0

2
1

文字

分享

0
2
1

無所不在的克萊伯定律:生物體內的養分運輸竟然有固定比例?——《祖先的故事》

馬可孛羅_96
・2020/06/05 ・2558字 ・閱讀時間約 5 分鐘 ・SR值 530 ・七年級
  • 作者/理查・道金斯 (Richard Dawkins)、黃岩 (Yan Won);
    譯者/顧曉哲

在此之前,生物學家早已注意到大腦以外的許多現象都準確地遵循斜率 \(\frac{3}{4}\)。尤其是各種生物體的能量利用(代謝率)都是遵循 \(\frac{3}{4}\) 規則,因此,即使我們目前仍不太清楚當中的道理,但 \(\frac{3}{4}\) 規則已晉升為自然定律,也就是克萊伯定律(Kleiber’s Law)。圖片為代謝率與體重的對數關係(已於〈巧人的故事〉討論過對數圖的原理)。

跨越 20 個數量級的定律。克萊伯定律(Kleiber’s Law)。圖/馬可孛羅提供

克萊伯定律真正令人吃驚的是,小至細菌、大到鯨魚,各種生物一律適用。這大約是 20 個數量級的範圍,最小的細菌體重必須乘以 10 乘上 20 次、或加上 20 個零,才等於最大的哺乳動物體重,而這些大大小小物種全面適用該定律。

克萊伯定律也適用於植物和單細胞生物體。圖片顯示三條互相平行的最適線,分別表示微生物、大型冷血生物(這裡的「大」代表任何體重高於百萬分之一公克的生物),以及大型溫血生物(哺乳動物和鳥類)。三條線的斜率都是 \(\frac{3}{4}\),只是高度不同。這一點也不奇怪,因為在體積相同的情況下,溫血生物的代謝率比冷血生物來得高。

克萊伯定律「各種適用」背後的原因是?

多年來,始終沒有人可以為克萊伯定律想出一個真正令人信服的理由,直到物理學家傑弗里.魏斯特(Geoffrey West)以及兩位生物學家詹姆斯.布朗(James Brown)與布萊恩.恩奎斯特(Brian Enquist)之間的輝煌合作。他們對精確的 \(\frac{3}{4}\) 定律的推導,是一種難以翻譯成文字的數學魔法,但它是如此巧妙和重要,所以我還是希望努力試著解釋。

魏斯特、恩奎斯特與布朗的理論(以姓氏首字母 WEB 簡稱),源自大型生物組織的養分供給問題。這就是為什麼動物有血管系統、植物有維管系統,意即用來運輸物質進出組織的系統。小型生物就沒有這方面的問題。

臍帶,也是運輸養分的器官。圖/giphy

對一個很小的生物來說,它的表面積很大,通過表面就可以獲取所需的氧氣。即使是小型多細胞生物,每個細胞離體表也不會太遠。不過大型生物就不同了,其細胞大部分都離養分或氧氣供應處遙遠,所以需要利用通道將養分由某一處運送到另一處。

昆蟲藉由分支的管狀網路氣管(tracheae)將氣體運輸到組織。我們也有同樣的多分支氣管,但只限於特定器官內,也就是我們的肺。人類的肺具有豐富的分支血管網路,用來將氧氣運送到身體其他部位。魚類的鰓有類似功能,這是設計成大幅增加水與血液接觸界面的器官。

臍帶也是有相同功能的器官,幫助母親與胎兒血液中的養分與氧氣交換。樹利用眾多的枝條供給葉子水分,而這些水分則是利用高度分支的細根由土地吸收而來,並將光合作用產生的醣類從葉子再運送回樹幹。

須進行供給的組織。花椰菜的複雜供給系統。圖/馬可孛羅提供

圖片是從本地蔬果攤買來的新鮮花椰菜,切成兩半,可以從中看到典型運輸系統的模樣。花椰菜付出相當大的努力為覆蓋在表面的「花芽」裝設養分供應網絡,雖然圖中的花芽已經因人工選擇而馴化成奇形怪狀,但是原則還是存在。

現在,我們可以想像這樣的養分供應網絡,無論是氣管、血管或糖分輸送管等任何管路,都能順利地為生物體的生長補充養分。如果確實如此,那麼為一朵適中花椰菜的細胞提供養分的典型方式,會與提供巨型紅杉典型細胞的方式完全一樣,而且兩種細胞應有相同的代謝率。

大小如此不同的花椰菜與巨型紅衫,代謝率真的會一樣嗎?圖/giphy

由於生物體的細胞數量與其質量或體積成比例,所以總體代謝率與身體質量的分布圖(兩條軸都以對數表示)將落在斜率為 1 的線上,然而實際觀察到的卻是 \(\frac{3}{4}\)。與大型生物相比,小型生物的代謝率會高於「該」有的代謝率。這表示花椰菜細胞的代謝率高於紅杉細胞的代謝率,而且小鼠的代謝率將高於鯨魚的代謝率。

乍看之下這似乎很奇怪。一個細胞就是一個細胞,應該會有一個同時適用於花椰菜與紅杉、或是老鼠和鯨魚的理想代謝率。可能確實如此,但 WEB 理論認為,提供水、血液、空氣或其他任何「東西」的困難度,局限了這個理想,現實必須有所妥協。

WEB 理論也解釋了這個妥協為何,以及為什麼最終會出現斜率 \(\frac{3}{4}\),並精確地體現在定量細節。WEB 理論有三個要點。

  • 第一,為細胞輸送物質的管道會以最經濟的方式布局成類碎形的分支網絡,最小的管道大概就是標準尺寸的毛細管。不僅花椰菜有此現象,我們身上的循環系統也是,當然我們的肺也是。
  • 鑑於克萊伯定律可以延伸到單細胞生物體,WEB 理論的第二要點,便是認為類似的網絡也可能占有供應網絡本身的部分空間,並且與等待養分的細胞競爭空間。越接近供應網絡的末端,管道本身占據的空間就越大。需要養分供應的細胞數量一旦倍增,管道的空間就會增加一倍以上,因為必須在主系統加入新的大型管道,而大型管道本身又會占據空間。如果想將細胞數量增加一倍,同時又只想增加管道空間一倍,那麼管道網絡必須變得較為稀疏。
  • 第三個要點是,無論小鼠還是鯨魚,最有效的運輸系統應耗費最少能量來運送物質,也就是只占據身體體積某個固定百分比。這就是數學計算的結果,也是觀測所得的事實。哺乳動物中無論是小鼠、人類或鯨魚,血容量(相當於運輸系統的總體積)都占身體體積的 6% 到 7%。

將三個要點合在一起,就表示如果希望增加細胞數量卻又想保持最有效的運輸系統,就必須讓供應網絡更為稀疏,這也就代表每個細胞接收到的養分會較少,代謝率就必須下降。

但精確地說,代謝率究竟要下降多少?WEB 理論也算出了答案。結果很精采,數學計算推測出在代謝率與體積大小的對數圖上會得到一條直線,斜率正好是 \(\frac{3}{4}\)!

WEB 理論的精確細節以及無處不在的克萊伯定律,最近面臨了一些挑戰,不過基本概念的解釋能力依然令人信服。無論是植物、動物,甚至單個細胞內的運輸層次,克萊伯定律似乎都遵循著供給網絡的物理學與幾何學特徵。

——本書摘自《祖先的故事:前往生命初現地的朝聖之旅》,2020 年 4 月,馬可孛羅

文章難易度
馬可孛羅_96
12 篇文章 ・ 11 位粉絲
馬可孛羅文化為台灣「城邦文化出版集團」的一個品牌,成立於1998年,經營的書系多元,包含旅行文學、探險經典、文史、社科、文學小說,以及本土華文作品,期望為全球中文讀者提供一個更開闊、可以縱橫古今、和全世界對話的新閱讀空間。


0

12
2

文字

分享

0
12
2

如何幫畜牧業減排溫室氣體?——教會小奶牛上廁所,可有效降低「一氧化二氮」排放!

阿咏_96
・2021/10/17 ・2612字 ・閱讀時間約 5 分鐘

近年來,大眾對於「氣候變遷」這個詞越來越不陌生,國際間也會簽訂不同協議與政策,來減緩溫室氣體的排放,講到這邊,我們通常會想到化石燃料的使用,但較少被人們注意到的是,畜牧業也是排放甲烷、二氧化碳、一氧化二氮等溫室氣體的大宗,甚至會造成水污染及空氣污染。

最近由心理學家團隊發表的研究,提出一種可能的解決方案,以減少畜牧業對環境的影響,也就是——「教小奶牛上廁所」!

看到這邊一定頭上冒出好幾個問號,為什麼畜牧業會對氣候變遷造成影響?是哪方面的影響?為什麼教奶牛尿尿可能可以減緩對環境的衝擊呢?要怎麼教?

圖/Pixabay

畜牧業和氣候變遷到底有什麼關係?

首先,根據聯合國糧食與農業組織 (FAO) 的報告,全球畜牧業每年約排放 7.1 兆噸的二氧化碳,大約是人為排放溫室氣體的 14.5%,其中,牛是排放量最大的物種,佔畜牧業排放量的 65 %,而大約來自於腸道發酵、糞便儲存與加工、飼料生產過程、其他能源使用等活動,FAO 也提出了目前評估可實行的減緩方案,其中一項便是提高奶牛的飼料開發以及飼養技術,來減少消化過程中和分解糞便時產生的甲烷 (CH4) 與一氧化二氮 (N2O) 。

而這篇研究的主角之一就是一氧化二氮 (N2O) ,雖然它只佔全球溫室氣體總排放量的 5% ,但它把熱留在地球的能力卻將近是二氧化碳的 300 倍!除此之外,每次排放的一氧化二氮 (N2O) 都會停留在大氣中超過一世紀,可以說是一種「長壽」的溫室氣體。從 1990 年起,紐西蘭的一氧化二氮排放量增加了五成,主要是來自乳製品業擴展以及氮肥使用,因此紐西蘭政府制定了一個目標,要在 2050 年之前將一氧化二氮的排放減少到淨零。

但這和牛有什麼關係呢?

紐西蘭的一氧化二氮排放量增加與乳製品業擴展有關。 圖/Pixabay

從「牛尿尿」開始的氮旅程

原因是牛尿液中氮含量很高,而動物尿液中的氮來源主要是尿素  (CH₄N₂O),在紐西蘭和澳洲,通常將牛飼養在戶外,牠們排尿之後,就開始一趟名為「氮循環」的旅程,首先尿素會迅速在土壤裡被水解成銨鹽 (NH4+) ,再經過微生物「亞硝化菌」氧化成亞硝酸根 (No2),接著,另外一群微生物「硝化菌」,將亞硝酸鹽 (No2) 再氧化成硝酸根 (NO3),以上的過程稱為「硝化作用 (Nitrification) 」。

當然,旅程還沒有結束,另一群稱作「脱硝菌」或「脫氮菌」的微生物會將硝酸鹽還原成氮氣 (N2),叫做「去硝化作用」或「脫氮作用」,而一氧化二氮 (N2O) 是反應的中間產物,會直接被釋放到大氣中。

難道把牛飼養在牛舍裡就沒有問題了嗎?

代誌不是憨人想得這麼簡單!當牛尿液中的氮和地板上的糞便混在一起時,會產生另一種空氣污染物——氨 (NH4)。

File:Nitrogen Cycle 2.svg
生態環境中的氮循環系統。細菌在其中扮演了關鍵角色,將氮源轉換為各種化合物,能夠被生物利用。圖/WIKIPEDIA

所以,如果牛的尿液可以被收集處理,裡面所含的氮就可以被轉換,減緩對環境的衝擊,但是要怎麼收集牛的尿液呢?

最直接的方式就是,教小牛到「廁所」裡尿尿。

要怎麼教會小牛尿尿?獎勵和拆解步驟是關鍵

研究團隊利用行為心理學的原理,訓練小牛到特定的地方排尿,這個原理便稱為「操作制約 (Operant Conditioning)」,由美國哈佛大學心理學教授史金納 (B.F. Skinner) 於 1938 年提出,當時有個著名的動物實驗稱為「史金納箱 (Skinner Box)」,將飢餓的小白鼠放在箱子裡,內有電動裝置紀錄動物的正確反應次數和頻率,因飢餓不安而活動的小白鼠,偶然壓到槓桿就會得到少量食物,當以後小白鼠看到槓桿,再去壓桿的頻率就會比以前高。對小白鼠來說,因反應而出現的食物是「強化物」,對壓桿這個「操作性反應」產生了強化作用。

除此之外,他們還運用訓練小孩上廁所,一種叫做「反向鏈接技術 (Backward Chaining Technique) 」的方式,將目標拆解成小步驟,從最後一步開始訓練到第一步。

首先,小牛被限制在圍欄設置成的廁所區域裡,當小牛排尿後再給予牠們喜歡的食物進行強化。然後,把小牛帶到圍欄外的一條走廊上,並再次強化進去廁所裡尿尿的行為,如果小牛在走廊上就排尿,便會用讓牠稍微不開心的噴水阻止牠。

經過幾次強化訓練,他們訓練的八頭小牛中,有七隻學會了在廁所尿尿,而且學習的速度和人類小孩差不多快!牠們大約只受了 15 天的訓練,大部分的小牛在 20 至 25 次排尿後學會了整套,比三到四歲的人類小孩還快。

小奶牛在廁所尿尿的影片。資料來源/參考資料 1

由此,研究團隊得到了兩個結論,第一是牛能夠學會注意自己的排尿反射,在準備尿尿時會移動到廁所裡;第二,在可以得到獎勵的情況下,牠們學會先憋尿,除非到了正確的地方。

牛牛學會了,然後呢?

在知道可以訓練牛牛到廁所排尿後,下一步要怎麼做才能夠離減排溫室氣體的目標越來越近呢?

作者認為希望未來可以優化廁所裝置,自動檢測排尿以及給予獎勵,就像是放大版的史金納箱一樣。除技術層面外,像是紐西蘭、澳洲等地的畜牧業,大多將牛飼養在開放的圍場,應該要把廁所設在哪裡,或者牛願意走多遠過來上廁所,都是需要進一步了解的問題,也才能夠將這項技術真正運用在不同國家的畜牧業,實際做到減緩畜牧業對氣候變遷的影響。

參考資料

  1. Dirksen, N., Langbein, J., Schrader, L., Puppe, B., Elliffe, D., Siebert, K., … & Matthews, L. (2021). Learned control of urinary reflexes in cattle to help reduce greenhouse gas emissions. Current Biology, 31(17), R1033-R1034.
  2. Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., … & Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).
  3. 張春興(民80)。教育心理學:三化取向的理論與實踐。台灣東華書局。
  4. Backward Chaining Technique
  5. 全國法規資料庫:空氣污染防治法施行細則
  6. The science of nitrous oxide

阿咏_96
1 篇文章 ・ 3 位粉絲
You can be the change you want to see in the world.
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策