5

10
0

文字

分享

5
10
0

1900 萬年前,鯊鯊神秘大滅絕事件?!

寒波_96
・2021/06/29 ・2792字 ・閱讀時間約 5 分鐘

鯊魚的歷史超過 4 億年,可謂非常資深的生物,經歷過好幾次「大滅絕」。我們知道,距今 6600 萬年前導致恐龍消失的大滅絕,帶走了當時 30% 以上的鯊魚。

但是最近新發表的論文更報告,1900 萬年前還有一次之前不知道的事件,使得超過 90% 鯊魚消失,也損失 70% 的型態多樣性。

這麼重大的鯊魚滅絕事件,之前我們竟然毫無所悉,對原因也毫無頭緒?

鯊鯊!圖/envato elements

盾鱗與牙齒,判斷魚類數量和物種

研究古生物的物種、多樣性、增減幅度,相當困難。

如今大部分魚類屬於輻鰭魚(ray-finned fish),去世後最容易成為化石的部位是牙齒;不過鯊魚、鰩魚(例如魟魚)這些屬於板鰓亞綱(elasmobranchii)的魚類,留下牙齒的機率很低,較容易保存的,是皮膚上特化的鱗片「盾鱗(denticle)」。

分析海洋沉積物中,魚類的牙齒、盾鱗的數量和種類,便能判斷海中魚類的數目與物種。

新研究的材料來自2次深海鑽探取得的樣本,分別位於北太平洋與南太平洋,能推論古代大洋的生態狀況。(盾鱗總共 1263 個——北太平洋 465 個、南太平洋 798 個)

魚類的盾鱗與牙齒。圖/取自 [論文作者 Elizabeth Sibert 介紹影片]

1900 萬年前,鯊魚幾乎不見了!

地質年代上,白堊紀始於 1.45 億年前,延續到大約 6600 萬年前;隨後是到 2300 萬年前結束的古近紀(Paleogene),再來是到 260 萬年前為止的新近纪(Neogene),而其中 533 – 2300 萬年前稱作中新世(Miocene) 。

白堊紀末期的大滅絕,消滅了許多生物,卻創造了輻鰭魚崛起的空間。白堊紀的時候,牙齒和盾鱗的比例約為1比1,整個古近紀到中新世的前 400 萬年,牙齒和盾鱗為5比1,比例能讓我們看出一些端倪。

但是 1900 萬年之後狀況非常不一樣,牙齒盾鱗比變成 100 比 1!即使牙齒和盾鱗的比例,未必直接等於鯊魚和輻鰭魚的數量,也能判斷:

距今 1900 萬年過後,大洋中鯊魚的數量減少很多。和之前相比,在此之後少掉超過 90% 的鯊魚。

鯊魚的盾鱗型態種類,在不同年代的分佈。1900 萬年前過後大幅減少,現在只剩下 20%。圖/取自 [參考資料 1]

不同鯊魚,盾鱗的型態有別,因此可以用盾鱗的型態代表鯊魚的多樣性。

研究者總共定義出 88 種盾鱗型態,1900 萬年前之後,高達 70% 消失。而且在此之後,不再有任何一種新型態誕生。和當時相比,現存的鯊魚僅存 20% 多樣性。

這次鯊魚大滅絕,很可能是史上規模最大的鯊鯊滅團事件。作為對照,6600 萬年前廣為人知的白堊紀末期大滅絕,消滅當時 30 到 40% 的鯊魚,比例竟然只有 1900 萬年前的一半而已。

鯊魚的兩大類盾鱗,線形和幾何形盾鱗。圖/取自 [參考資料 1]

線形盾鱗和幾何形盾鱗

鯊魚的盾鱗可分為兩大類,線形(linear)和幾何形(geometric)。

現生的鯊魚絕大部分配備線形盾鱗,它比較適合長距離游泳。現代鯊魚共有 18 款線形盾鱗,和全盛時期的 53 款相比,剩下 34%。

線形盾鱗。圖/取自 [參考資料 1]

配備幾何形盾鱗的現生鯊魚非常稀有,主要見於住在深海,小型的伏擊型鯊魚,例如雪茄達摩鯊(Isistius brasiliensis)、佩里烏鯊(Etmopterus perryi)。

根據新研究的分類,世界上曾經有過 33 款幾何形盾鱗,但現在只剩下 6 款,僅存 18%。鯊鯊大滅絕事件之前,幾何形盾鱗有 35% 的相對存在感,之後慘跌到 3%。

由此看來,不論線形或幾何形盾鱗,在距今 1900 萬年過後都損失慘重,但是配備幾何形盾鱗的鯊魚,打擊更加慘烈。

幾何形盾鱗。圖/取自 [參考資料 1]

鯊魚全面滅團的未解之謎

距今 1900 萬年前的鯊魚大滅絕,影響範圍應該遍及全球,不過遠洋海域的損失似乎較大。在此之後,鯊魚的多樣性再也沒有恢復。

論文指出,根據目前有限的資料判斷,如此劇烈的命運動盪或許只發生在短短的 10 萬年內。

最不得其解的是,鯊魚全族的滅絕事件如此明確,我們卻對它為什麼發生毫無頭緒。

佩里烏鯊(Etmopterus perryi)的體型非常迷你,配備幾何形盾鱗。圖/取自 wiki

地質史上發生過很多次生物大滅絕或小滅絕,以及更多次的劇烈氣候變遷;可是在 1900 萬年前那個時候,海洋化學紀錄和氣候都沒有明顯的變化,似乎也沒有其他動物大量滅團。

影響較大的已知事件,各發生在之前與之後的數百萬年,都和 1900 萬年前的鯊魚大滅絕沒有直接關係。先發生的是早 400 萬年,距今 2300 萬年的古近紀、新近紀轉換期(Paleogene-Neogene boundary);之後是晚 500 萬年,距今 1400 萬年的中新世中期滅絕事件(Middle Miocene disruption)。

當時海洋中一定發生過什麼我們還不知道的事,才導致幾乎所有鯊魚同時消失,而且再也沒有恢復;也可以肯定 100% 和智人沒有關係。

但是最近的鯊魚滅絕,和智人的直接獵捕、漁業、海洋汙染顯然關係不小。一項研究統計,公元 1970 到 2018 年間,鯊魚減少了 71% 之多。很有可能,鯊鯊再度面臨 1900 萬年未有之大變局。

1900 萬年後的現在,鯊鯊們是否正在面臨另一次大滅絕?

論文作者 Elizabeth Sibert 介紹影片:

延伸閱讀

參考資料

  1. Sibert, E. C., & Rubin, L. D. (2021). An early Miocene extinction in pelagic sharks. Science, 372(6546), 1105-1107.
  2. Elizabeth Sibert 推特
  3. When sharks nearly disappeared
  4. A shark mystery millions of years in the making

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

文章難易度
所有討論 5
寒波_96
168 篇文章 ・ 573 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

6
0

文字

分享

0
6
0
解開古代魚類耳朵裡的「石頭」秘密!專訪古生物學家林千翔
研之有物│中央研究院_96
・2022/04/09 ・5054字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 美術設計/林洵安、蔡宛潔

魚耳石與古生物研究

魚耳石是硬骨魚類耳朵裡的碳酸鈣結晶,可以由新鮮生魚取樣,也能從地層發掘化石。中央研究院「研之有物」專訪院內生物多樣性研究中心的林千翔助研究員,他是臺灣少有的古生物學家,就讀博士之前就已經記錄超過 1,000 種現生魚類耳石,並持續投入魚耳石化石研究。解析魚耳石化石可以得到什麼資訊呢?從魚耳石形態可以判定魚的物種、體型和群聚構造等,還可以分析累積在耳石的同位素看到魚類的生命史。

從比較解剖學到魚耳石研究

中研院生物多樣性研究中心的林千翔助研究員,在成功大學生命科學系就讀時,察覺自己不喜歡生醫、細胞、神經、生理等領域,因此準備考研究所時他決定選考「比較解剖學」,而全臺灣只有一間研究所考這科:臺灣大學動物學研究所。

林千翔進入臺大動物所後,拜師陶錫珍教授,成為罕有的陶門弟子。如今已經退休的陶錫珍教授,在臺灣大學教授脊椎動物解剖學超過 40 年,是臺灣少有的古生物學家。陶錫珍教授的招牌研究是魚類化石,而林千翔對魚類的耳石(otolith)化石特別感興趣。

從 19 世紀末開始,便有學者研究魚類耳石化石,林千翔最早是在大學時,從地球科學系的課程接觸到魚耳石。臺灣有幾位擅長魚耳石的研究人員,都是臺灣大學漁業科學研究所曾萬年教授的弟子,他們都專注於現今魚類,林千翔的目光則望向古代魚類。

在林千翔前往義大利的巴里大學(Università degli Studi di Bari Aldo Moro)就讀博士以前,和國立海洋生物博物館的張至維教授,一起發表過《臺灣魚類耳石圖鑑》(Otolith Atlas of Taiwan Fishes),記錄超過 1,000 種現生魚類耳石, 已經算是小有所成的研究者。但是他仍然選擇出國深造,投入魚耳石化石的領域。

在深入探討地中海與東北大西洋一帶的魚耳石化石,並升級知識過後,林千翔可謂此一領域最新世代的專家,他總算可以回答之前無法解決的疑惑,也發現還有好多新的題材等待探索!

魚耳石是什麼,有什麼用?人也有耳石嗎?

魚耳石是硬骨魚類耳朵裡的「石頭」,在此當然不是指真正的石頭,魚耳石的主要成分是碳酸鈣,可以由新鮮活魚取樣,也能從地層發掘化石。一條魚頭部的內耳兩側通常各有 3 顆耳石:矢狀石、星狀石、礫石。最常用於分析,體積最大的是矢狀石。

魚類從小魚苗逐漸成長時,耳石也漸漸一起長大;耳石和聽覺神經相連,是魚類的聽覺零件;演化歷程及生活環境有別的魚類,受到不同功能需求影響,會衍生出不同的耳石形態 。

林千翔實驗室人員展示取出魚耳石的過程,魚耳石是硬骨魚類耳朵裡的「石頭」,主要成份為碳酸鈣。圖/研之有物

魚耳石形態主要和物種有關,根據不同魚類的耳石形態特徵,可以鑑定是什麼物種;而且血緣關係愈近的魚,彼此間的耳石形態往往愈相似,比較耳石的差異,也能判斷魚類間的親疏遠近、演化關係。

林千翔表示,以魚耳石形態鑑定物種,概念類似哺乳動物的牙齒,就像哺乳類分類專家可以根據牙齒形態,判斷貓、金錢豹、馬、狼、羊、河馬、人等動物。

不是魚類的動物也有耳石嗎?其實人類等陸生動物的耳朵內仍然有耳石,但是作用不是聽覺。人類聽覺的功能,改由磷酸鈣形成的耳骨負責。陸生動物的耳石體積很小,主要作用是保持身體的平衡,例如人的耳石小小一顆,萬一移位可是會感到天旋地轉的!

林千翔實驗室的魚耳石化石,放置在標本架內。其中,黑姑魚和黃姑魚的耳石特別大。圖/研之有物

魚愈抓愈小?用耳石重現族群組成

魚耳石可以用於鑑定物種,但是這只是最基本的用途。分類固然重要,林千翔強調,人為認定的分類體系不斷變化,反映我們對生物認知的改變;持續累積的新知識、新觀念將改變舊的框架,那才是更有意義的知識進步。

魚的耳石隨身體一起長大,因此兩者的體積呈正相關:耳石愈大,魚體也愈大。同一種魚類,搜集許多個體的耳石,便能評估該族群的體型組成。

追蹤不同時期的族群組成,能掌握該魚類的演變;倘若和幾年前相比,魚類體型普遍變小,便能懷疑棲地是否遭到破壞,或是發生「過漁」──過度捕撈。林千翔實驗室的人馬會定期去大溪漁港等地,從下雜魚獲知不少訊息。

不過林千翔提到,耳石大小儘管和體型相關,生長速度則不一定。一種魚即使最後耳石一樣大,也可能生長比較慢或比較快,也就是晚熟或早熟;缺乏其他資訊下,光靠耳石形態不見得能分辨成長史,必須要切片研磨讀取其年齡資訊。

「石首魚科」(Sciaenidae)是林千翔深入研究的一群,可食用的大黃魚、小黃魚都屬於這群;兩者受人類大量捕撈影響很大,中國沿海也有不少魚塭養殖。大黃魚、小黃魚是不同的魚,大黃魚即使體型縮水,還是大黃魚。林千翔便由耳石觀察到,在過度捕撈和人為飼養下,出現「小隻的大黃魚」,牠們現今的族群年齡結構也與古代有所不同。

左邊是被當成中藥材販售的魚耳石,為一般大小;右邊標本盒內是林千翔實驗室最大的魚耳石,屬於石首魚科,可推估這隻魚體型一定相當大!圖/研之有物

珊瑚礁旁有哪些魚?穿越數千年古今比較

耳石能判斷魚的不同種類,可由一批取樣辨識其中有多少物種、各種魚的相對比例(豐度)為何,也就是「群聚構造」(community structure)。自然或人為引起的環境變化、過度捕撈,讓某些魚變少,其他魚比例增加,都可能影響群聚構造。

林千翔在博士後研究時,前往加勒比海研究魚耳石,比較古代和現代的群聚差異。古代魚耳石的保存與尋找,也是一門大學問。

魚類死亡後,耳石、牙齒、骨頭、鱗片等構造,都有機會變成化石留存,而不同構造的化學成分不同,各有適宜的保存環境。耳石的成分是碳酸鈣,和同屬碳酸鈣的貝殼、有孔蟲比較容易一起保存;但是磷酸鈣構成的魚骨、方解石形成的扇貝,與耳石適合的埋藏條件不同,不容易在地層中一同見到。

林千翔的博士後題目是研究加勒比海地區,珊瑚礁魚類的組成與改變。珊瑚礁周圍一向有豐富的魚類生活,它們死亡後想必會留下不少耳石,但是從珊瑚礁石灰岩中取出裡頭的耳石,技術上有困難。幸運的是,多明尼加一處 7,000 年前的古代的潟湖與海阻隔後,其尚未形成石灰岩的礁體,貢獻不少耳石及不同海洋生物遺骸樣本。

比較後意外發現,現代魚群的多樣性比古代更大。推論是由於周圍環境改變,有些和珊瑚礁關係不大的魚類也移入附近,而不是珊瑚礁魚群原本就這麼多元。由此看來,礁體也可以作為魚耳石的取材來源,研究附近的魚類群聚構造。

地層、考古遺址與鮪魚肚——認識不同時空的群聚構造

假如往更久遠的年代探尋耳石,便有機會得知更遠古的魚類狀態,甚至見到同一類魚,在不同年代的演化改變。

林千翔分析過更新世早期嘉義牛埔地區的魚耳石化石(距今 122 到 195 萬年前),以及中新世晚期臺灣北部的魚耳石化石(距今 500 到 800 多萬年前)。最近又取得一批海洋岩芯樣本,可以調查距今 46 萬年來,西太平洋的魚類多樣性與豐度。

然而林千翔提醒,魚耳石雖然好用,也只能重現古代魚群一部分的資訊。有些環境條件根本不會有耳石留存,某些魚類的耳石也不易留下(例如河豚所屬的魨形目,耳石很小),還是要搭配牙齒、骨頭、鱗片等材料,加上其他方面的資訊,才能更完整地認識古代魚群,以及它們所屬的生態系。

林千翔提醒,魚耳石雖然好用,也只能重現古代魚群一部分的資訊,還是要搭配牙齒、骨頭、鱗片等材料,才能更完整地認識古代魚群,以及它們所屬的生態系。圖/研之有物

與人為活動相關的考古遺址,也可能保留魚耳石。臺灣的南科考古遺址群,從近五千年前的南關里東、南關里遺址開始,延續數千年之久;分析遺址中出土的魚耳石,可以推敲古人的資源利用,以及當時的生態環境。出土年代較早的魚耳石非常多,後來卻明顯變少;這是利用資源的方式改變,或是過度捕撈所致嗎?林千翔團隊分析後發現,和過漁沒有關係,主要是因為海岸線地貌變化導致利用資源方式改變。

另一項研究由印度洋的大目鮪肚子裡取材,分析鮪魚肚中的耳石,研究大目鮪吃的小魚組成。光憑遺傳學分析方法「DNA 條形碼 」(DNA barcoding)也能得知食用魚的種類,不過林千翔表示,唯有耳石才能釐清鮪魚吃進小魚的體型,並藉此得知個頭較大的鮪魚,吃下的食物魚也比較大。

從大目鮪魚的肚子中回收的魚耳石,比例尺為 1mm。圖/Frontiers in Marine Science

成分分析:深入回顧一條魚的生命史

除了形態方面的資訊,耳石隨著魚一同成長到死亡,也紀錄著一條魚的生命歷史。

魚的耳石是逐漸形成,並且包含當時進入魚體的微量元素。比較耳石先後形成的部分,各種成分的變化,可以認識這條魚在不同時期,周遭的生活環境。像是在魚耳石中偵測到重金屬,意謂那時水中有重金屬汙染。

穩定同位素(stable isotope)意指半衰期非常長,可視為不衰變而持續存在的同位素。各種穩定同位素,進入魚體後留存於耳石之中,反映當時的狀態。例如分析氧 18、氧 16 穩定同位素的比例,能估計當時的水溫高低;而交叉比對碳、氧、硼等不同元素的穩定同位素,可以獲知鹽度、酸鹼值等環境訊息。

耳石除了碳酸鈣之外,也有極低比例的蛋白質。蛋白質中的碳、氮皆源於食物,所以碳、氮的穩定同位素可以記錄魚的攝食來源。大魚吃小魚、小魚吃蝦、蝦吃藻類……這稱作「營養階層」(trophic level),穩定同位素氮(d15N,以下稱氮 15)會隨著營養階層增加而累積,假如主要吃肉類,氮 15 的相對比例會比只吃植物、藻類更高。

分析氮 15 能評估該魚的攝食來源(或是對象)落在哪個營養階層。有些魚幼小階段和成魚階段的攝食對象不同,可以由氮 15 的差異看出變化。

理想狀況下,綜合耳石內多種元素的穩定同位素,有機會認識一條魚在生命不同階段,飲食成分、水溫、住在淡水或海水、鹽度、酸鹼值、周遭是否有汙染等訊息。

海洋中的營養階層示意圖,階層愈高,氮 15 會隨著營養階層增加而累積。圖/研之有物

重現古代海洋的聲音,期待更多研究新秀加入!

除了上述研究之外,林千翔最有野心的想法或許是「重現古代海洋的聲音」。耳石是魚的聽覺構造,形態反映魚的聽力。聲音稍縱即逝,不會留下任何記錄,可是假如能找到耳石形態和聲音的關聯,或許就有機會根據古代魚類耳石的形態,回推當時它所能聽到的聲音。本題材潛力很高,目前仍在初步階段。

臺灣有很多人對化石收藏、研究有熱忱,林千翔在訪談中提到,他歡迎對魚類及海洋生物有好奇心的學生,加入他主持的海洋古生物實驗室,目前有一系列與海洋生物化石相關的研究正在進行著,特別是針對臺灣及西太平洋地區的材料。研究者只要認真投入,都有機會從中實現自我。

延伸閱讀

文章難易度
研之有物│中央研究院_96
240 篇文章 ・ 1912 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
如果有一天,魚都不見了~世界會變得怎麼樣?——《下一個物種》
PanSci_96
・2019/07/29 ・3480字 ・閱讀時間約 7 分鐘 ・SR值 534 ・七年級

編按:魚群衰退後將會是哪個物種主掌整個海洋?地球走過 46 億年的生物演替後,生態系依舊瞬息萬變,演化的走向撲朔迷離,我們甚至不清楚現在的地球正面臨何等劇烈的變化,未來的物種的命運又會是如何。《下一個物種》美洲大赤魷的強勢崛起,帶我們一窺海平面下不為人知的故事,並重新思考海洋將來可能的模樣。

曾經的漁獲天堂:加利福尼亞灣

人類活動造成海洋環境變化的事實明擺在眼前,許多變化更是存在已久。位於墨西哥本土和下加利福尼亞半島 (Baja California Peninsula) 之間的加利福尼亞灣就是其中一個最顯著的例子。這裡曾因為擁有豐富的海洋生物,而獲得「下加利福尼亞漁閘」 (Baja Fish Trap) 的美稱。然而,過度捕撈、海洋酸化和暖化,已經改變這片著名海域的生態。曾吸引釣客來此的旗魚、劍旗魚和鯊魚,如今數量急遽減少,改由美洲大赤魷 (Humboldt squid) 和抹香鯨主掌新的生態。

美洲大赤魷似乎逐漸成為加利福尼亞灣的主宰。圖/BBC Earth

這裡的海洋環境依然稱得上原始。開上美國邊境之南的墨西哥一號高速公路,途中景色由火山、山嶽和飽受侵蝕的紅岩組成,穿越連綿的山谷,山谷中有外形如鞭的柱狀福桂樹 (boojum tree) 和巨大的武倫柱 (cardon cactus,一種摩天柱屬的仙人掌) 。邊境以南約八百公里處,海岸山脈的最高峰聳立於此,接著,當山勢走到深受法國文化影響的採礦小鎮聖羅薩利亞 (Santa Rosalía) ,便陡然往加利福尼亞灣的方向下降。六百萬至一千萬年前,下加利福尼亞半島開始和墨西哥本土分離,加利福尼亞灣於焉形成,造就一座地質變化萬千的半島和生物豐富多元的海灣。

下加利福尼亞半島。圖/WIKI

濕潤的晚風挾帶著專屬海洋生物的鹹味,為聖羅薩利亞鎮帶來涼意,此時漁民正前往碼頭準備上船,展開夜間捕撈作業,這是我最近一次造訪當地的記憶。來自史丹佛大學霍普金斯海洋研究站 (Hopkins Marine Station) ,人高馬大、親切和善,身懷許多有趣故事的生物學家威廉.吉利 (William Gilly) ,帶領一群研究生,跟著漁民同行出海。那時正值九月,每年此時,大自然給加利福尼亞灣的饋贈就是成群的鮪魚、劍旗魚和鯊魚,但近年來,魚群數量大幅下降。

魚群消失後,聖羅薩利亞鎮漁民的新歡是?

如今,聖羅薩利亞鎮的漁民改為追捕美洲大赤魷,牠們已然取代加利福尼亞灣的旗魚。漁民的捕撈作業依舊,只不過從黎明出海改為夜幕降臨後才出海。日落時分,我看著當地漁民加入潘加船隊 (pangas) ──潘加船是一種長近七公尺的小艇,搭載舷外引擎──從沙質海岸出發。當船隊在外海一點六公里處排成一列,加利福尼亞灣的海水也正好由藍轉黑,船上的有色燈泡在傍晚的陰影中閃閃發亮。漁民在手釣線上綁著會發出螢光鈎子,鈎上誘餌,用來釣魷魚。

由於聖羅薩利亞鎮漁民的目標改為美洲大赤魷,因此出海時間也延後至日落黃昏時。圖/pixabay

這些小艇說明了當地從事小型漁業捕撈活動的漁民愈來愈多,除了船尾那具引擎,他們鮮少依賴現代商漁業所使用的硬體設備。他們在下加利福尼亞半島沿岸外海未受規範的漁場,利用原始工具從事漁業。過去十年來,墨西哥漁業每年收獲五萬至二十萬噸的美洲大赤魷,主要都來自加利福尼亞灣,多數銷往中韓兩國。

美洲大赤魷英文俗名為 Humboldt squid ,乃是根據洪保德海流 (Humboldt Current) 而來。洪保德海流自智利最南端起,沿著南美洲西岸往北流動至秘魯北端。據信,下加利福尼亞半島的美洲大赤魷原本生存在南美洲外海的太平洋海域,而牠們究竟在何時來到下加利福尼亞半島附近的海域,至今仍是個謎。過去的歷史中,有少數幾起美洲大赤魷的目擊記錄發生在加拉巴哥群島以北的海域。

美洲大赤魷 (學名 Docidicus gigas) 不只入侵加利福尼亞灣,還沿著太平洋海岸向北擴散,遠至阿拉斯加,並沿著赤道向西擴散至夏威夷群島。

是誰扼殺了魚群,又推了美洲大赤魷一把?

二十世紀末,海洋中的有鰭魚類,如鮪魚、鯊魚、鰭魚和劍旗魚開始消失,美洲大赤魷似乎頂替了牠們在海洋中留下的空缺。魷魚的生命遠比其他魚類短,很少超過一年半。此外,魷魚的生殖效率高,面對漁業帶來的壓力時,比起生殖效率沒這麼高的魚類,魷魚的族群能夠更快回復。不過,吉利認為還有更重要的因素:魷魚較能適應低氧海水擴散的問題。這個海洋環境中的新興問題,或許是助長魷魚族群增長的推手。

有鰭魚類魚群開始消失,如鯊魚。圖/pexels

低氧海水區促進加利福尼亞灣的美洲大赤魷生物量 (biomass) 增加,這是氣候變遷造成的後果,原因很可能是因為海洋環流減少。低氧區和死區 (dead zone) 不同,死區是因為農業逕流流入海中而形成,但兩者同時發威將會帶來更嚴重的效應。能在低氧海水中存活的物種並不多,然而,這些低氧環境足以讓物種大量繁殖。各位看看,這不就是及時行樂的世代寫照嗎?能夠容忍有毒環境的少數物種,即將接掌世界,只不過把環境換成海洋罷了

因銅礦開採而促成的海洋監測計畫

十九世紀末,聖羅薩利亞發展為開採銅礦的重鎮,一九二〇年代後,銅礦開採殆盡,繁榮光景也隨之沒落。一八九七年,因興建巴黎鐵塔而聲名大噪的居斯塔夫.艾菲爾 (Gustave Eiffel) 在法國小鎮中心蓋了一座教堂,教堂拆解後,運到聖羅薩利亞鎮重新組裝,說明了這個採銅重鎮當時的財力多麼雄厚。如今,相較於更南方的瓦雅塔港 (Puerto Vallarta) 或阿卡普科 (Acapulco) ,這裡少了炫彩的燈光、酒吧或觀光景點。

近來,開採老舊礦床的新技術問世,聖羅薩利亞的銅礦再度復興。吉利想要知道,如果採礦設備重新運作,會帶來怎樣的長期影響。只不過,這次的礦業復興規模將遠大於十九世紀末,礦工將運用更大型的設備,在早已開採過的地層中,挖掘為數不多的銅礦。

聖羅薩利亞的礦業復興,正好促成了城鎮的海洋監測計畫。圖/wiki

吉利執行的計畫是在新礦床及其周邊地區,還有位於城鎮北方約三十公里處,一個較受保護的地區,監測潮間帶貝類生物的族群。吉利說道:「如果重新開採銅礦會干擾聖羅薩利亞外海的海洋環境,這項監測計畫的目的就是偵測這些擾動。我們很幸運,能夠在重大變化發生之前,就開始執行監測計畫。」近年,當地興建了一間科技學院,吉利就和這裡的學生一起合作。

溶氧極低層擴張中:喘不過氣的熱帶魚群

不過,此處及世界各地深海區的含氧量變化才是吉利最大的擔憂。他提到一篇德國基爾大學海洋物理學專家羅特.席塔瑪 (Lothar Stramma) 發表的期刊論文,席塔瑪在二〇〇八年主導一項研究,分析太平洋、大西洋和印度洋中六個不同地點的海域含氧量。結果發現,多數地點的低氧海水量都有明顯增加的趨勢,這些低氧區也就是所謂的溶氧極低層 (oxygen minimum zone) ,溶氧量已低於許多海洋生物的致死閾值。在東太平洋,溶氧極低原是一種自然現象,發生在海水上層,而今卻已朝各個方向蔓延至全球海洋。科學家認為,這是全球暖化帶來的改變。

溶氧極低層限制了熱帶海魚──如旗魚和鮪魚──的生存深度,將其棲地壓縮至海洋表層的狹小空間,導致牠們更容易被人類捕撈。

一般而言,太平洋的溶氧極低層的溶氧量較大西洋為低。德國海洋物理學家席塔瑪表示,二〇〇八年的研究中,大西洋溶氧值最低為飽和度百分之四十 (海洋表面為百分之百),太平洋溶氧極低層的溶氧飽和度則接近零。

這為海洋生物帶來嚴重後果。根據吉利的說法,當海水中的溶氧值只有百分之十,微生物無法利用氧氣、無法進行含氮化合物的新陳代謝,於是釋出威力強大的溫室氣體──硝酸鹽。吉利表示,「溶氧值為零的時候,微生物開始進行含硫酸鹽離子化合物的新陳代謝,並釋放硫化氫,造成致命影響。」二疊紀大滅絕期間,有幾處海洋因為失去海流循環,因而成了一灘死水。史密森尼研究院的厄文認為,出現在大氣中的硫化氫,很可能就是當時造成生物死亡的主要凶手之一。

——本文摘自《下一個物種》, 2019 年 4 月,臉譜出版

文章難易度

0

0
2

文字

分享

0
0
2
加洛德的掙扎與偉大:不是不能兼行政,但還是最愛考古研究|桃樂絲.加洛德(下)
寒波_96
・2019/12/06 ・3741字 ・閱讀時間約 7 分鐘 ・SR值 533 ・七年級

y編按:在上篇文章我們介紹了桃樂絲.加洛德(Dorothy Garrod)是如何成為考古學家,以及劍橋大學第一位女性教授;但他成為迪士尼教授並沒有就此一帆風順。下篇就讓我們來聊聊,應該也讓很多研究者心有戚戚焉的「行政工作」何以也苦惱了這位科學家。

行政生涯充滿挫折,仍堪稱成功

迪士尼考古學教授不是如中研院院士那種榮譽頭銜,而是擁有實權與資源的高階管理職,掌管劍橋大學內考古學的教學與研究。加洛德的學術專業非常強大,行政能力相對卻很薄弱,這其中有個人因素、也有性別因素。1, 4

兩位桃樂絲,加洛德和貝茲。圖/取自 wikipaleonerdish

加洛德個人算是成就非凡,然而劍橋大學歷史悠久,山頭林立,處於大學機器中的加洛德並不特別出色。她雖然率領考古小隊的經驗十分豐富,卻沒有經營更大組織的經驗,對學術圈的政治一竅不通,一開始根本不懂怎麼跟各方勢力打交道。

她出身名門,本人畢業於劍橋大學,劍橋大學的人一般視她為自己人,不會把她當外人,在那個保守的年代,甚至也不見得會特別當她是女人。然而,加洛德不熟悉劍橋高層的文化,打交道時屢屢受挫,一項原因是她任職迪士尼教授以前,長年在外考古,並沒有在劍橋大學校內發展事業,所以也不算是完全的自己人。

加洛德的挫折也與性別有關。除了女生不能進入某些場合,和男性同儕直接溝通之外,一大問題來自她缺乏異性同儕普遍具備的經歷,例如她從來沒有上過公學。劍橋大學 1939 年時女性教師很少,作為女生,她的成長背景和多數男性同事不同,而與眾不同的成長經驗,使她與異性同事間多少有些隔閡,增加交流時的障礙。

加洛德作為迪士尼教授的形象畫像。圖/取自 wiki

儘管種種障礙,讓加洛德 14 年的迪士尼教授當的不是很順心,但是絕對算是對得起這份工作,也做到平平安安退休。她對於行政管理影響最大的貢獻是,依憑考古學家的專業順利改革課程,引進新的師資與方向,創立英國第一個給予史前史(prehistory)的大學學位,對於考古學的人才培養意義非凡。

加洛德是屬於田野的人,1952 年從迪士尼教授離職,總算擺脫重擔後她馬上前往法國,又繼續投入 16 年考古,直到 1968 年 76 歲時去世為止。她喜愛率領小隊在現場挖掘,一直到去世前不久都沒有放棄;在她45 年的考古生涯中,有將近 5 年的時間人都在野外。

加洛德的研究之道

加洛德是非常優秀的考古學家,不是只會挖土而已。目前一些習以為常的觀念與作法,其實是她開風氣之先。

比方說,加洛德十分重視「測試假說」的重要。她的研究方法是先提出假說,尋找證據,以支持或推翻舊的假說,形成論點以後,再根據新證據提出新的假說。同樣值得佩服,當獲得新的證據後,加洛德不吝於推翻自己的舊假說,不會死要面子。2(2019 年底引爆爭議的人類起源研究,就是無視其他證據,缺乏測試假說這一步)

1938 年在迦密山,加洛德以外 4 位是 Elinor Ewbank、Mary Kitson Clark、Dean Harriet M. Allyn、Martha Hackett,都是當時有名氣的女性考古學家。圖/取自 這裡

1938 年以前,加洛德調查過的遺址地理範圍之廣,在當時的考古學家中名列前茅。她一生總共挖掘過歐洲和亞洲,7 個國家的 23 個遺址,使她能夠進行跨區域的大範圍比較。例如她在地中海最西端的直布羅陀,以及最東方的迦密山都見到尼安德塔人。

在迦密山,加洛德則深入探索一處遺址的不同年代,追溯同一地點,不同年代間的改變。可以說,加洛德重視時間與空間的分佈,問的問題格局很大。

加洛德本身最善於分析石器。她研究過許多莫斯特文化(Mousterian)的產物,也曾經把老師布勒伊(Abbé Henri Breuil)分類的上奧瑞納(Upper Aurignacian)改為 Gravettian,下奧瑞納(Lower Aurignacian)改為 Chatelperronian,重新定義歐洲石器文化的關係。根據各地石器風格的異同,她藉此建立歐洲、中東、北非的連結,提出「歐洲考古文化或許源自歐洲以外」的非歐洲中心觀點,在當時開風氣之先。

加洛德一生挖掘過的遺址記錄。圖/取自 ref 2

她也是跨領域考古的先驅,儘管現在看起來,當時所謂的「跨領域(Inter-disciplinary)」就是現在普通的考古學項目。例如她在迦密山的工作,本人專注於考古以外,也請來兩位名家:古人類學家亞瑟.基斯(Arthur Keith)和古生物學家桃樂西亞.貝茲(Dorothea Bate)一同研究。其中貝茲是加洛德很熟悉的合作者,兩人在直布羅陀、巴勒斯坦、迦密山都有共事記錄。

桃樂西亞.貝茲:自然史博物館第一位女性員工

讓我們插開一下話題,聊聊另一位也是成就非凡,歷史留名的女性科學家和古生物學家:桃樂西亞.米諾拉.愛麗絲.貝茲(Dorothea Minola Alice Bate)。她比加洛德年長 14 歲,是出身於普通家庭的威爾斯人,沒有受過什麼正規教育;她在1898 年只有 19 歲時,拜訪倫敦的自然史博物館,請求一份工作,竟然就此展開 50 年的研究生涯。5

1906 年的貝茲畫像。圖/取自 paleonerdish

在博物館工作幾年以後,貝茲離開英國,在塞浦路斯、克里特、巴利阿里群島(Balearics)等地中海的島嶼尋找化石;她觀察到島上的動物,有島嶼侏儒化和巨大化的狀況;也發現許多之前未知的滅絕動物,例如巴利阿里群島洞山羊(Myotragus)。

她在 1930 年加入加洛德的迦密山考古團隊,一共發現 54 個物種,像是豬、鹿、山羊。1935 到 1937 年,貝茲在伯利恆調查化石,後來局勢不穩,第二次世界大戰爆發,她只好結束工作,返回自然史博物館。

地中海旅程中,貝茲蒐集超過 200 種鳥類、哺乳類、昆蟲標本,成為國際知名的古生物學家。靠著非凡的貢獻,她成為自然史博物館第一位正式的女性員工,後來待在特靈(Tring)的分館。1948 年,離 70 大壽沒有幾天時,她被指派為特靈分館的館長,直到 3 年後去世。她和加洛德一樣,都是開創時代的女性科學家。

自然史博物館地質部門 1938 年合照,貝茲是第一排最右邊那位。圖/取自 ref 5

貝茲和加洛德都是基督徒。古生物、考古學家在地層中,常常會見到與聖經描述不符的發現,她們的信仰被如何影響,是非常令人好奇的問題。可惜貝茲去世後不久,她的住處發生火災,私人文書都被燒光,使我們無從窺視她的內心世界。

至於加洛德,不管她的私人文書是不是被自己燒掉,如今都無從得知這方面的資訊。少數確定的是,加洛德是聖公宗(Anglicanism)信徒,她年輕在法國時,對信仰產生過懷疑,因此求助過德日進(Pierre Teilhard de Chardin)。1926 年她把直布羅陀出土的尼安德塔人化石稱作「亞伯」,顯然與宗教信仰有關。

成為歷史的加洛德

對她而言,成為一流學者,除了個人成就受到肯定以外,她也將其視為家族學術傳統的延續。她有 3 位兄弟,但第一次世界大戰時兩位戰死,一位由於西班牙流感去世。不過阿爾福雷德爵士的孫女,阿奇巴德爵士的女兒桃樂絲,仍然成為劍橋大學的教授;加洛德終生沒有結婚。

1937 年在美國費城參加研討會的加洛德。圖/取自 wiki

當我們回顧加洛德時,很容易注意到她身為女性的特殊性。以性別的角度來看,她實在是很了不起的人物,後世介紹加洛德時,都會提到她是第一位女性迪士尼考古學教授,以及劍橋大學第一位女性教授。

不過即使不考慮性別,加洛德依舊算是第一流的考古學家。她倒是幾乎不會強調自己的女性身份,研究中對女性主義也興趣缺缺。

然而,即使她本人不感興趣,加洛德依然順理成章地成為女性學者的楷模,影響當時與後世的其他女性,像是當她獲選為迪士尼教授時只有大一的富蘭克林。而富蘭克林本人,也與她的前輩加洛德、湯普森、貝茲一般,成為後世優秀女性科學家的先驅模板。

她們成就之偉大,不僅僅是女生的楷模,也是所有人的楷模。

延伸閱讀

參考文獻

  1. From ‘small, dark and alive’ to ‘cripplingly shy’: Dorothy Garrod as the first woman Professor at Cambridge
  2. Price, K. M. (2015). One Vision, One faith, One Women: Dorothy Garrod and the Crystallisation of Prehistory. Lithics–The Journal of the Lithic Studies Society, (30), 163.
  3. Smith, P. J., Callander, J., Bahn, P. G., & Pinçlon, G. (1997). Dorothy Garrod in words and pictures. Antiquity, 71(272), 265-270.
  4. Smith, P. J. (2000). Dorothy Garrod, first woman professor at Cambridge. Antiquity, 74(283), 131-136.
  5. Dorothea Bate: a Natural History Museum pioneer

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

文章難易度
寒波_96
168 篇文章 ・ 573 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。