0

0
1

文字

分享

0
0
1

第一顆積體電路問世 │ 科學史上的今天:09/12

張瑞棋_96
・2015/09/12 ・980字 ・閱讀時間約 2 分鐘 ・SR值 484 ・五年級

-----廣告,請繼續往下閱讀-----

圖/Peter Thoeny License Source

有些發明改變人類的生活方式卻不大吸引世人注意,連帶使得發明者淪為一個陌生的名字。傑克·基爾比(Jack Kilby, 1923-2005)與他發明的積體電路(integrated circuit, 簡稱 IC)就是一個例子。

基爾比於 1958 年 5 月加入德州儀器之前,已經在另一家電子公司工作了十年。當時小巧的電晶體已經取代笨重的真空管,但要將電阻、電容、二極體、三極體這些元件個別一一焊接在電路板上,不但耗時費工,又容易出錯。而且電路板尺寸得維持一定大小以上,電子產品就很難繼續縮小化。

基爾比有個大膽的想法:一開始就將這些不同元件做在同一塊晶片上,並在晶片內用電路連接起來,如此就可大幅縮小電路板尺寸了。這其實不算是多麼天才的創見,但當時似乎沒有開發積體電路的迫切需求;何況想法簡單,卻還不知實際是否可行。

七、八月的辦公室空蕩蕩的,大家都趁暑假輪流度假去了;剛加入德州儀器的基爾比還沒有年假可休,只能安分每天上班。或許是這樣的悠閒氣氛,基爾比的主管同意他試試這個提案。基爾比也樂得可以一個人不受打擾地全心思考,大膽實驗,而他也終於打造出將這些電晶體整合在一塊晶片裡的完整電路。

-----廣告,請繼續往下閱讀-----

暑假結束,大家都回到工作崗位了。1958 年 9 月 12 日,基爾比在多位主管及同事面前拿出他這塊外觀醜陋的晶片。他稍做解說後,緊張地接上電源與示波器。這是他極力爭取的案子,他可不希望出什麼差錯,壞了名聲。他暗自祈禱一切順利,小心地打開開關,結果在場人士一陣歡呼,他們見證了第一顆積體電路的誕生!

有了積體電路,電腦與各種電子產品才突飛猛進,手機等攜帶式裝置也才得以成真,可以說沒有積體電路的發明,就沒有現代生活。基爾比也因此於 2000 年,成為極少數以工程師身分獲得諾貝爾物理獎的人。

不過目前所用的積體電路其實不是採用基爾比的技術,而是當時快捷半導體(Fairchild Semiconductor)的諾伊斯(Robert Noyce, 後來成為英特爾創辦人之一)所發明的積體電路製造方式。雖然晚基爾比幾個月,但諾伊斯的技術更先進,兩家公司也因此大打專利官司。儘管如此,基爾比在領獎致詞時仍無私地提到:若是諾伊斯還活著的話,肯定會和他一起分享諾貝爾獎。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
從真空管到晶片:科技革命的關鍵里程碑
數感實驗室_96
・2024/05/25 ・670字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

奇幻故事中常見的魔法石可以輸出源源不絕的能量,其實在現實生活中的 20 世紀末期,人類真的發明了魔法石!

想像一下,手機開啟視訊,可以看到遠方的景色和親友,這不就像遙視、千里眼嗎?或者問 AI 上網查資料,就像內建大賢者。連開手電筒都像是探索地底迷宮的照明法術一樣!這些譬喻讓我們意識到,許多看似理所當然的科技實際上就像魔法一樣神奇。

晶片的原理

晶片進行的是邏輯運算,就像我們做的數學計算一樣。它裡面有許多微小的電子元件,類似於樂高積木一樣,用來進行各種運算。過去的電子元件是大型真空管,後來發明了電晶體,但仍需大量使用。直到有人提出了積體電路的概念,將許多電晶體整合在一起,這才開啟了晶片時代。

-----廣告,請繼續往下閱讀-----

從真空管到奈米晶片,科技的進步無所不在。現代的魔法石就是這些晶片,它代表著工程師的智慧和創造力。科技或許是一種新型的魔法,由無數工程師代代相傳,用理性和創意塑造出來。所以,現代的魔法並非來自大自然或神秘的力量,而是來自人類的智慧和努力。

喜歡這系列將影片或有其它想法,歡迎留言分享喔!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

4
0

文字

分享

0
4
0
數位攝影搖身一變黑科技,CIS 成長無止盡,遇上異常該如何 DEBUG?
宜特科技_96
・2023/06/05 ・4124字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

一個女子用手機在進行自拍
圖/宜特科技

從小時候的底片相機,發展到數位相機,如今手機就能拍出許多高清又漂亮的照片,你知道都是多虧了 CIS 晶片嗎?

本文轉載自宜特小學堂〈CIS晶片遇到異常 求助無門怎麼辦〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

CIS 晶片又稱 CMOS 影像感測器(CMOS Image Sensor),最早是在 1963 年由美國一家半導體公司發明出來的積體電路設計,隨著時代進步,廣泛應用在數位攝影的感光元件中。而人們對攝影鏡頭解析度需求不斷增加,渴望拍出更精美的畫質。

CIS 已從早期數十萬像素,一路朝億級像素邁進,有賴於摩爾定律(Moore’s Law)在半導體微縮製程地演進,使得訊號處理能力顯著提升。如今的 CIS 已經不僅適用於消費型電子產品,在醫療檢測、安防監控領域等應用廣泛,近幾年智慧電車興起,先進駕駛輔助系統(ADAS, Advanced Driver. Assistance Systems)已成為新車的安全標配,未來車用 CIS 的市場更是潛力無窮。

然而,越精密、越高階的 CIS 晶片由於結構比較薄,加上特殊的 3D 堆疊結構,使得研發難度大大提升,當遇到異常(Defect)現象時,想透過分析找出故障的真因也更為困難了。

-----廣告,請繼續往下閱讀-----

本文將帶大家認識三大晶片架構,並以案例說明當 CIS 晶片遇到異常,到底我們可以利用那些工具或手法,成功 DEBUG?

一、認識 CIS 三大晶片架構

現今 CIS 晶片架構,可概分為三大類,(一)前照式(Front Side illumination,簡稱FSI);(二)背照式 (Back Side illumination,簡稱 BSI);(三)堆疊式 CIS(Stacked CIS)

(一)前照式(FSI)CIS

為使 CIS 晶片能符合半導體製程導入量產,最初期的 CIS 晶片為前照式 (Front Side illumination,簡稱 FSI) CIS;其感光路徑係透過晶片表面進行收光,不過,前照式 CIS 在效能上的最大致命傷為感光路徑會因晶片的感光元件上方金屬層干擾,而造成光感應敏度衰減。

(二)背照式(BSI)CIS

為使 CIS 晶片能有較佳的光感應敏度,背照式(Back Side illumination ,簡稱 BSI)CIS 技術應運而生。此類型產品的感光路徑,係由薄化至數微米後晶片背面進行收光,藉此大幅提升光感應能力。

而 BSI CIS 的前段製程與 FSI CIS 類似,主要差別在於後段晶片對接與薄化製程。BSI CIS 的製程是在如同 FSI CIS 一般製程後,會將該 CIS 晶片正面與 Carrier wafer 對接。對接後的晶片再針對 CIS 晶片背面進行 Backside grinding 製程至數微米厚度以再增進收光效率,即完成 BSI CIS。

(三)堆疊式(Stacked)CIS

隨著智慧型手機等消費電子應用的蓬勃發展,人們對於拍攝影像的影像處理功能需求也大幅增加,使製作成本更親民與晶片效能更能有效提升,利用晶圓級堆疊技術,將較成熟製程製作的光感測元件(Sensor Chip)晶片,與由先進製程製作、能提供更強大計算能力的特殊應用 IC(Application Specific Integrated Circuit,簡稱 ASIC)晶片、或是再進一步與記憶體(DRAM)晶片進行晶圓級堆疊後,便可製作出兼具高效能與成本效益的堆疊式 CIS(Stacked CIS)晶片(圖一),也是目前最主流的晶片結構。

-----廣告,請繼續往下閱讀-----
堆疊式(Stacked) CIS晶片示意圖
《圖一》堆疊式(Stacked)CIS 晶片示意圖。圖/宜特科技

二、如何找堆疊式(Stacked)CIS 晶片的異常點(Defect)呢?

介紹完三大類 CIS 架構,我們就來進入本文重點:「如何找到堆疊式(Stacked)CIS 晶片的異常點(Defect)?」

由於這類型的 CIS 晶片結構相對複雜,在進行破壞性分析前,需透過電路專家電路分析或熱點(Hot Spot)故障分析,鎖定目標、縮小範圍在 Stacked CIS 晶片中的其一晶片後,針對可疑的失效點/失效層,進行該 CIS 樣品破壞性分析,方可有效地呈現失效點的失效狀態以進行進一步的預防修正措施。

接著,我們將分享宜特故障分析實驗室,是如何(一)利用電性熱點定位;(二)移除非鎖定目標之晶粒(Die),並針對鎖定目標晶粒(Die)逐層分析;(三)電性量測分析;(四)超音波顯微鏡(SAT)分析等四大分析手法交互應用,進行 Stacked CIS 晶片進行故障分析,順利找到異常點(Defect)。

(一)透過電性熱點定位找故障點(Hot Spot)

當CIS晶片具有高阻值(High Resistance)、短路(Short)、漏電(Leakage)或是功能失效(Function Failure)等電性失效時,可依據不同的電性失效模式,經由直流通電或上測試板通電,並透過選擇適合的電性故障分析(EFA, Electrical Failure Analysis)工具來進行電性定位分析。

設備OBIRCHThermal EMMIInGaAs
偵測目標電晶體/金屬層金屬層/封裝/印刷電路板電晶體/金屬層
失效模式漏電/短路/高阻值漏電/短路/高阻值漏電/短路/開路
各設備適合使用的選擇時機

包括雷射光束電阻異常偵測(Optical Beam Induced Resistance Change,簡稱 OBIRCH)熱輻射異常偵測顯微鏡(Thermal EMMI)(圖二)、砷化鎵銦微光顯微鏡(InGaAs),藉由故障點定位設備找出可能的異常熱點(Hot Spot)位置,以利後續的物性故障(PFA, Physical Failure Analysis)分析。

-----廣告,請繼續往下閱讀-----
透過Thermal EMMI找到電性失效的故障點位置
《圖二》透過 Thermal EMMI 找到電性失效的故障點位置。圖/宜特科技

(二)移除非鎖定目標之晶粒,並針對鎖定目標晶粒逐層分析

接著,依照上述電性分析縮小可能的異常範圍至光感測元件晶片、ASIC 或記憶體晶片區後,根據 Stacked CIS 晶片堆疊的結構特性,需先將其一側的矽基材移除,方可進行逐層去除(Layer by layer),或層層檢查。

再者,透過特殊分析手法,移除不需保留的晶粒結構,進而露出目標晶粒之最上層金屬層(圖三)。接著,透過逐層去除(Layer by layer),最終在金屬層第一層(Metal 1)找到燒毀現象的異常點(defect) (圖四)。

搭配特殊手法,將CIS待測樣品不需保留之晶粒部分,完整移除
《圖三》搭配特殊手法,將 CIS 待測樣品不需保留之晶粒部分,完整移除。圖/宜特科技
對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象
《圖四》對照Hot Spot分析範圍,進行鎖定目標晶粒進行逐層去除,發現燒毀現象。圖/宜特科技

(三)電性量測分析:導電性原子力顯微鏡(C-AFM, Conductive Atomic Force Microscopy)與奈米探針系統(Nano-prober)的應用

當逐層去除(Layer by Layer)過程當中,除利用電子顯微鏡(SEM) 於故障點區域進行 VC(Voltage Contrast)的電性確認與金屬導線型態觀察外,亦可搭配導電原子力顯微鏡(Conductive Atomic Force Microscopy,簡稱C-AFM)快速掃描該異常區域,以獲得該區域電流分布圖(Current map)(圖五),並量測該接點對矽基板(Si Substrate)的電性表現,進而確認該區域是否有漏電 / 開路等電性異常問題。

C-AFM異常分析結果圖
《圖五 (左)》C-AFM 異常分析結果圖。圖五 (左): 外加正電壓 (+1V) 時的 Current map 異常電性發生;
《圖五 (右)》外加負電壓 (-1V) 時的 Current map 異常電性發生 (黃圈處)。圖/宜特科技

在完成C-AFM分析後,若有相關疑似異常路徑需要進一步進行電性量測與定位,可使用奈米探針電性量測(Nano-Prober)進行更精準的異常點定位分析,包括電子束感應電流(EBIC , Electron Beam Induced Current)、電子束吸收電流(EBAC, Electron Beam Absorbed Current)、與電子束感應阻抗偵測(EBIRCH , Electron Beam Induced Resistance Change)等定位法。而Nano-Prober亦可針對電晶體進行電性量測,如Vt、 IdVg、IdVd等基本參數獲取(圖六)。

-----廣告,請繼續往下閱讀-----

當透過上述分析手法精準找到異常點後,亦可再透過雙束聚焦離子束(Dual-beam FIB,簡稱DB-FIB)或是穿透式電子顯微鏡(Transmission Electron Microscopy,簡稱TEM)來對異常點進行結構確認,以釐清失效原因(圖七)。

EBIC分析結果圖
《圖六》EBIC分析結果圖。圖/宜特科技
TEM分析結果圖
《圖七》TEM分析結果圖。圖/宜特科技

(四)超音波顯微鏡(Scanning Acoustic Tomography,簡稱SAT)分析:於背照式(BSI)/堆疊式(Stacked)CIS晶圓對接製程的應用

超音波顯微鏡(SAT)

超音波顯微鏡(SAT)為藉由超音波於不同密度材料反射速率及回傳能量不同的特性來進行分析,當超音波遇到不同材料的接合介面時,訊號會部分反射及部分穿透,但當超音波遇到空氣(空隙)介面時,訊號則會 100% 反射,機台就會接收這些訊號組成影像。
超音波顯微鏡(SAT)原理圖
超音波顯微鏡(SAT)原理圖。圖/宜特科技

在背照式(BSI)與堆疊式(Stacked)CIS 製程中晶圓與晶圓對接(bonding)製程中,SAT 可作為偵測晶圓與晶圓之間接合不良造成存在空隙的重要利器(圖八)。

圖八: 透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置
《圖八》透過超音波顯微鏡(SAT),找到晶圓與晶圓對接(bonding)之鍵合空隙位置。圖/宜特科技

半導體堆疊技術的蓬勃發展,加上人們對影像感測器在消費性電子、車用電子、安控系統等應用,功能需求大幅度增加,CIS 未來將繼續進化,無論是晶圓級對接的製程穩定度分析,或是堆疊式(Stacked)CIS 故障分析,都可以透過宜特實驗室豐富的分析手法,與一站式整合服務精準地分析、加速產品開發、改善產品品質。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室