0

2
0

文字

分享

0
2
0

航向太平洋的DNA之旅:人口劇烈轉換卻仍說著南島語?拉匹達以後的南島語族

寒波_96
・2018/04/26 ・4676字 ・閱讀時間約 9 分鐘 ・SR值 520 ・七年級

-----廣告,請繼續往下閱讀-----

大洋洲最早的南島語族:拉匹達文化

探索人類歷史,古代 DNA 已經成為強而有力的工具。在南島語族研究領域中,2016 年底發表的論文告訴我們,最初航向遠大洋洲的族群,也就是創造出拉匹達文化(Lapita Culture)的人們,遺傳上和菲律賓與台灣的南島語族十分接近,卻和原本的大洋洲住民截然不同,意謂講南島語,最初抵達大洋洲的人,是亞洲移民的直系後裔。[1][2]

由語言學與考古學推論,南島語系在大洋洲傳播的路徑與年代。圖/取自〈Ancient DNA and the human settlement of the Pacific: A review.

對三千年前的大洋洲地區來說,拉匹達是新來的文化;那麼誰是原本的大洋洲住民?人類數萬年前就已經抵達大洋洲,澳洲、澳洲北方的新幾內亞、更東方的俾斯麥群島、索羅門群島都有人居,合稱近大洋洲(Near Oceania)。而不屬於上述地區,直到距今三千年內才又有移民抵達的地區,則被稱作遠大洋洲(Remote Oceania);創造拉匹達文化的人,就是最早定居遠大洋洲的人類。[3]

地理上來看,離開近大洋洲、前進遠大洋洲的第一站是萬那杜(Vanuatu);2016 年發表的研究,正是由此處取得距今約 2900 年的 3 個基因組,得到上述重大發現。只要語言屬於南島語系的族群,都能算是南島語族,因此我們知道遠大洋洲最初的南島語族,血緣近乎 100% 能追溯到亞洲。

然而,若是以新幾內亞高地的巴布亞人(Papuans)作為近大洋洲代表,那麼現在的大洋洲各地族群所有人的基因組中,都或多或少能追溯到近大洋洲的 DNA。特別是萬那杜,經過三千年以後,現代的萬那杜族群,當初的拉匹達祖源(ancestry)未滿微薄的 10%,近大洋洲祖源卻超過 90%。

-----廣告,請繼續往下閱讀-----
萬那杜小姐選美大賽,十二強參賽者們。圖/取自 Vanuatu Daily Post

近大洋洲祖源何時、如何進入萬那杜?拉匹達文化以後的南島語族,發生過什麼改變?最近發表的 2 篇論文,讓我們從遺傳學觀點認識上述問題。[4][5]

拉匹達文化之後,兩千多年前的萬那杜

取得不同年代古人的 DNA,能知悉最直接的遺傳訊息,比較不同時期的變化。兩篇論文的材料,都有數個來自萬那杜的樣本。其中一篇論文取得距今 150 到 2900 年前,14 個古代基因組。另一篇論文則由萬那杜獲得12 個樣本,距今 200 到 2600 年;除此之外,還有來自大洋洲其他地區,1 個萬那杜西方的索羅門群島、3 個萬那杜東方的東加,以及 3 個法屬玻里尼西亞的樣本。

近大洋洲與附近的地理位置(法屬玻里尼西亞位於東加的更東邊)。圖/改造自 ref 4

一個人的基因組,承載的遺傳變異數量極為龐大。假如同一個族群,不同個體間的遺傳差異不大,那麼理想上,一個基因組已足以代表整個族群的遺傳組成;然而若是個體間差異明顯,就不能只靠少數樣本遽下判斷。

萬那杜遺傳史就是如此。
約三千年前,屬於拉匹達文化的萬那杜人,幾乎不存在近大洋洲祖源,加上這回新發表的樣本,更強化上述論點。不過之後一千年間的古代基因組,即使同樣來自萬那杜,彼此間的遺傳組成卻明顯有異。

-----廣告,請繼續往下閱讀-----

其中一篇論文根據埃法特島(Efate Island)和埃皮島(Epi Island)的樣本判斷, 2900 年前的拉匹達時期,萬那杜人幾乎沒有近大洋洲祖源(論文用語是「巴布亞祖源」),等到 2300 年前卻超過 90% ,因此推論距今 2300 到 2900 年之間,萬那杜發生了大幅度的族群「取代」。

埃法特島。圖/取自 National Geographic

兩千多年前的萬那杜發生了什麼事?

所以兩千多年前的萬那杜到底發生了什麼事?另一篇論文靠著更廣泛的取樣,提供更多訊息。

來自塔納島(Tanna Island)的遺址,距今約 2600 年的樣本(TAN002)顯示,他是一位遺傳上與近大洋洲 100% 一致的男生,而且粒線體單倍群 Q2a、 Y染色體單倍群 K2b1 都屬於近大洋洲的型號。他也成為至今已知,最早出現在萬那杜的近大洋洲人,很可能是移民第一代。

和塔納島的男生同一年代,萬那杜另一處馬勒庫拉島(Malakula Island)的遺址中,卻長眠一位遺傳上是 100% 拉匹達祖源的女生(MAL006);她的粒線體單倍群是 B4a1a1a11,也就是所謂「Polynesian motif」-B4a1a1a 的衍生型號,再度強化此一粒線體遺傳特徵,與南島語族遷徙和台灣、菲律賓族群的關係。

-----廣告,請繼續往下閱讀-----
各樣本的祖源比例,藍色與最初的拉匹達祖源一致,綠色符合後來進入的近大洋洲祖源。圖/取自 ref 4

由此可知,萬那杜距今 2600 年時的不同地點,同時住著遺傳上百分之百的拉匹達後裔,以及近大洋洲移民。馬勒庫拉遺址隨後數百年的 5 位個體,卻都是兩種祖源的合體,而且拉匹達祖源皆不到一半,表示兩群人此時已經普遍混血。其中一位男生(MAL004),配備原產近大洋洲的 Y染色體單倍群 M1b,卻同時擁有典型的南島粒線體單倍群 B4a1a1a,成為兩個族群融合過程的活見證。

由以上結果推論,拉匹達人於三千年前航向遠大洋洲後,至少 2600 年前,又有近大洋洲血緣的移民陸續抵達萬那杜,隨後幾百年間,兩個族群在島上漸漸合體。

距今兩千年內的萬那杜人,近大洋洲祖源持續上升,許多人超過 90%,至少也有 70%,而且不論富圖納(Futuna)、埃法特,或埃皮島的居民,無一例外。例如埃法特島,此處距今三千年前的人,拉匹達祖源將近 100%,兩千年前卻剩下不到 10%。看似合理的解釋是,有愈來愈多近大洋洲人移民萬那杜,稀釋了原本的拉匹達祖源;或是原本的拉匹達 DNA,由於某些原因而無法傳承下去。

萬那杜各島嶼。圖/取自 ref 5

值得一提的是,超過兩千年前的萬那杜人,只要擁有拉匹達祖源,不論近大洋洲祖源比例多高,粒線體單倍群都是源於亞洲的 B4a1a1a 相關型號;可是在此之後的萬那杜族群,卻出現大批源自近大洋洲的粒線體單倍群,與其他遠大洋洲的南島語族,粒線體以亞洲起源為主的狀況不同。[6]

-----廣告,請繼續往下閱讀-----

粒線體只由母親傳給子女,即使爸爸的粒線體源自近大洋洲,小孩也沒機會繼承。由此推論,兩千多年前,率先移民萬那杜的近大洋洲人,應該以男性為主,兩千年內才有較多女性加入。

Ekasup Village, Efate Island, Vanuatu.     source:Geof Wilson@ Flickr

大洋洲的移民潮,喜歡長途跳島大遷徙?

然而,「近大洋洲」是個很大的地理區域,用「巴布亞祖源」描述只是為了方便,不等於移民者直接來自新幾內亞高地的巴布亞族群。和各地近大洋洲族群對照,兩篇論文的研究者都發現,歷代萬那杜人的近大洋洲祖源,可以追溯到俾斯麥群島,特別是新不列顛群島的 Baining Marabu、Baining Malasait 最接近。

根據已知樣本,建構各族群之間的遺傳關係。萬那杜的近大洋洲祖源,與俾斯麥群島一致;東加的近大洋洲祖源,則接近索羅門群島。圖/取自 ref 5

只看地圖的話,這個結果或許有點意外,因為地理上,俾斯麥群島和萬那杜之間,還隔著索羅門群島;也就是說,抵達萬那杜的近大洋洲人,並非來自較近的鄰居索羅門群島,而是長途跨島遷徙的俾斯麥群島。

遠大洋洲是更大的地理區域。最靠近近大洋洲的萬那杜,居民配備極高比例的近大洋洲祖源,更遠就不是了。近大洋洲祖源在萬那杜東方的東加低得多,超過 2300 年前的 3 位居民幾乎沒有,600 年前的東加人也只有約 30% 近大洋洲祖源。至於比東加更東方的法屬玻里尼西亞,18 世紀的 3 位居民則是 20% 左右。

-----廣告,請繼續往下閱讀-----

南島語族向太平洋的遷徙過程中,東加是東向路上重要的一站。很有意思的是,東加人的「近大洋洲」祖源,來歷和萬那杜不太一樣;論文的分析顯示,東加人的近大洋洲祖源,似乎能追溯到索羅門群島,而非萬那杜人的來源:俾斯麥群島。換句話說,東加族群的近大洋洲 DNA,不是來自地理上較近的萬那杜,而是需要跨島移民的索羅門群島。

兩千多年前,拉匹達以後的近大洋洲移民,流行長距離跳島大遷徙?更早之前拉匹達人的路線,應該類似紅色箭頭。圖/改造自 ref 4

天啊,古時候的大洋洲,特別流行超長途跳島遷徙嗎?!?光憑有限的遺傳線索,至少有 3 次之多:最早跳過索羅門群島,抵達萬那杜的拉匹達人;幾百年後跳過索羅門群島,抵達萬那杜的俾斯麥群島人;可能差不多時期,跳過萬那杜,抵達東加的索羅門群島人……

這群大洋洲古人的遷徙、互動,與情慾流動,實在是太複雜惹。這方面的考古研究進行已久,不過古代 DNA 才開始一段時間,大家繼續期待!

血緣明明徹底改變了,但是大家繼續說南島話?

話說回來,不管血緣如何,只要語言歸於南島語系,就能算是南島語族,所以馬達加斯加人、爪哇人、台灣原住民、萬那杜人、夏威夷原住民、毛利人、復活節島人等等,這些遺傳組成差異不小的族群們,通通都屬於南島語族。

-----廣告,請繼續往下閱讀-----

這麼多遺傳組成互異的人群,絕大多數仍與南島語系發源地——台灣的原住民族群,共享一定比例的 DNA 變異。人口經歷劇烈轉換的萬那杜,族群遺傳上幾乎變成截然不同的近大洋洲人,語言卻仍然保持本來的南島語,看起來就是個有趣的特例,也許還是世界級的罕見特例。

根據已知樣本,建構各族群之間的遺傳關係,另一版本。看似有點複雜,不過實際狀況,一定只會更複雜。圖/取自 ref 4

論文提到,萬那杜的語言雖然無疑屬於南島語,卻也具備不少非南島語的特徵和多種源自於近大洋洲的特殊風俗(例如「陰莖鞘(penis sheath)」),它們都反映出萬那杜人在南島語言之外,同時深受近大洋洲的影響。

只是為什麼萬那杜的人口組成大幅改變以後,由俾斯麥群島新來的移民,仍繼續使用南島語?目前沒有明確的解答。論文推測是,萬那杜的人口轉換並非是短時間的直接取代,而是長期持續的交流互動;所以來自近大洋洲的新移民,有時間在萬那杜原本語言的基礎上,漸漸發展出「有近大洋洲特色的全新南島語」。

莫娜,我們快來了!圖/取自 The Verge

儘管已經取得本文介紹的諸多成果,不過大洋洲的古代 DNA 研究其實才剛開始,「航向太平洋的DNA之旅」系列作只是起頭。另外也要提醒各位讀者,我們還沒進入《海洋奇緣》的故事設定範圍呢。

-----廣告,請繼續往下閱讀-----

莫娜,我們快來了!

延伸閱讀:

參考文獻

  • 1. Skoglund, P., Posth, C., Sirak, K., Spriggs, M., Valentin, F., Bedford, S., … & Fu, Q. (2016). Genomic insights into the peopling of the Southwest Pacific. Nature, 538(7626), 510.
  • 2. 航向太平洋的DNA之旅:南島語族與拉匹達關係解密
  • 3. 台灣邁向世界的偉大航道!從神祕拉匹達紅陶揭開南島祖先的跳島大遷徙之謎
  • 4. Posth, C., Nägele, K., Colleran, H., Valentin, F., Bedford, S., Kami, K. W., … & Clark, G. R. (2018). Language continuity despite population replacement in Remote Oceania. Nature ecology & evolution, 1.
  • 5. Lipson, M., Skoglund, P., Spriggs, M., Valentin, F., Bedford, S., Shing, R., … & Rohland, N. (2018). Population Turnover in Remote Oceania Shortly after Initial Settlement. Current Biology.
  • 6. Duggan, A. T., Evans, B., Friedlaender, F. R., Friedlaender, J. S., Koki, G., Merriwether, D. A., … & Stoneking, M. (2014). Maternal history of Oceania from complete mtDNA genomes: contrasting ancient diversity with recent homogenization due to the Austronesian expansion. The American Journal of Human Genetics, 94(5), 721-733.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
文章難易度
寒波_96
193 篇文章 ・ 1141 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
誰在馬丘比丘終老?來自印加帝國各地,還有遙遠的亞馬遜
寒波_96
・2023/09/13 ・3774字 ・閱讀時間約 7 分鐘

馬丘比丘(Machu Picchu)可謂世界知名的遺跡,觀光客前仆後繼。後世外人神秘的想像下,這兒其實是印加帝國王室冬季渡假的離宮,平時有一批工作人員長住。公元 2023 年發表的論文,透過古代 DNA 分析,證實這群人來自南美洲各地。

馬丘比丘,鍵盤旅遊常見的俯視視角。圖/Eddie Kiszka/Pexels, CC BY-SA

印加王室專屬的服務團隊

馬丘比丘位於現今的秘魯南部,安地斯山區海拔 2450 公尺之處,距離印加帝國的首府庫斯科(Cusco)約 75 公里,只有幾天路程。此處當年是一片完整的園區,足以容納數百人,王室成員會在冬天造訪(南半球的冬天,就是台灣所屬北半球的夏季月份)。

即使是使用淡季,馬丘比丘也住著不少工作人員;從遺留至今的墓葬,可以見到他們的存在。園區由 15 世紀初開始營業,到印加帝國 16 世紀滅亡為止,此後與外界斷絕聯繫數百年,一直到 1912 年,美國調查隊再度「發現」這處世界奇觀。

馬丘比丘總共留下 107 座墓葬,174 位長眠者。這群人顯然不是印加王室,應該是歷代的服務團隊。以前有許多證據,根據不同手法與思維,支持馬丘比丘的工作員來歷很廣。例如這兒的陶器,各地風格都有。

-----廣告,請繼續往下閱讀-----

誰在馬丘比丘工作呢?發跡於庫斯科的印加帝國,後來成為廣大疆域的征服者,有一套「米塔(Mita)」制度調用各地的資源與人力。這套韭菜輪替,後來被西班牙殖民者沿用加改造,成為恐怖的剝削機器,也算是南美洲國家現今社會問題的一個根源。

然而,馬丘比丘的工作人員應該不是米塔制度的服役者,而是「亞納柯納(yanacona)」。他們是王室專屬的服務人員,來自帝國各地,小時候就離開家鄉,接受培育以服務王室。

印加帝國的地理格局。圖/參考資料1

來自印加各地,還有帝國以外的亞馬遜

這項研究由馬丘比丘的墓葬取得 34 個古代基因組,以及附近烏魯班巴谷(Urubamba Valley)的 34 位古代居民樣本,他們代表當地原本的鄉民。

分析發現,印加帝國能接觸到的地區,當地特色的血緣都能在馬丘比丘見到。唯一例外是帝國最南端,現今智利中部、阿根廷西部那一帶。這使得馬丘比丘,成為印加帝國 DNA 多樣性最高的地點。

-----廣告,請繼續往下閱讀-----

但是我不覺得,這等於馬丘比丘存在多樣性很高的「遺傳族群」。分析對象中只有一對母女,其他人都沒有血緣關係。這群人的 DNA 差異大,是因為持續有一位又一位孤立的人,從不同地方被帶進來,整群人只能算特殊個體的集合。

不過遠離家鄉,服務終生的亞納柯納們,彼此間還是可以結婚生小孩的。

性別方面有細微的差異。整體而言,男生具備較多安地斯高地的血緣,女生則配備更多高地以外族群的血緣。一個因素是,有些女生來自更遠的地方,例如文化有別的亞馬遜地區。

印加帝國對亞馬遜的政治勢力不是征服關係,似乎大致上對等。有些亞馬遜的女生大概出於交流目的,來到印加帝國。至少長眠於馬丘比丘的這幾位,生前受到的待遇看來不錯。

-----廣告,請繼續往下閱讀-----
馬丘比丘長眠者的年代與血緣組成。圖/參考資料1

山區到更高山區的情慾交流

對於更在地的族群調查,發現一件有趣的事。庫斯科附近的人群,以「秘魯南部高地」血緣為主,可以視為長居本地的血緣。一部分人卻也能偵測到,與更高山上之「的的喀喀湖(Titicaca)」的居民共享血緣。

庫斯科與的的喀喀湖,兩個地區有點距離,考古學證據指出,早於 2500 年前兩地間就存在交流。而遺傳學分析則支持,兩地存在情慾流動;可惜現有樣本,不太能精確判斷交流發生的年代。

來自亞馬遜的媽媽,女兒,爸爸

這批調查對象中,我覺得長眠於馬丘比丘的那對母女最有意思,值得特別思考。這對母女都是百分之百的亞馬遜西北部血緣,長眠於同一墓穴,兩者的關係在當時有被強調。

「亞馬遜」的面積妖獸大,印加帝國最有機會接觸的,應該是距離安地斯東方不遠的區域,也就是亞馬遜的西部和西北部。不論如何,亞馬遜有自己的一套,印加帝國與其有所交流,不過始終無法將其納入統治。

-----廣告,請繼續往下閱讀-----

征服到山與海的盡頭!以及雨林的邊緣……

馬丘比丘長眠者的鍶穩定同位素比值。圖/參考資料1

根據牙齒中鍶的穩定同位素,可以判斷一個人小時候在哪兒長大。媽媽 MP4b 成長於亞馬遜地區,表示她在長出恆齒後才抵達安地斯。

她的女兒 MP4f 則無法判斷具體地點,不過應該位於安地斯山區。兩人後來都在馬丘比丘服務,去世後長眠於此。

女兒沒有其餘地區血緣的特色,意謂女兒的爸,也配備百分之百的亞馬遜西北部 DNA,只是在馬丘比丘墓葬中看不到他。

-----廣告,請繼續往下閱讀-----

印加帝國興起,亞馬遜扮演什麼角色?

年代方面,媽媽算是長眠於馬丘比丘最早的一批人,處於印加建國的初期,甚至有可能早於開國之日。

依照歷史敘事,印加帝國始於「印加太祖」帕查庫特克(Pachacuti)擊敗昌卡人(Chanka)。印加勢力征服烏魯班巴谷以後,才有機會建設其上方的馬丘比丘。而印加太祖登基的年份為 1438 年。

然而,針對馬丘比丘遺骸的放射性碳同位素定年(碳14),指出兩人的年代或許早於 1420 年。考古學家因此懷疑,印加帝國建國的實際年代比 1438 年更早,也許早在 1420 年已經完成建國大業。

馬丘比丘最早長眠者的年代,似乎比歷史敘事中,印加帝國建國的 1438 年更早。圖/參考資料4

亞馬遜西北部長大的媽媽 MP4b 之年代,剛好介於這段時期。不論如何,這都是明確的證據,支持印加帝國建國之初,和亞馬遜之間有一定程度的正面交流。而女兒的爸,身份也引人好奇。

-----廣告,請繼續往下閱讀-----

他是當時亞馬遜政權派往印加的政治代表,或是軍事團助拳人嗎?還是替印加王室服務的商人,或是作戰的傭兵?他是在哪個地方,什麼情境下,與來自家鄉的女性生下女兒?最後,他本人最終的命運如何?

馬丘比丘在這對母女以後,至少還有四位純亞馬遜西北部血緣的女性長眠,延續到印加帝國的最後時期,當中至少兩位是在安地斯山區長大,和前輩女兒 MP4f 一樣。印加王室與亞馬遜的人口交流,貫串整段帝國時光。

古代 DNA 的分析,有相當客觀的套路,但是從中能牽引出的主觀議題千變萬化,非常有意思。

延伸閱讀

參考資料

  1. Salazar, L., Burger, R., Forst, J., Barquera, R., Nesbitt, J., Calero, J., … & Fehren-Schmitz, L. (2023). Insights into the genetic histories and lifeways of Machu Picchu’s occupants. Science Advances, 9(30), eadg3377.
  2. Who lived at Machu Picchu? DNA analysis shows surprising diversity at the ancient Inca palace
  3. Ancient DNA reveals diverse community in ‘Lost City of the Incas’
  4. Burger, R. L., Salazar, L. C., Nesbitt, J., Washburn, E., & Fehren-Schmitz, L. (2021). New AMS dates for Machu Picchu: results and implications. Antiquity, 95(383), 1265-1279.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1141 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。