0

0
0

文字

分享

0
0
0

用塑膠容器會吃到塑化劑?都是擴散作用搞的鬼! ──「PanSci TALK:餐具都會釋放間接添加物?」

衛生福利部食品藥物管理署_96
・2017/12/11 ・4855字 ・閱讀時間約 10 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

本文由衛生福利部食品藥物管理署委託,泛科學企劃執行

撰文/李允誠 │ 自由寫手

編按:近一年來許多人重新討論起美耐皿、烤肉墊、塑膠湯匙碗盤等器具對食品安全的影響,這次,我們將「間接添加物」定義為非刻意添加之成分,而是食品製作過程、環境、餐具中產生或接觸的物質。除了本場講座活動紀實,此主題亦針對外食與自炊二種情境分別推出主題文章:外食篇自己煮篇

「塑膠包裝的食品放進微波爐加熱,會吃到塑化劑!」、「常用美耐皿餐具恐致癌!」大家對這類說法應該不陌生,有關餐具、廚具的食安新聞每隔一段時間就會重新出現。但是這些言論的依據究竟為何?可信度又有多高?食安系列講座的最後一場「PanSci TALK:餐具都會釋放間接添加物?如何避開這些潛在的食安風險?」邀請到了輔仁大學食品科學系的陳政雄老師,來跟大家一同解析食品包裝下的神秘面紗。

塑化劑是什麼?使材質軟化與可塑型

「食品包裝又稱為包材,主要有四種功用,可以盛裝、保護食物、增加方便性、提供食品成分資訊。」陳政雄老師在開場時介紹到。

-----廣告,請繼續往下閱讀-----

除了少數選項 ── 如用來盛裝鹽酥雞的一次性紙袋 ── 其他食物盛裝容器大都為塑膠材質,而「塑化劑」也是大家最常聽聞的間接添加物之一。要解釋這個現象,陳政雄老師首先說明,這是因為大部分食品包裝的結構都是「高分子結構」。如下圖所示,高分子結構是從很小的單體透過「聚合化」所組成,「聚合化」的過程就像是磁鐵相吸一般,彼此南北極互相吸引,形成長條的線狀結構物件。假若這些分子的單位空間排列緊密,所形成的包裝材質會是相當堅硬、不易變形的;單位空間較鬆散的,材質便相對柔軟。

高分子結構由許多小單體「聚合化」組成。圖片來源:陳政雄老師簡報

而為了產生彈性、以便做為包材使用,製造者會在這些包裝中加入「塑化劑」,能夠讓材質變得柔軟、易變形,使用上更加方便。陳政雄老師指出,最常見的例子就是 PVC(聚氯乙烯),原始的 PVC 是相當堅硬的,多為製作硬式包裹水管、電線的原料;不過,只要在這類材質中加入塑化劑,便能夠將其形塑成如保鮮膜如此「柔軟」的產品,而一些需要密封包裝的產品便能充分利用保鮮膜可伸縮的特性,以達到包裝封口的目的,免於其受到空氣中水氣的影響,甚而產生微生物,破壞食品本質。同樣是 PVC,一下子有了完全不同的應用場域,關鍵就在於材質裡面的結構被修飾、改變了。

加入塑化劑可以讓塑膠變得柔軟且有可塑性。圖片來源:pixbay

轉移機制:擴散作用、脫附作用、吸附作用、分散作用

看到這裡你可能會想問:難道只要產品的製作過程裡添加了塑化劑,人們就一定會吃到嗎?陳政雄老師表示,這就要回到「擴散作用」與「轉移機制(migration)」的討論了。

所謂擴散作用,就是分子從高濃度區域往低濃度區域移動,並在長時間下達到平衡狀態;而轉移機制就是擴散作用的一種延伸,很多食品包裝上會有放入添加劑的特殊需求,以上述的塑化劑為例,一旦包材接觸到沒有塑化劑的食物,就產生了相對高濃度與低濃度的環境,產生濃度差。因此,內部的添加物慢慢從包材往介面移動,到了介面上,食品系統與添加物就會互相吸引,「這種添加物從包裝上脫離、往食品系統擴散的步驟,就稱之為脫附作用。」

-----廣告,請繼續往下閱讀-----
物質從包材中轉移至所盛裝的食物上的現象,稱為轉移機制(migration)。圖片來源:陳政雄老師簡報

而從食物的角度來看,有物質從包材過來,若彼此之間吸引力很大,就會將該物質吸收,稱之為吸附作用;接著,食物內部所吸收的元素亦會從高濃度處往低濃度移動,稱為為分散作用。 影響整體轉移機制的因素主要有兩者:假若接觸面積夠大,轉移的量就會很多;另一種則是吸引力,如果所接觸的物質吸引力比包材更強,元素便會逐漸往該物質移動。

「大部分包材結構是由碳跟氫組成,又稱為脂肪族。脂肪族多不溶於水,因此包材內部材質大多不與水相溶(也所以才能防水),包材與水要互相吸引是相當困難的;但如果包材碰到油,由於彼此都具有脂肪族,就較容易互相吸引。」陳政雄老師解釋,「另外,也有許多其他因素會加速轉移作用,例如溫度,生活中多數的化學反應都和溫度上升成正相關。」

以寶特瓶為例,塑膠寶特瓶內部裝水,水與脂肪並不互溶,因此塑化劑轉移到水中的量並不會很多。但若寶特瓶內部裝的是油,這就有待商榷了,尤其是許多油品都會被儲放在家中廚房等較易產生高溫之處,可能更容易加速其內部作用。另外有趣的是,近年對於包材中塑化劑的研究發現,影響較大的是「瓶蓋」中的塑化劑,瓶子內部的塑化劑反而影響不大。

研究發現,影響較大的是「瓶蓋」中的塑化劑,瓶子內部的塑化劑反而影響不大。圖片來源:Pixbay

包材中的添加物有哪些?

「包材中會有些主動添加的物質,以便產生特定作用,稱之為有意添加物(Intentionally added substances)。」陳政雄老師舉例,像是有些包材會時常於太陽底下曝曬,造成溫度提高、加速內部的化學反應,因此這類包材會添加抗 UV 及抗氧化的物質,來減少太陽曝曬的影響。除此之外,先前所提過的塑化劑,或是能改變顏色的物質等都是包材中常見的有意添加物;其中值得一提的是,為了降低製造過程中結合反應所需的能量,「催化劑」也常會被用在包材的製造上,但後續清洗若不完善徹底,就可能會殘留在包材中。

-----廣告,請繼續往下閱讀-----

陳政雄老師接著補充,除了以上人們刻意加入的添加物,其他比較特殊的則是反應過程不完全中所產生、裂解出的中間產物。「舉例來說,包材如果經過不適當的處理,像是把紙盒、紙袋拿去微波加熱,上面又含有不耐熱的染料,它們經過加熱後裂解產生的物質就不一定是安全的。」

簡而言之,即使原始物質並沒有食用疑慮,一旦經過不當使用,裂解後仍可能產生不可食用的新物質,這些物質如果和食品接觸久了,就會有食安疑慮,這種「不是我們想要的添加物,卻不幸跑進食品裡」的狀況就被稱之為「間接添加」。

輔仁大學食品科學系的陳政雄老師與大家分享餐具與間接添加物的相關知識。圖片來源:Pansci

 

轉移作用的三大要素

陳政雄老師指出,轉移作用是否發生,主要有三點要素需要考量:食品、條件以及包材。

  1. 食品本身
    食品本身有兩種類型,親水性或親油性。理論上食品親油性越高,包材添加物轉移的機會就越大。「目前生活中的食物多為油水混合,稱之為乳化系統,因此或多或少都有包材添加物轉移的可能。」陳政雄老師說明。
  1. 條件
    影響轉移作用的條件可分為三種:接觸方式、接觸時間、接觸溫度。接觸方式的不同,也會造成轉移作用的差異。最常被討論的便是直接接觸(包材直接接觸食物),其中又以「液體」的接觸面積最大,最容易增加轉移作用的效果。而有些包材內含裂解後可揮發的物質,可能會造成包裝內部產生異味。第二,接觸時間越長,也越可能發生轉移作用。最後,接觸溫度越高,越容易加速轉移作用的發生,所產生問題自然也越多。
  2. 包材性質
    包材本質會對轉移作用造成影響。陳政雄老師解釋,「例如保鮮膜等較軟的 PVC 材質,因為其成分較為鬆散,內含的塑化劑在合適條件下(溫度夠高、脂肪夠多)就會比較容易轉移出去。另外,轉移的物質,分子量越大,越不容易轉移;而放在包材裡的東西越多,轉移問題自然也就會越嚴重。」

哪些因素會影響轉移的程度?

影響「轉移程度」的五項因素。圖片來源:陳政雄老師簡報

另外,陳政雄老師也列出會影響「轉移程度」的相關因素:

-----廣告,請繼續往下閱讀-----
  1. 溫度
    像是利用電鍋蒸食物,隔水利用水蒸汽加熱,最高溫度約 100℃ 上下,這類加熱對於大部分的包材(一號、二號、四號、五號、七號)都能夠承受,且加熱時間通常並非長時間持續,轉移問題通常不會太嚴重。但若把剛炸好的炸物放進微波用包材像是美耐皿等,油的沸騰溫度至少超過 190℃,就算放進包材前已經降溫,至多降溫 30、40℃ 而已,殘溫仍是遠遠超過美耐皿所能承受的。
  2. 接觸時間與面積
    很直觀的,接觸時間越長、接觸面積越大,添加物就有更多機會從包材跑到食物上,轉移程度就會越高,增加風險。
  3. 脂肪含量
    如同先前所說,包材內部的添加物大多屬於「脂肪族」,與高脂肪含量的食物本身具有相吸性,因此添加物轉移的程度就會更高。
  4. 材質完整性
    就像人體受傷一樣,受傷的部位有更高的機會受到感染。包材也是同樣道理,當包材有破損時,內部的添加物便更有可能轉移至食品上。
剛炸好的食物高溫且多油,不適合馬上放到不耐高溫的容器中。圖片來源:Free-Photos@Pixabay BY CC0 Creative Commons

面對這些潛在風險,我們該如何面對?

當然,一般民眾最在意仍是該如何避免這些風險,對此陳政雄老師指出,有兩個觀念可以由大家共同建立:使用方法劑量

「舉例來說,欲使用微波爐加熱食物,如果是單純由澱粉和水組成的米飯(澱粉),最高就是 100℃,對於能夠耐熱 100~110℃ 的美耐皿來說,並不是什麼問題。但如果放進去的是一塊排骨,骨頭中間有許多金屬離子會和微波產生反應,使該處溫度提高,甚至超過美耐皿所能夠承受之溫度,就有造成添加物轉移的風險。」因此某種餐具究竟安不安全,也取決於人們的使用方法與是否具備相關知識。 Our partner: http://whatismyip.name/ – find your IP address.

法規方面,以美耐皿為例,其規定的轉移量為 2.5ppm,每日允許的食用量(TDI)是每公斤 0.2 毫克美耐皿。且通常法規所制定的標準是以較保守與安全的前提做為參考,因此對於大部分人來說,只要在法規基準下,食用低於其所規定的量,原則上都還是安全的。(延伸閱讀:怎麼決定多少「劑量」對人體有害?

「重點在於不要輕易被網路上的謠言所影響、人云亦云。舉例來說,一般人可以先建立對『溫度』的概念,像是水沸騰溫度約 100℃,能夠就口的溫度大約 40℃,藉此簡單判斷有沒有在包材可承受的溫度範圍內正當使用。」

-----廣告,請繼續往下閱讀-----
通常法規所制定的攝取量標準是以較保守與安全的前提做為參考。 圖片來源:Dwight Burdette@wikipedia BY CC 3.0

注意大原則,就能減少轉移問題的發生

講座最後,陳政雄老師不忘再次提醒現場觀眾幾點重要觀念。在避免轉移問題上,主要有幾點大原則需要注意,「熱」絕對是第一優先考慮的面向;「脂肪」則是第二重要的,熱的脂肪更是需要想辦法避免;「包材本身性質」同樣也需要注意,像是塑膠類包材在洗滌時,假若長期使用菜瓜布等器材刷洗,久而久之材質也會受到破壞,增加轉移作用發生的機率。而「接觸時間」看似很重要,但多數人在使用這些包材的時間不會太長,因此並非優先考量的要素。

我會建議大家比起網路傳言,可以更相信法規!」陳政雄老師不忘強調,網路上許多傳言並沒有科學根據,而法規是透過許多相關專業學者所擬定而成,這些標準是相對可信的。

只要群眾關心,專家學者就會開始著手探討

會後問答時間,現場觀眾提到,近年受推崇的「矽膠類」餐具是否真正安全?對此,陳政雄老師老師簡單說明到,矽膠類餐具能夠耐熱到 200℃ 以上,而至目前為止,矽膠的添加物都還算單純,所以除非是直接將矽膠物質放入鍋中烹煮,否則添加物的轉移作用應該是不大。「另外,目前並沒有太多對於像是鍋鏟等含矽膠餐具的研究,但如果這類議題越來越受到關注,後續一定會有科學家去做研究。」

講座的中場休息時間,有許多參與者上前與陳政雄老師繼續討論。圖片來源:Pansci
文章難易度
衛生福利部食品藥物管理署_96
65 篇文章 ・ 22 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

3
2

文字

分享

1
3
2
福島核污水是什麼?我們還能安心吃海鮮嗎?核污水全解析!
PanSci_96
・2023/10/01 ・4897字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

福島核污水正式排放入海了!食鹽要屯多少?海鮮還能吃嗎?哥吉拉要誕生了嗎?

核廢水是怎麼來的?

2011 年 3 月 11 日,一場海嘯衝擊了在福島海邊的第一核電廠,破壞了核電廠中做為緊急電源設備的發電機,在備用電池電力耗盡後,冷卻系統完全失效。然而反應爐內的連鎖反應還在持續,最後溫度不斷竄高,高溫水蒸氣與燃料護套中的鋯合金,發生鋯水反應並產生大量易燃的氫氣,最終與空氣中的氧氣作用導致爆炸。

在事故發生前後,日本政府灌入大量海水來為反應爐進行冷卻,而這些直接接觸熔融燃料棒的污水,就被稱為核污水,日文則稱為「汚染水」。至於當時的決策細節與失誤,大家可以看今年上映的日劇《核災日月》複習一下。而既然事件已經發生了,我們就重點討論核污水。

《核災日月》圖/IMDb

現在儲存在福島的核污水不只有冷卻水,其實還有受污染的降雨與地下水。事故發生後,東京電力公司在第一核電廠加裝擋水牆,阻擋因為降雨流經 1、2、3 號機組的污染水流入海洋。並且設置凍土牆隔絕地下水,同時挖水井抽出污染的地下水,讓廠區內的地下水水位下降,因此地下水只會從外部滲入,內部的污染水則不會滲到外面。不論是降雨還是抽出的地下水,都屬於污染水,平均每天都會增加 92 立方公尺的污染水。直至本集影片上架,當地已經存有 134 萬噸的汚染水,而且還會持續增加,你可以自己打開 Google Map,鳥瞰這密密麻麻的眾多大型儲槽,別忘了,核反應爐本體才是日本更迫切的問題,要是污水不先處理,要是下一個天災來襲,麻煩又會疊加。因此日本政府在 2016 年就展開討論,準備要處理掉這些污水。

-----廣告,請繼續往下閱讀-----
福島第一核電廠。圖/Google Map

為何決定排放入海?

為何核污水的最終處置決定是排放入海呢?其實 2016 年提出的方案有五種:稀釋入海、蒸發至大氣、電解水釋放氫氣、深層地質注水、以及水泥固化並地下處置。很快,電解水因為還需要相關技術研發而被否決,這個我們在氫能那集講過。深層地質注水和水泥固化並地下處置,則有選址與法規問題,無法立即實現。這部分則等同於核電使用國都面臨的核廢料處置問題,我們之前花過好幾集介紹過,歡迎前往複習。

最後僅剩稀釋入海和蒸發至大氣兩種方法,最後日本認為海洋的擴散行為更容易追蹤,最重要的是成本僅有蒸發的十分之一,因此選用了這個方法。至於有些人說,既然東電跟日本政府都保證安全,何不做成瓶裝水拿去賣?之類的建議在這我們不多討論,就請大家用理智來看待。

核廢水如何被處理?

根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。首先,污染水會經過「銫吸附裝置」,除去銫(Cs)和鍶(Sr)。接著再經過淡水化裝置除去水中的鹽分後,成為「鍶處理水」。這種鍶處理水,可以作為 1, 2, 3, 4 號機組的冷卻水再次循環利用。

最後,大部分的鍶處理水,會被送到「ALPS多核種除去設備」,將 63 種放射性核種中的 62 種放射性核種去除。「ALPS多核種除去設備」唯一不能去除的放射性核種,就是氚(H-3)。但其實啊還有一個碳-14 無法被過濾,但濃度低到可以忽視。經過「ALPS多核種除去設備」處理過後的「鍶處理水」,就稱為「含氚處理水」。

-----廣告,請繼續往下閱讀-----
根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。圖/PanSci YouTube

含氚處理水中的氚,指的是氫的同位素的一種,在自然界中就存在。半衰期為 12.43 年,衰變時會進行 β 衰變,放出一顆電子並成為氦-3。β 衰變對人體的穿透距離僅限於皮膚,不會對內臟器官產生傷害。
如要能危害人體,需要長期大量攝取由氚構成的重水。關於攝取過多重水對動植物的影響,我們網站上有文章詳細說明過。

簡單來說,綜合自然界中跟福島即將排放的氚,以及我們的生活型態來看,遠遠達不到可能產生危害的程度。知道劑量決定毒性,就像我們每天都吃下不少「有害」物質,例如殘留農藥、油炸致癌物、過多的精製糖等等,但攝取的多寡,對你的健康影響差異很大。那麼重點來了,福島排放的處理水,真的有合乎標準嗎?

處理水符合標準嗎?

這個問題,我們在今年六月的核廢料主題中有提到,國際原子能總署 (IAEA) 在五月底公布了第一階段的調查結果,針對「日本的核種監控能力」進行第三方驗證。結果認為,日本的檢測標準跟分析方法沒問題,調查結果是可信任的。報告中除了氚以外,其他放射性核種的活度也都遠低於排放限值。例如鍶-90 為每公升 0.4 貝克、銫-137 為每公升 0.5 貝克,以臺灣的「食品」標準,銫-137 為每公升 100 貝克以下,雖然鍶-90 還沒有定下標準,但是依國際食品法典委員會的標準,也是在每公升 100 貝克以下。目前的排放值都遠小於標準。

國際原子能總署(IAEA)公布第一階段的調查結果。圖/PanSci YouTube

除了各單一核種的活度以外,所有水中核種加起來的「告示濃度限度比」也低於日本國家標準的每年 1 毫西弗(mSv/year), 1 毫西弗大約是多少呢?大約是一般民眾一年會接收到的輻射劑量。

-----廣告,請繼續往下閱讀-----

至於無法被 ALPS 處理的氚,因為海洋中的水中就廣泛存在,日本將透過海水稀釋後排放入海。目前世界衛生組織對於飲用水的氚含量標準訂為每公升 1 萬貝克,台灣的標準嚴格了許多,是每公升 740 貝克。東電公司的處理水是每公升 14 萬貝克,在排放前會稀釋 740 倍,以每公升 190 貝克的氚濃度排放,低於台灣的飲用水標準。

那麼食鹽呢?我們需要搶購嗎?這就更不用擔心,因為食鹽中不含水,自然也不含氚。或是更進一步可以參考東海大學應用物理系的粉專,他們計算,根據國家標準,食鹽含水量若為 3% 以下,需要每天吃超過 400 公斤的食鹽才會攝取氚超標。真的,別吃那麼鹹啊。

每天吃超過 400 公斤的食鹽才會攝取氚超標。圖/pixabay

那麼,我們就真的兩手一攤,為這件事劃下結論,核輻射只是庸人自擾嗎?

我們該如何看待排放的處理水?

當然不是,就像許多人擔心的,就算科學上告訴你沒問題,但前提是,這些數據得是沒問題的。而且不用說周邊國家,連日本自家民眾也多次抗議處理水的排放。

-----廣告,請繼續往下閱讀-----

目前在 IAEA 架設的網站上,可以看到整個排水計畫的各種即時監測資料。其中就包括出水口的輻射數值監測。

為了驗證處理水不會對海洋生物產生影響,東京電力甚至從去年 9 月開始,就開始進行海洋生物飼養實驗,並且全程公開直播放在他們的YouTube頻道上。不過這頻道訂閱人數跟觀看次數都有點低迷,有興趣的話不妨訂閱,開啟小鈴鐺。

那麼我們能下定論了嗎?在科學上,我們確實能說,在符合規範下,這些排放入海的處理水是沒問題的,食鹽、海鮮也都能照吃,把注重食安與健康的努力分配到其他危害更大、風險更高的事情上,對處理水保持健康而非病態的質疑,對個人來說應該效益更高。

臺灣從去年到今年 6 月,曾 3 次組團赴日考察,並於 8/24 公佈報告書,包含跟日方的問答內容,還有福島核廢水排放設施的照片。海委會表示,專家觀察團評估日方排放相關作業的安全性,跟國際原子能總署評估的結果一致。然而是否選擇相信日本以及 IAEA 給出的數據,如今看來成了國際政治問題。

-----廣告,請繼續往下閱讀-----

另外,在 IAEA 的小組成員中,包含周邊國家:中國、美國、韓國、越南、澳洲、加拿大、法國、俄羅斯、英國、阿根廷、馬紹爾群島,並不包含台灣。如果台灣也能以任何形式加入團隊,或得以取得樣水複測,讓我們知道,日本以及 IAEA 給出的數值是可信的,想必都能更進一步降低民眾的擔憂。

最後,也問問大家,對於這次的處理水排放事件,你會擔心我們的海鮮或食鹽受到影響嗎?

  1. 不擔心,跟人類對海洋的其他污染相比,根本小巫見大巫。
  2. 擔心,等我親眼見到泛科學到現場實測我才相信。機票我出!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1220 篇文章 ・ 2239 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
副食品保存不當容易變質?寶寶粥為什麼可以常溫保存?
鳥苷三磷酸 (PanSci Promo)_96
・2022/06/16 ・2039字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文由 農純鄉 委託,泛科學企劃執行。

  • 作者|Evelyn 食品技師

為什麼自己煮的副食品容易壞掉?

每位寶寶都是媽媽的心頭肉,媽媽們總是耗盡心思烹煮好吃且營養的副食品,可是為什麼自己煮的副食品容易壞掉?因為食品與自然環境中,經常存在著無數的細菌,在處理食物的過程中,難免會受到微生物的污染。

一般在家中,媽媽們會把煮好的副食品放涼,再放進冰箱冷藏保存,但光是這樣的過程中,空氣中的細菌、與副食品接觸到的容器,都有機會讓細菌趁虛而入到粥裡,增加食品腐敗的風險。

再者,將副食品放進冰箱冷藏保存,是不具任何殺菌效果的。大部分的病原菌都是嗜溫菌,喜歡 20℃~40℃ 的環境,就算把溫度降低到一般冷藏溫度 5℃,細菌並不會死亡,只是讓它生長活性降低。因此冷藏僅能降低細菌的繁衍速度,為抑制細菌生長(抑菌),而非殺死細菌。

-----廣告,請繼續往下閱讀-----
食品與自然環境中,經常存在著無數的細菌,在處理食物的過程中,難免會污染到一些微生物。圖/Pexels

冷凍雖然可以讓細菌停止活動,進入休眠的狀態,但也不是殺死細菌,若不慎讓溫度回升的話,細菌即會恢復活力而急速增殖。

所以若想要妥善延長食物的保存時間,就必須要進行「滅菌」,現在市面上有不需要放冰箱也能常溫保存,即開即食的寶寶粥,它是如何做到的呢?

常溫寶寶粥為什麼不用冰也不會壞?

一般常見的巴斯德氏殺菌(簡稱巴氏殺菌)法,是一種把食物加熱至某個溫度(通常低於 100°C)並保持一定時間,即可殺滅一些致病性微生物,是較為溫和的方法,如鮮奶或蛋液等。但因無法完全殺滅所有的微生物,故這類食品就必須放冷藏保存,且保存時間僅 2~4 天。

常溫寶寶粥之所以可放常溫保存仍不會壞,是因為有經過「商業滅菌」的過程。通常商業滅菌即是利用高溫、高壓,將食品中所有的微生物殺滅,使它們無法生長導致食品腐敗,並且驅出容器中的氧氣,避免它和食品中的成份進一步作用,再藉著密封容器防止外界的微生物又污染食品。且依《食品添加物使用範圍及限量暨規格標準》之規定,商業滅菌後的產品是禁止使用防腐劑的。

-----廣告,請繼續往下閱讀-----

加上商業滅菌後的常溫寶寶粥採用「食品級鋁箔積層袋密封包裝」,可耐高溫,不會產生塑化劑,耐酸鹼,還能充分阻隔空氣及細菌入侵。因此,在如此嚴苛的滅菌條件,並搭配嚴謹的無菌環境、密閉包裝的方式下,常溫寶寶粥當然不需要添加任何防腐劑也能夠常溫保存喔!

常溫寶寶粥是採用「食品級鋁箔積層袋密封包裝」,在嚴謹的無菌環境、密閉包裝的方式下,不需添加任何防腐劑也能夠長期保存。

挑選常溫寶寶粥的技巧

寶寶粥除了要具備基本的安全、健康與美味之外,挑選時還需要注意過敏原,以避免家中的心肝寶貝,因為食物過敏而引發嚴重的不適症狀。

依《食品過敏原標示規定》,現在過敏原強制標示總共有 11 項,比較需要注意的常見過敏原如甲殼類、牛奶或羊奶、蛋、堅果類、含麩質之穀物、大豆及魚類等。

故媽媽們在選購寶寶粥的時候,務必要記得檢視產品成分與營養標示,確認是否含有寶寶會過敏的食材。

-----廣告,請繼續往下閱讀-----

此外,選擇信譽優良的食品製造商也是非常重要的,農純鄉的常溫寶寶粥成分公開透明,擁有齊全的安全認證(包含 HACCP、ISO 22000、CAS 認證等),堅持將產品定期送 SGS 檢驗,並將檢驗報告於網站上公開供消費者查看。

而且農純鄉寶寶粥有9種口味,皆通過100%無添加潔淨(clean label)標章驗證,產品完全不使用含基因改造食品原料,亦不含任何的食品添加物。甚至連包裝材質都通過德國 LFGB 檢驗,確保寶寶粥在高溫滅菌處理的時候,與食物直接接觸的包裝與內容物不會發生反應,為安全無虞。

農純鄉的常溫寶寶粥,除了採用純天然、無添加的真材實料令消費者安心之外,在創造健康、美味的同時,更是做了層層安全、嚴格的把關。而且寶寶粥能常溫保存,外出時既方便又能兼顧營養,讓媽媽們既能安心又輕鬆地滿足寶寶的每餐需求喔!

農純鄉的常溫寶寶粥採用純天然、無添加的真材實料,讓媽媽們既能安心又輕鬆地滿足寶寶的每餐需求喔!

農純鄉寶寶粥:https://lihi1.cc/xbpbL

快點開泛科學YouTube頻道,了解更多寶寶粥不易變質的秘密

參考資料

  1. 施明智,2013。食物學原理(第三版)。新北市:藝軒圖書出版社。
  2. 衛生福利部食品藥物管理署
鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia