乾等。

-----廣告,請繼續往下閱讀-----

新興乾燥技術:噴霧乾燥與折射窗乾燥

前面介紹的乾燥法,主要處理的成品是屬於顆粒體積較大者,大如蔬菜乾、水果乾,小如肉丁、砂糖等。如果要處理相對液態或糊狀等產品又該怎麼辦呢?以下要介紹兩種常應用於液狀食品的乾燥技術。

噴霧乾燥法(Spray Drying)

「噴霧乾燥法」(spray drying)的特性就是由噴霧器擔當了重要角色。機器內的噴霧器會將液狀或糊狀的原料噴出為小液滴,藉由熱空氣作用,在幾秒鐘的時間內將小液滴乾燥為細粉狀。噴霧乾燥機主要分為空氣加熱與循環系統、噴霧裝置、乾燥倉本體以及產品回收裝置。

因為液滴表面積大、乾燥速度很快,實際上食品本身的溫度不會升到很高,對於保存食品原有的營養有很大的幫助,常用於食品、飲料、保健食品和藥品的製作。這個方法製作的常見產品有奶粉、咖啡粉、豆漿粉、蛋白粉等,只要加水就可以飲用的粉末。

折射窗乾燥法(Refractance Window Drying)

另外一種更嶄新的食品乾燥方法則是「折射窗乾燥法」(Refractance window drying),將想乾燥的材料放在透明聚脂膜的「折射窗」上,折射窗下有使用 95-97℃ 的熱水作為熱源,同時會抽風去除多餘水分,最後把薄膜和材料分離就完成乾燥啦!

-----廣告,請繼續往下閱讀-----
圖/ 安麗紐崔萊

雖然步驟有點多,但實際上因為同時有傳導、對流、輻射三種導熱模式介入,所以進行乾燥的速度相當快;又以熱水做為熱源,產品溫度也不會升到太高,因此適合使用於對溫度敏感、需要保存更多營養成分的產品。有研究指出,可藉由「折射窗乾燥法」保留植物蔬果類產品容易流失的天然色素分子,也能保留植物蔬果中較多的營養價值。此乾燥技術不止應用於食品工業,亦可見於保健食品、製藥、化妝品等各方面的應用。

食品科學中的乾燥方法非常多種多樣,不同的乾燥方式亦有不同的適用對象、與成本考量。如何選擇適合的乾燥方法,應用於加工品,其中也牽涉到許多專業。而隨著食品科學的進展,過往天然食品經過加工後,必然會損失許多營養元素的情況,已經越來越能夠避免。

請與我們一同期待新興的萃取與乾燥技術,能夠帶來哪些更健康、更營養的食品吧!


秉持科學嚴謹精神,安麗紐崔萊研究植物營養的科學家們持續革新技術,為了從植物蔬果中萃取最多的營養價值,從原物料篩選到萃取生產,每道程序皆嚴格把關。在萃取階段,安麗紐崔萊以獨家萃取技術——「噴霧劑乾燥法」「折射窗乾燥法」,保留植物蔬果中最多的營養素,提供消費者營養充足、純淨安全的保健食品。

-----廣告,請繼續往下閱讀-----

本文由 安麗紐崔萊 委託,泛科學企劃執行。

參考資料

  1. 施明智、蕭思玉、蔡敏郎(2017 年 9 月)。食品加工學,188-213。
  2. Refractance window drying of foods: A review
  3. Refractance window drying of fruits and vegetables: A Review
文章難易度
所有討論 5
鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 308 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia