0

3
1

文字

分享

0
3
1

噔噔愣噔愣~縮小術!用光學微影把 IC 晶片變小了

研之有物│中央研究院_96
・2022/08/10 ・6070字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 整理撰文/郭雅欣、簡克志
  • 美術設計/蔡宛潔

手機越來越快, IC 晶片卻越來越小,關鍵是「光學微影」

自光學微影技術出現以來,積體電路(Integrated circuit, IC)的體積跟隨著摩爾定律不斷縮小,到我們踏入 5 奈米量產世代的今日,IC 可以說足足縮小了百萬倍!這樣的成果並非一蹴可幾,而是多年來半導體研發人員和工程師的心血累積而成。中央研究院 111 年知識饗宴的科普講座中,林本堅院士以「光學微影縮 IC 百萬倍」為題目,分享了光學微影這一路走來,如何將半導體元件尺寸愈縮愈小、推向極限。

林本堅院士分享半導體微影技術的發展歷程。資料來源/中央研究院

隨著積體電路(IC)與半導體製程的進展,我們的手機、平板等 3C 產品,體積愈來愈小,速度卻愈來愈快,功能也愈來愈多、愈強大。這歸根究柢,是因為現在的半導體技術把 IC 愈做愈小了,在 3C 產品中可以放入的元件數量愈來愈多,自然能做的事情更多了,效率也增加了。

IC 愈做愈小的關鍵技術在於光學微影(Optical Lithography)。光學微影簡單來說,就是在製作元件的過程中,將元件的組成材料依所需位置「印」在半導體晶圓上的技術。能印出愈精細的圖案,就能製作出愈小的元件。

-----廣告,請繼續往下閱讀-----

如果讀者好奇手機或電腦的 IC 晶片是怎麼做出來的?請參考以下蔡司公司製作的影片,解釋了晶片從原料到封裝的整個過程,影片中的曝光(exposure)步驟,就是我們這篇文章要介紹的主題。

衡量元件尺寸的關鍵指標之一為「電晶體閘極長度」(Gate length),這個數字與 IC 速度直接相關。以場效電晶體來說,閘極長度愈小,電流可以花更少時間通過電晶體的汲極和源極。

如果要表示元件微縮的程度,另一個關鍵指標為線寬和週距(Pitch),通常以金屬層線與線的週距為參考基準,週距做得愈小,線寬也愈小,元件微縮程度愈高,見以下示意圖。

線寬與週距(Pitch)的示意圖,週距為線寬加上線與線之間的間距,可表示金屬線週期性排列的尺度大小。圖/研之有物

如今,到了單位數奈米的世代(例如 7 奈米或 5 奈米製程),這些數字已經逐漸演變為僅是世代的號誌。雖然 IC 還是愈小愈好,但是新世代製程工藝可能代表運算快、密度高、價錢便宜等其他綜合優點。

-----廣告,請繼續往下閱讀-----

那 IC 目前到底縮小了多少呢?我們可以先有個概念,如果把每個世代視為實際尺寸來看,自從 1980 年代有光學微影技術以來,線寬從一開始的 5,000 奈米,如今已降到 5 奈米、甚至往 3 奈米邁進了。線寬不斷往下縮小,每一代大約縮小為上一代的 0.7 倍,到 5 奈米已經是第 21 代。經過了這樣的「代代相傳」,線寬縮小了 1,000 倍,換算下來,同一面積所能放入的元件數量高達原本的 100 萬倍!

光學微影技術如魔法般把線寬一步步縮小,靠的是多年來研發人員一步步的努力。林本堅院士在「光學微影縮 IC 百萬倍」這場科普講座中,一一細數其中的關鍵改良,以及箇中挑戰。

IC 晶片縮小術,秘訣在於追求最小線寬

讓我們先從一個核心的光學解析度公式開始:

半週距(Half Pitch)= k1λ/sinθ

半週距:一條線寬加上線與線的間距後乘以 1/2。曝光解析度高時,半週距可以做得愈小,意味著線寬可以愈小。

-----廣告,請繼續往下閱讀-----

k1:一個係數,與製程有關,縮小半週距的關鍵,是所有半導體工程師致力縮小的目標。

λ:微影製程中使用的光源波長,從一開始的 436 奈米,現已降到 13.5 奈米。

sinθ:與鏡頭聚光至成像面的角度有關,基本上由鏡頭決定。

光線通過透鏡系統聚焦成像示意圖,n 為介質折射率,θ 為鏡頭聚焦至成像面的角度。圖/研之有物

由於光在不同介質中,波長會有所改變,因此我們在考慮如何增加解析度時,可將鏡頭與成像面(晶圓)之間的介質(折射率 n)一併納入考量,將 λ 改以 λ0/n 表示,λ0 是真空中的波長。

-----廣告,請繼續往下閱讀-----

半週距(Half Pitch)= k1λ0/n sinθ

因此,增加曝光解析度(半週距 ↓)的努力方向為:增加 sinθ、降低 λ0、降低 k1、增加 n。

另一方面,為了讓微影製程有足夠大的曝光清晰範圍,鏡頭成像的景深(DOF)數字愈大愈好(註1),但是景深變大的副作用是——半週距也會跟著變大,因此在製程改良上必須考慮兩者的平衡或相互犧牲。

巨大複雜的鏡頭,都是為了增大 sinθ

sinθ 與鏡頭聚光角度有關,數值由鏡頭決定,sinθ 愈大,解析度愈高。光學微影所使用的鏡頭,並不如我們平常使用的相機或望遠鏡那般簡單——而是由非常多大大小小、不同厚薄及曲率的透鏡,經過精確計算後,仔細堆疊組成的(如下圖)。

這樣極其精密的鏡頭,林本堅透露:「6,000 萬美金的鏡頭已經不值得驚奇了,一億美金都有可能。」鏡頭做得這樣複雜、巨大又昂貴,是為了盡可能將 sinθ 逼近它的極值,也就是 1,他接著說:「目前的鏡頭可將 sinθ 值做到 0.93,這已經是非常辛苦了。」

-----廣告,請繼續往下閱讀-----
微影機的鏡頭設計相當複雜,林本堅提到目前業界盡可能提升 sinθ 值到 0.93。圖中的 NA = n.sinθ = 0.9,空氣折射率 n 約為 1,故此鏡頭 sinθ 水準為 0.9。鏡頭模組實際使用時會立起來垂直地面(如下圖)。圖/研之有物
林本堅院士於演講中強調,微影機的鏡頭模組非常巨大,而且重得必須使用起重機才能搬運。圖/111 年中央研究院知識饗宴

鏡頭材料精準的搭配:縮短波長

第二個方法是縮短波長。雖說改變使用的光源,就能得到不同的波長,但因為不同波長的光經過透鏡後的折射方向不同,因此鏡頭的材料也必須相應改變。林本堅表示,當波長愈縮愈短,「我們能選擇的鏡頭材料也愈來愈少,最後就只有那兩三種可以用。」

用少數幾種材枓來調適光源的頻寬愈來愈難。所以後來大家轉而選擇單一種合適的材料,並針對適合這種材料的波長,將頻寬盡量縮窄。林本堅說:「連雷射的頻寬都不夠窄小,現在把頻寬縮窄到難以想像的程度。」

另一種解決問題的方法,則是在鏡頭的組成中加入反射鏡,這樣的鏡頭組合稱為反射折射式光學系統(Catadioptric system)。因為不管是什麼波長的光,遇到鏡面的入射角和反射角都是相等的,因此若能以一些反射鏡面取代透鏡,就可以增加對光波頻寬的容忍度。

上圖為波長 193 奈米光源所使用的曝光鏡頭模組,從示意圖可看到在透鏡組合之間加入了反射鏡。圖/研之有物

後來到了 13.5 奈米(極紫外光,EUV)的波長時,甚至必須整組鏡頭都使用反光鏡,稱為全反射式光學系統(All reflective system),可參考以下 ASML 公司的展示影片。林本堅表示,這種全反射鏡的系統,必須設計得讓光束相互避開,使鏡片不擋住光線。此外,相較於透鏡穿透的角度,鏡面反射的角度對誤差的容忍度更低,鏡面角度必須非常非常精準。以上這些都增加了設計的困難度。

-----廣告,請繼續往下閱讀-----

曝光波長的改變還會牽涉到底下的曝光光阻,光阻材料從化學性質、透光度到感光度等各項特性,都必須隨著曝光波長的改變而調整,「這是個浩大的工程。其中感光速度非常重要,是節省製造成本的關鍵」,林本堅說。

值得一提的是,光阻材料的感光速度在微縮 IC 的歷史中相當重要。1980 年代,時任 IBM 的 C.G. Willson 和 H. Iro 率先提出一種以化學方式放大光阻感光速度的方法,將感光速度提升了 10~100 倍,大幅增加了曝光效率。這項重大發明,讓 C.G. Willson 在 2013 年榮獲「日本國際獎」(Japan Prize),可惜當時 H. Iro 博士已故,無法一同受獎。

提高解析度的關鍵:降低 k1

提高解析度的重頭戲就在於如何降低 k1。林本堅說:「你可以不用買昂貴的鏡頭,也可以不選用需要很多研發功夫的新波長。只要你能用聰明才智與創造力,將 k1 降下來。」

首先是「防震動」,就好像拍照開防手震功能一樣,在晶圓曝光時設法減少晶圓和光罩相對的震動,使曝光圖形更加精準,恢復因震動損失的解析度。再來是「減少無用反射」,在曝光時有很多表面會產生不需要的反射,要設法消除。林本堅表示,改良上述這兩項, k1 就可以達到 0.65 的水準。

-----廣告,請繼續往下閱讀-----

提高解析度還可以使用雙光束成像(2-beam Imaging)的方法,分別有「偏軸式曝光」(Off-Axis Illumination, OAI)及「移相光罩」(Phase Shift Mask, PSM)兩種。

偏軸式曝光是調整光源入射角度,讓光線斜射進入光罩,原本應通過光罩繞射的三束光(1 階、0 階與 -1 階),會去掉外側的一束光(1 階或 -1 階),只留下其中兩束光(例如 0 階和 1 階)。透過角度的調整,可以很巧妙地讓這兩道光相互干涉來成像,使解析度增加並增加景深。

移相光罩則是在光罩上動些手腳,讓穿過相鄰透光區的光,有 180 度的相位差。相位差 180 度的光波強度不會改變,只是振幅方向相反。如此一來,相鄰透光區的光兩兩干涉之後,剛好會在遮蔽區相消(該暗的地方更暗),增加透光區與遮蔽區的對比,進而提高解析度。

「這兩種做法都可以讓 k1 減少一半。」林本堅笑說:「可惜這兩種方法都是用 2-beam Imaging 的概念,不能疊加起來使用。」

目前業界多半多半使用偏軸式曝光,林本堅表示:「移相光罩一方面比較貴,另一方面,它不能任意設計圖案,必須考量鄰近相位不抵消的問題。」利用各種降低 k1 的技術,目前已將 k1 降到 0.28,「這幾乎是這些技術所能做到的 k1 極限了。」

要進一步降低 k1 ,還有辦法!就是用兩個以上的光罩,稱為「多圖案微影」。簡單來說,它將密集的圖案分工給兩個以上圖案較寬鬆的光罩,輪流曝光在晶圓上,這樣可以避免透光區過於接近,使圖案模糊的問題。缺點則是因為曝光次數加倍,等於效率降低了一半。

鏡頭與晶圓之間的介質:浸潤式微影技術

在增加微影解析度的路上,最後一個可以動手腳的就是鏡頭與晶圓之間的介質。由林本堅提出的浸潤式微影技術中,將鏡頭與晶圓之間的介質從折射率 n~1 的空氣,改成n= 1.44 的水(對應波長為 193 奈米的光),形同將波長等效縮小為 134 奈米。

浸潤式微影技術讓半導體工藝在 12 年內往前走了 6 代——從 45 奈米直到 7 奈米。林本堅補充說,這個技術的優勢在於「你可以繼續使用同樣的波長和光罩,只要把水放到鏡頭底部和晶圓之間就好。」

乾式微影光學系統與浸潤式微影光學系統的差異。圖/研之有物

不過,林本堅話鋒一轉。「我說得很輕鬆,把水放進去就好。但這背後其實有很多技術。」例如水中的空氣可能讓水產生氣泡,必須完全移除。另外,放進去的水必須很均勻,在透光區照到光的水,會變得比遮蔽區的水要熱一些,這個溫差就會讓水變得不均勻,影響成像。為了避免溫差,必須讓水快速流動混合,但又可能會產生漩渦。

「這很考驗我們機台放水的裝置,如何讓水流快速均勻又不起漩渦?這是個大學問,至今放水裝置起碼重新設計了六到八次。」

水的另一個特點,就是「它是很好的清洗劑。」林本堅說。在使用浸潤式微影技術時,水很容易把鏡頭等所有接觸到的東西上的雜質都洗下來,「結果就是晶圓上有上千個缺陷(defects)。我們花了很多功夫把缺陷的數量從幾千個,降到幾百個、幾十個,最後降到零。」林本堅說:「那是需要投入很多人力和晶圓才能完成。」

半導體人才需要是專才、通才,也要是活才

演講的最後,身為清華大學半導體研究學院院長的林本堅提及人才的培養。半導體的技術已經演進到非常複雜的程度,沒有一個學生能精通所有的技術層面。林本堅說:「所以你會發現,半導體需要團隊互助合作。」

而踏入這塊領域的學生,林本堅期許除了要有基本的理工能力外,還需要有對問題的好奇心,會發現新問題,也會找到有趣的新技術(活才)。「如果不能自己發現新的技術,會永遠跟在別人後面。」

林本堅強調,這不是簡單的事情,因為「真的有學不完的東西。」半導體可以分成材料、製程、設計、元件四個領域,「我們希望學生至少在一個領域很精通,有本領深入鑽研(專才)。但對其它的領域,也得有某種程度的認識(通才),才能彼此合作,解決問題。」

關於半導體人才的培養,林本堅院士期許學生先專精在一個領域,並對其他領域有一定程度瞭解,促進團隊合作、解決問題,進而發現新的技術。圖/林本堅

註解

註1:DOF=k3λ/sin2(θ/2),k3 是因應高 NA 值的曝光鏡頭所引入之係數。

延伸閱讀

文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3415 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
為何電子元件已經做了塗膠防護處理,仍會發生腐蝕甚至導致產品失效?
宜特科技_96
・2023/12/22 ・5635字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

電子元件發生腐蝕
圖/宜特科技

像電動車、充電樁使用於車用、工業用與戶外級別的電子產品,因應使用環境電子元件都需要採用三防膠塗佈保護,才能防止污染、腐蝕等問題。但為什麼,產品即便已經做了塗膠防護處理,仍會發生硫化腐蝕最終導致故障呢?原因可能就出在「膠」選得不對!

本文轉載自宜特小學堂〈為何已採用三防膠塗佈的電子產品,仍然發生硫化腐蝕失效〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

選對三防膠材材有效 影片
點擊圖片收看影片版

近年來,伴隨環保概念提升與綠能意識抬頭,燃油類設備機具減少、電子產品數量增加,生活中最常見的就是電動車和充電樁變得越來越多。由於這類電子硬體設備會長期待在室外環境,加上日趨嚴重的空氣污染威脅,腐蝕性氣體、水分、污染物、懸浮微粒會直接或間接地造成產品中的元件生鏽或腐蝕,就會發生故障影響產品的使用壽命。而三防膠就是為了加強保護電子元件、延長設備壽命、確保安全性與可靠性所誕生的一種塗料。

一、 什麼是三防膠(Conformal Coating)?哪些產品特別需要使用三防膠?

有三防膠塗佈的電路板。圖/百度百科

三防膠又稱三防漆,跟大家概念中的膠或是漆有點像,它是常用於電路板上的一種特殊塗料。三防膠具有良好的耐高低溫特性,經由三防膠塗佈的電路板會產生一層「透明聚合物薄膜」,就能維持電路板外形並保護好電子元件,達到「防濕氣」、「防污」、「防腐蝕」的效果,因此才被稱為「三防」膠。

前面有談到,因應全球環境變化,電子產品卻越來越多元、越來越精密的條件下,現代電子硬體設備不僅擁有高性能,還需要具備抵抗惡劣環境的能力,像是應用在工業、車用、航太、戶外級別的電子產品,例如:資料中心、工業電腦、電動車、儲能站與低軌衛星等等……。

-----廣告,請繼續往下閱讀-----

這些產品比起一般家電的使用環境更加嚴苛,尤其在面對含硫化氣體污染高的環境,特別容易造成「硫化腐蝕現象」,因此在製程中,電子元件必須做好三防膠塗佈處理、提升產品可靠度是非常重要的事。

什麼是「硫化腐蝕」跟「爬行腐蝕」?

硫化腐蝕(Sulfur Corrosion):當空氣污染物中含有豐富的硫化合物,會導致許多工業器件上各種金屬與合金材料的表面產生嚴重的腐蝕現象,若伴隨其他氣體污染物的存在,會導致氣體協同效應進而產生不同硫化腐蝕的特徵與機理。富含硫的氣體,如硫化氫(H2S)、環八硫(S8)與二氧化硫(SO2)就是一般常見造成電子設備發生硫化腐蝕的氣體。

爬行腐蝕(Creep corrosion):爬行腐蝕是屬於硫化腐蝕其中一種的失效機理,典型的案例在印刷電路板與導線架封裝元件最為常見。由於裸露的金屬銅接觸到環境中硫化物的腐蝕性氣體,會進行反應生成硫化亞銅(Cu2S)的腐蝕產物,一旦電子產品表面清潔度不佳或環境有氯氣存在時,其固體腐蝕物將會沿著電路與阻焊層/封裝材料表面遷移生長的過程,導致相鄰焊盤和電路間的電氣短路失效現象,我們稱之為爬行腐蝕的失效模式。

印刷電路的爬行腐蝕
印刷電路的爬行腐蝕。圖/Barry Hindin, Ph.D, Battelle Columbus Operations
導線架封裝元件的爬行腐蝕
導線架封裝元件的爬行腐蝕。圖/Dr. P. Zhao, University of Maryland

當電子產品發生硫化腐蝕,會導致設備發生短路或開路的故障風險,像發生在印刷電路板或導線架封裝的爬行腐蝕(下圖一、圖二、圖三),或是表面貼裝被動元件的硫化腐蝕(下圖四),都是十分常見的案例。

電路板發生爬行腐蝕及硫化腐蝕失效的照片
(1)與(2)為印刷電路板的爬行腐蝕失效,(3)為導線架封裝的爬行腐蝕失效,(4)為表面貼裝晶片電阻的硫化腐蝕特徵照片。圖/宜特科技

二、 電子產品該選擇哪種方式做防護處理?

為了有效地隔絕惡劣環境對電子設備的影響,除了前面提過三防膠(Conformal Coating)的處理手法,一般也會採用灌封(Potting)來處理。下表是灌封與三防膠的差異比較。

方法灌封三防膠
保護性中-優
加工與
重工性
劣(氣泡殘留、重工困難)
品管檢驗劣(外觀不可視)優(外觀可視)
應用性劣(侷限)優(輕薄)
環保
範例
圖/Epoxyset Inc.
圖/Charged EVs
灌封與三防膠處理方法之比較。表/宜特科技

雖然灌封比三防膠保護性更好,但並非所有電子元件都能用灌封處理,灌封在作業前必須考量電子元件,會因為加工的熱應力、固化收縮應力、氣泡殘留等等產生影響,也要評估較多的產品設計條件,包括:尺寸、外殼、重量、熱管理、加工、重工、檢驗、成本與環保等因素,才能確認該產品是否適合做灌封處理。

-----廣告,請繼續往下閱讀-----

而三防膠的加工快速、重工容易與成本較低的優點,既可以提升產品抗腐蝕的能力,又可維持印刷電路板的外形而不影響後續的組裝作業,可以說三防膠的泛用性會比灌封來得更高。

所以當電子設備需要在惡劣的環境運作,或是終端電子設備發生腐蝕失效時,三防膠通常是組裝、系統廠商針對電子產品腐蝕的問題會優先採用的方案,廠商可以直接管控三防膠塗佈製程的品質,能夠針對終端客戶退回產品時進行立即性的改善作業。

三、 原來三防膠有很多種?

目前三防膠的種類主要可分為八大類,包含:Silicone Resin(SR)、Acrylic(AR)、Polyurethane(UR)、Epoxy(ER)、Paraxylylene(XY)、Fluorine-carbon resin(FC)、Ultra-Thin Coatings(UT)與 Styrene Block Co-Polymer(SC)。一般三防膠的種類可依照材質區分種類,然而混合型的三防膠材則是以重量百分比佔高的材質為主,如果三防膠的厚度 ≤12.5um ,膠材將不受材料種類的拘限都被歸類於 UT 型。每一種三防膠都有不同的特性,常見的評估項目有厚度、黏著性、耐溫性、抗化學性、防潮性、加工與重工性、普遍性、疏孔性、耐鹽霧腐蝕性、表面絕緣電阻程度與成本高低等。

四、 為何已經採用三防膠塗佈的電子產品仍發生了硫化腐蝕失效,原因竟是國際規範不足?

一般業界針對三防膠的國際規範,大多是參照國際電子工業聯接協會(Association Connecting Electronics Industries;IPC) 所制定的試驗標準 – IPC-HDBK-830A、IPC-CC-830C 與 IPC-J-STD-001F。這幾項標準都是一般常見於三防膠相關的國際規範,它們定義了三防膠的設計、選擇與應用的準則,用於焊接電氣和電子組件要求,以及用於印製線路組件用電氣絕緣化合物的鑑定及性能。

-----廣告,請繼續往下閱讀-----
常見三防膠相關的國際規範
一般常見三防膠相關的國際規範。圖/IPC-HDBK-830A, IPC-CC830C and IPC-J-STD-001F

而針對三防膠的驗證項目,包括了:種類、厚度、均勻性、缺陷、重工、應用、耐溫溼度環境、耐鹽霧、表面絕緣電阻等。其它與三防膠有關的標準還有 IPC-A-610H、IEC-1086-2、MIL-I-46058C、MIL-STD-202H、Method 106、NASA-STD-8739.1、BS5917、UL94、UL746F 與 SJ 20671……許多的國際規範。

然而在眾多三防膠國際規範的耐腐蝕性項目評估中,卻獨缺了「腐蝕性氣體的試驗」,尤其是在含硫與其化合物相關的腐蝕性氣體。因此,一旦產品的使用環境含有硫或硫化合物相關的腐蝕性氣體,即使電子設備已採用三防膠塗佈,仍會發生硫化腐蝕失效的問題。

此外,電子設備中也不是所有組件皆可以採用三防膠的塗佈,由於膠材具備絕緣的特性,一般均無法塗佈於電性連接、電器接點處,例如:金手指、插槽與連結器等。下圖是有採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。

未採用三防膠塗佈採用三防膠塗佈採用三防膠塗佈
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力不足製程的缺陷(氣泡)導致保護不足
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異膠材的抗硫化腐蝕能力優異
導線架發生嚴重的硫化腐蝕膠材的抗硫化腐蝕能力優異未採用三防膠塗佈
採用與未採用三防膠塗佈的導線架封裝晶片發生與未發生硫化腐蝕的照片。圖/宜特科技

五、 不是有塗或是夠厚就好,透過驗證平台選擇出正確的三防膠材才有效!

透過上述的說明可以了解,如果只是按照規範去選擇三防膠材後進行塗佈,可能會遺漏腐蝕性氣體或是其他因素的影響,無法讓產品獲得最完善的保護。為了解決窘境,宜特科技所提供的硫化腐蝕驗證平台,可以協助廠商選擇正確的三防膠材,並針對各種採用三防膠塗佈的電子產品,評估產品抗硫化腐蝕的能力並進行壽命驗證。

-----廣告,請繼續往下閱讀-----
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性
透過宜特實驗室的硫化腐蝕驗證平台評估各種三防膠材搭配不同厚度在硫化腐蝕試驗的耐受性。
圖/Source: Dem Lee…Et al.,“Evaluation of the Anti-Sulfur Corrosion Capacity for Chip Resistor and Conformal Coating by Way of Flower-of-Sulfur(FoS)Methodology”, International Microsystems, Packaging Assembly and Circuits Technology Conference 2018, Section 28, 2018.

上圖為透過宜特實驗室的硫化腐蝕驗證平台,評估各種三防膠材搭配不同厚度條件在硫化腐蝕試驗的耐受性。其中未經三防膠塗佈的抗硫化晶片電阻樣本(黑色),經歷 25 天的試驗後發生失效,但塗佈膠材 C(綠色)與膠材 D(藍色)的樣本,僅僅經歷 5 到 10 天的試驗就發生了失效。

由此可證,並非所有三防膠材都有具備抗硫化腐蝕的能力,抗腐蝕能力主要取決於膠材本身的材料特性,某些特定膠材非常容易吸附含硫與其化合物相關的腐蝕性氣體,即使提高厚度,也無法有效降低硫化腐蝕的發生,即便電子零件本身有做抗硫化腐蝕的設計,一旦選擇不合適的膠材,反而會加速電子產品發生硫化腐蝕失效的風險。

下表是採用相同樣本搭配不同的三防膠材,經硫化腐蝕試驗後,進行橫切面的掃描式電子顯微鏡分析之比較。可以看到,雖然膠材 B 的塗佈厚度比膠材 A 更厚,但是膠材 B 抗硫化腐蝕的能力卻更差。

三防膠膠材 A膠材 B
厚度<30um>100um
電子顯微鏡照片三防膠材A三防膠材B
抗硫化腐蝕的能力
採用相同樣本搭配不同三防膠材料塗佈經硫化腐蝕試驗後進行橫切面的掃描式電子顯微鏡分析之比較。圖/宜特科技

藉由宜特實驗室的硫化腐蝕驗證平台,不但可以協助選擇正確的膠材,亦可針對採用各種三防膠塗佈的電子產品,依照國際規範標準,並以實際終端環境的腐蝕程度搭配模擬使用年限,透過上述客製化的實驗設計,能夠協助廠商評估產品抵抗硫化腐蝕的壽命驗證。

-----廣告,請繼續往下閱讀-----

本文出自 www.istgroup.com。

討論功能關閉中。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

3
2

文字

分享

0
3
2
讓摩爾定律又向前邁進的新技術!3D 先進封裝是什麼?又有哪些優勢和挑戰?
PanSci_96
・2023/07/15 ・3500字 ・閱讀時間約 7 分鐘

今年蘋果 WWDC 大會上發表的 Vision Pro,在市場上引起軒然大波。除此之外,蘋果新推出的 Mac Pro、Mac Studio 也都十分吸睛,他們的共同特點,就是我都買不起。他們的共同的特點,就是裏頭都搭載了 M 系列晶片。從 M2、M2 Max 到 M2 Ultra,除了強大的效能,其輕巧的設計,也讓這些裝置保持輕量。Vision Pro 的重量也可以維持維持在500g,不影響穿戴體驗。要在如此小的晶片中發揮跟電腦一樣效能,除了我們介紹過的 DUV 與 EUV 微縮顯影,一路從 7 奈米、5 奈米、3 奈米向下追尋外。在 M 系列這種系統晶片中,「先進封裝」技術,其實扮演更重要的角色,但到底「封裝」是什麼?它如何幫助 M2 達到高效能、小體積的成果?

晶片又更小了,摩爾定律依舊存在?

M2 晶片的效能已被消費者認可,一顆小小的晶片中,就同時包含了 8 核心 CPU、10 核心 GPU、16 核心的神經網路晶片以及記憶體,麻雀雖小,五臟俱全。這可說又是摩爾定律向前邁進的一步。

在 M2 一顆小小的晶片中,就同時包含了 8 核心 CPU、10 核心 GPU、16 核心的神經網路晶片以及記憶體。圖/Apple

今年 3 月 24 日,Intel 共同創辦人戈登.摩爾,逝世於夏威夷的家中,享耆壽 94 歲。他生前提出的摩爾定律,在引領半導體產業發展近 60 年之後,也逐漸走向極限。摩爾定律預測,積體電路上的電晶體數目,在相同面積下,每隔約 18 個月數量就會增加一倍,晶片效能也會持續提升。

隨著晶片尺寸越來越小,似乎小到無法再小,「摩爾定律已死」的聲音越來越大。然而事實是,業界的領頭羊們如台積電、英特爾和三星等公司,依然認為摩爾定律可以延續下去,並且仍積極投入大量金錢、人力及資源,期盼能夠打贏這場奈米尺度的晶片戰爭。

打贏戰爭的方法,包含研發各式各樣的電晶體,例如鰭式場效電晶體(FinFET)環繞式閘極(GAAFET)電晶體互補式場效電晶體(CFET);或是大手筆引進艾司摩爾開發的極紫外光(EUV)曝光機,在微縮顯影上做突破,這部分可以回去複習我們的這一集;除此之外,從材料下手也同步進行中,新興的半導體材料,像是過渡金屬二硫族化合物奈米碳管。這些持續挑戰物理極限的方式稱為「深度摩爾定律(More Moore)」。

-----廣告,請繼續往下閱讀-----

然而這條路可不是康莊大道,而是佈滿了荊棘,或是亂丟的樂高積木,先進製程開發的複雜度和投入資金呈指數型增加,且投資與回報往往不成正比。我們都知道「不要把雞蛋都放在同一個籃子裡」,同理,半導體巨擘們也開始找尋新解方,思索如何躺平,在不用縮小電晶體的情況下,提升晶片整體效能。

先進製程開發的複雜度和投入資金呈指數型增加,且投資與回報往往不成正比。圖/freepik

答案也並不難,既然在平面空間放不下更多電晶體了,那麼就把他們疊起來吧!如此一來,相同面積上的電晶體數量也等效的增加了。這就像是在城市裡,因為人口稠密而土地面積有限,因而公寓大廈林立,房子一棟蓋得比一棟高一樣。像這樣子不是以微縮電晶體,而是透過系統整合的方式,層層堆疊半導體電路以提升晶片效能的方法,屬於「超越摩爾定律(More than Moore)」,而其技術關鍵,就在於「封裝」。

什麼是封裝?

當一片矽晶圓經過了多重製程的加工後,我們會得到這張表面佈滿了成千上萬積體電路。別小看它,光是這一片的價值,可能就高達2萬美元!

一個矽晶圓表面佈滿成千上萬的積體電路。圖/envatoelements

然而這麼大片當然無法放進你的手機裡,還必須經過「封裝(packaging)」的步驟,才會搖身一變成為大家所熟知的半導體晶片。

-----廣告,請繼續往下閱讀-----

簡單來說,封裝是一種技術,任務是把積體電路從晶圓上取下,放在載板上,讓積體電路可以與其他電路連接、交換訊號。整個封裝,大致可分為四步驟:切割、黏晶、打線、封膠

首先,矽晶圓會被磨得更薄,並且切割成小塊,此時的積體電路稱為裸晶(die);接著,將裸晶黏貼於載板(substrate)上,並以焊線連接裸晶及載版的金屬接點,積體電路便可跟外界傳遞或接收訊號了;最後,以環氧樹酯灌模成型,就完成我們熟知的晶片(chip),這個步驟主要在於保護裸晶及焊線,同時隔絕濕氣及幫助散熱。

Chiplet、傳統封裝與先進封裝

隨著晶片不斷追求高效能、低成本,還要滿足不同的需求,甚至希望在一個晶片系統中,同時包含多個不同功能的積體電路。這些積體電路規格、大小都不一樣,甚至可能在不同工廠生產、使用不同製程節點或不同半導體基材製作。例如蘋果的 M2 晶片,就是同時包含 CPU、GPU 和記憶體,另外,我們過去介紹過,google 陣營的 Tensor 晶片,也是在單一晶片系統中塞入了大大小小的晶片。這些在一個晶片系統中含有多個晶片的架構,稱為 Chiplet。

要做出 Chiplet,在傳統的封裝方式中,會將初步封裝過的數個晶片再次進行整合,形成一個功能更完整的模組,稱為系統級封裝 Sip(system in package);另一個方法則是將數個裸晶透過單一載板相互連接完成封裝,這樣的作法叫做系統單晶片system on a chip (SoC),然而以這兩種方式製作需佔用較大的面積,更會因為晶片、裸晶間的金屬連線過長,造成資料傳輸延遲,不能達到高階晶片客戶如輝達、超微、蘋果等公司的需求。

-----廣告,請繼續往下閱讀-----

為了解決問題,先進封裝就登場了,三維先進封裝以裸晶堆疊的方式,增加空間利用率並改善資料傳輸瓶頸的問題。與傳統封裝之間傳輸速度的差異,就好比是開車由台北至宜蘭,傳統封裝需行經九彎十八拐的台九線,而先進封裝則截彎取直,打通了連接兩地的雪山隧道,使得資料的來往變得更加便利且迅速。

先進封裝解決了什麼問題

先進封裝最大的優勢,就是大幅縮短了不同裸晶間的金屬連導線距離,因此傳輸速度大為提升,也減少了傳輸過程中的功率損耗。舉例來說(下圖),傳統的 2D SoC,若是 A 電路要與 C 電路傳輸資料,則必須跨越整個系統的對角線距離;然而使用三維堆疊則能夠將 C 晶片放置於 A 晶片的上方,透過矽穿孔(through silicon via, TSV)技術貫穿減薄後的矽基板,以超高密度的垂直連導線連接兩個電路,兩者的距離從此由天涯變咫尺。

圖/Pansci

另一方面,三維堆疊也減少了面積的消耗,對於體積的增加則並不明顯,因此我們能夠期待,手機、平板、或是 Vision Pro 等頭顯未來除了功能更多以外,還會變得更加輕巧。

值得一提的是,先進封裝還能夠降低生產成本喔!由於三維堆疊在單位面積上,增加了等效電晶體數量,在晶片設計上可以考慮使用較成熟、成本更低的製程技術節點,並達到與使用單層先進技術節點並駕齊驅的效能。

-----廣告,請繼續往下閱讀-----

先進封裝的技術挑戰

雖然,先進封裝提供了許多優勢。但作為新技術,當中依舊有許多仍待克服的問題與挑戰。

首先,先進封裝對於裸晶平整度以及晶片對準的要求很高,若是堆疊時不慎有接點沒有順利連接導通,就會造成良率的損失。再者,積體電路在運算時會產生能量損耗造成溫度升高,先進封裝拉近了裸晶間的距離,熱傳導會交互影響,大家互相取暖,造成散熱更加困難,輕則降低晶片效能,嚴重則能導致產品失效。

散熱問題在先進封裝中,目前還未完全解決,但可以透過熱學模擬、使用高熱導係數材料、或設計導熱結構等方式,做出最佳化的散熱設計。建立良率測試流程也非常重要,試想,如果在堆疊前沒有做好已知合格裸晶測試(known good die testing),因而誤將合格的 A 晶片與失效的 B 晶片接合,那麼不只是做出來的 3D IC 只能拿來當裝飾品,還白白損失了前面製程所花費的人力、物力及金錢!

良率與成本間的權衡,也是須探究的問題,如果想要保證最佳的良率,最好的方式是每道環節都進行測試,然而這麼做的話生產成本以及製造時間也會相應增加,因此要怎麼測試?在什麼時候測試?要做多少測試?就是一門相當深奧的學問了。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!