4

8
0

文字

分享

4
8
0

1900 萬年前,鯊鯊神秘大滅絕事件?!

寒波_96
・2021/06/29 ・2792字 ・閱讀時間約 5 分鐘

鯊魚的歷史超過 4 億年,可謂非常資深的生物,經歷過好幾次「大滅絕」。我們知道,距今 6600 萬年前導致恐龍消失的大滅絕,帶走了當時 30% 以上的鯊魚。

但是最近新發表的論文更報告,1900 萬年前還有一次之前不知道的事件,使得超過 90% 鯊魚消失,也損失 70% 的型態多樣性。

這麼重大的鯊魚滅絕事件,之前我們竟然毫無所悉,對原因也毫無頭緒?

鯊鯊!圖/envato elements

盾鱗與牙齒,判斷魚類數量和物種

研究古生物的物種、多樣性、增減幅度,相當困難。

如今大部分魚類屬於輻鰭魚(ray-finned fish),去世後最容易成為化石的部位是牙齒;不過鯊魚、鰩魚(例如魟魚)這些屬於板鰓亞綱(elasmobranchii)的魚類,留下牙齒的機率很低,較容易保存的,是皮膚上特化的鱗片「盾鱗(denticle)」。

分析海洋沉積物中,魚類的牙齒、盾鱗的數量和種類,便能判斷海中魚類的數目與物種。

新研究的材料來自2次深海鑽探取得的樣本,分別位於北太平洋與南太平洋,能推論古代大洋的生態狀況。(盾鱗總共 1263 個——北太平洋 465 個、南太平洋 798 個)

魚類的盾鱗與牙齒。圖/取自 [論文作者 Elizabeth Sibert 介紹影片]

1900 萬年前,鯊魚幾乎不見了!

地質年代上,白堊紀始於 1.45 億年前,延續到大約 6600 萬年前;隨後是到 2300 萬年前結束的古近紀(Paleogene),再來是到 260 萬年前為止的新近纪(Neogene),而其中 533 – 2300 萬年前稱作中新世(Miocene) 。

白堊紀末期的大滅絕,消滅了許多生物,卻創造了輻鰭魚崛起的空間。白堊紀的時候,牙齒和盾鱗的比例約為1比1,整個古近紀到中新世的前 400 萬年,牙齒和盾鱗為5比1,比例能讓我們看出一些端倪。

但是 1900 萬年之後狀況非常不一樣,牙齒盾鱗比變成 100 比 1!即使牙齒和盾鱗的比例,未必直接等於鯊魚和輻鰭魚的數量,也能判斷:

距今 1900 萬年過後,大洋中鯊魚的數量減少很多。和之前相比,在此之後少掉超過 90% 的鯊魚。

鯊魚的盾鱗型態種類,在不同年代的分佈。1900 萬年前過後大幅減少,現在只剩下 20%。圖/取自 [參考資料 1]

不同鯊魚,盾鱗的型態有別,因此可以用盾鱗的型態代表鯊魚的多樣性。

研究者總共定義出 88 種盾鱗型態,1900 萬年前之後,高達 70% 消失。而且在此之後,不再有任何一種新型態誕生。和當時相比,現存的鯊魚僅存 20% 多樣性。

這次鯊魚大滅絕,很可能是史上規模最大的鯊鯊滅團事件。作為對照,6600 萬年前廣為人知的白堊紀末期大滅絕,消滅當時 30 到 40% 的鯊魚,比例竟然只有 1900 萬年前的一半而已。

鯊魚的兩大類盾鱗,線形和幾何形盾鱗。圖/取自 [參考資料 1]

線形盾鱗和幾何形盾鱗

鯊魚的盾鱗可分為兩大類,線形(linear)和幾何形(geometric)。

現生的鯊魚絕大部分配備線形盾鱗,它比較適合長距離游泳。現代鯊魚共有 18 款線形盾鱗,和全盛時期的 53 款相比,剩下 34%。

線形盾鱗。圖/取自 [參考資料 1]

配備幾何形盾鱗的現生鯊魚非常稀有,主要見於住在深海,小型的伏擊型鯊魚,例如雪茄達摩鯊(Isistius brasiliensis)、佩里烏鯊(Etmopterus perryi)。

根據新研究的分類,世界上曾經有過 33 款幾何形盾鱗,但現在只剩下 6 款,僅存 18%。鯊鯊大滅絕事件之前,幾何形盾鱗有 35% 的相對存在感,之後慘跌到 3%。

由此看來,不論線形或幾何形盾鱗,在距今 1900 萬年過後都損失慘重,但是配備幾何形盾鱗的鯊魚,打擊更加慘烈。

幾何形盾鱗。圖/取自 [參考資料 1]

鯊魚全面滅團的未解之謎

距今 1900 萬年前的鯊魚大滅絕,影響範圍應該遍及全球,不過遠洋海域的損失似乎較大。在此之後,鯊魚的多樣性再也沒有恢復。

論文指出,根據目前有限的資料判斷,如此劇烈的命運動盪或許只發生在短短的 10 萬年內。

最不得其解的是,鯊魚全族的滅絕事件如此明確,我們卻對它為什麼發生毫無頭緒。

佩里烏鯊(Etmopterus perryi)的體型非常迷你,配備幾何形盾鱗。圖/取自 wiki

地質史上發生過很多次生物大滅絕或小滅絕,以及更多次的劇烈氣候變遷;可是在 1900 萬年前那個時候,海洋化學紀錄和氣候都沒有明顯的變化,似乎也沒有其他動物大量滅團。

影響較大的已知事件,各發生在之前與之後的數百萬年,都和 1900 萬年前的鯊魚大滅絕沒有直接關係。先發生的是早 400 萬年,距今 2300 萬年的古近紀、新近紀轉換期(Paleogene-Neogene boundary);之後是晚 500 萬年,距今 1400 萬年的中新世中期滅絕事件(Middle Miocene disruption)。

當時海洋中一定發生過什麼我們還不知道的事,才導致幾乎所有鯊魚同時消失,而且再也沒有恢復;也可以肯定 100% 和智人沒有關係。

但是最近的鯊魚滅絕,和智人的直接獵捕、漁業、海洋汙染顯然關係不小。一項研究統計,公元 1970 到 2018 年間,鯊魚減少了 71% 之多。很有可能,鯊鯊再度面臨 1900 萬年未有之大變局。

1900 萬年後的現在,鯊鯊們是否正在面臨另一次大滅絕?

論文作者 Elizabeth Sibert 介紹影片:

延伸閱讀

參考資料

  1. Sibert, E. C., & Rubin, L. D. (2021). An early Miocene extinction in pelagic sharks. Science, 372(6546), 1105-1107.
  2. Elizabeth Sibert 推特
  3. When sharks nearly disappeared
  4. A shark mystery millions of years in the making

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

 

文章難易度
所有討論 4

0

0
0

文字

分享

0
0
0

蝴蝶翅膀的夢幻色澤,藏著奈米科技

李鍾旻_96
・2021/07/27 ・2930字 ・閱讀時間約 6 分鐘

在昆蟲中,色彩鮮豔又顯眼的物種往往使人著迷,尤其蝴蝶向來是相當受人喜愛的一群昆蟲。一般人見到蝴蝶時,目光肯定會集中在牠們那五彩繽紛的翅膀。

蝴蝶的翅膀表面布滿著無數的鱗片,每一個鱗片的長度大約介於 50 ~ 200 微米之間(1 微米 = 0.001 公釐)。不同種類的蝴蝶,鱗片的形態也會有所差異,但共通點都是非常容易脫落。

包含蝴蝶的鱗片在內,昆蟲身上呈現出來的許多色彩,是由天然色素所構成,這稱作「色素色」(化學色)。但也有部分顏色屬於「構造色」(或稱物理色、結構色),與體表結構的物理性質有關。

結構賦予的幻紫湛藍

構造色通常由週期性排列的微觀結構,如小突起、溝紋等所造就,這些結構使光線產生反射、干涉、繞射等光學效應,而讓特定波長的光被保留了下來。

構造色並常伴隨著「炫彩」特性,也就是色彩光澤會隨著人眼觀看角度的不同而出現些微變化,讓一隻昆蟲顯得璀璨閃耀。有些蝴蝶在展翅時,會呈現出類似金屬、珍珠般的光亮質感,這類特徵往往便是源自構造色。(註:炫彩(iridescent),也常被譯作「虹彩」、「虹光」)

中南美洲叢林中的「閃蝶」Morpho,又稱摩爾福蝶)是構造色相當有名的例子。閃蝶的藍色翅膀鮮豔奪目,質感宛如珠寶,因此身價不凡,是眾多標本收藏家愛不釋手的珍品。

英國自然史博物館收藏的黑框藍閃蝶(Morpho helenor peleides)標本。圖/作者提供

閃蝶翅膀呈現金屬藍色,然而翅表面的鱗片並沒有藍色色素,這樣的炫目的色澤歸功於鱗片上奈米尺度的多層次塔狀結構。當陽光映照在鱗片時,部分光線可能會直接被反射,有些光線則穿過部分結構,接著被底下層次的結構反射,而許多被反射的光線,彼此還可能發生交互作用。最終,鱗片的這些微結構反射了大部分藍色光芒,使得翅表面呈現明亮耀眼的金屬質感。

File:Morpho sulkowskyi wings.jpg
閃蝶鱗片上的細微塔狀結構,其表面又有層層的溝紋與脊起,這是讓光線產生變化的主要因素。圖/Wikipedia

鱗片已經非常的小,當然鱗片上的結構是我們人類肉眼所看不到的,所以科學家在探究這些構造時,必須透過電子顯微鏡才得以一窺究竟。

拿現實生活中的物品來比喻,可以說閃蝶體表閃耀的色澤,性質有些類似 CD 光碟片的表面。光碟片在光線下會顯現七彩的光澤,而這些光澤是光碟表面細小微妙的溝槽造成的繞射效果。

不同角度下的大藍閃蝶(Morpho didius)標本,可見其金屬光澤會隨光照的來源有所變化。圖/作者提供

在台灣的我們,除了博物館裡才有機會目睹的閃蝶,有沒有什麼活生生的例子可以讓我們一窺構造色呢?常見的「紫斑蝶」Euploea),就是很好的觀察對象。牠們不只是數量多,同時又是蝴蝶中動作較為緩慢的種類,因此要近距離接觸牠們並不難。

紫斑蝶前翅背面雖然呈黯淡的褐色,但當牠們展翅時,這些鱗片在陽光下會散發出藍色至藍紫色的絢麗色彩,並且顏色深淺隨著角度的變化非常明顯。這同樣是由於光線照射在鱗片表面的物理結構,反射了特定波長光線的緣故。

圓翅紫斑蝶(Euploea eunice hobsoni)一身深褐色的鱗片平時看似不起眼,但翅背面在陽光下會轉變為鮮豔的藍紫色。圖/作者提供

其實不只是成蟲,構造色也可見於紫斑蝶的蛹。紫斑蝶的蛹呈亮麗金黃色或銀色,炫彩極為明顯,這是由於表皮底下層層排列的薄膜狀結構,對光線產生了影響。

當然,構造色的形式還存在許多昆蟲身上,常見的幻蛺蝶Hypolimnas bolina kezia)、蘭嶼的珠光裳鳳蝶Troides magellanus)都是構造色相當鮮明的例子。一些金屬質感的吉丁蟲、金龜子、灰蝶,其華麗的外觀往往也與構造色脫不了關係。

圓翅紫斑蝶的翅在某些角度下光澤不明顯。圖/作者提供

這一身醒目的光澤,對昆蟲而言可能帶有警告的意味,因為許多鮮豔明亮的昆蟲有毒,或嚐起來具有特殊臭味。日光下閃爍的炫彩也可能具有隱蔽的效果,或者與同種個體間的辨識溝通有關。

圓翅紫斑蝶的蛹,外觀質感如同金屬。圖/作者提供

似白非白的鱗片

我們可能常常直覺的把構造色與光亮的炫彩畫上等號,事實上在大自然裡,生物的構造色不見得都是如此。

我們在平地或山區都有機會見到,分布範圍相當廣的白粉蝶Pieris rapae),身上其實也具有大片的構造色,但我們在牠身上看不到光輝的炫彩現象。

白粉蝶的翅膀,有局部的鱗片具有黑色色素而形成深色斑塊,其他區域則主要呈白色,或略帶有一點淡黃。以往,白粉蝶身上單純的色彩多被認為是色素色,可是那些佔大多數的白色鱗片,實際上並不含白色的色素

白粉蝶的翅膀上有著非炫彩性的構造色。圖/作者提供

在白粉蝶的鱗片表面,具有許多枝狀的構造,其表面又附著了許多如珠子般的微小顆粒,顆粒本身也沒有色素成分。其實是這些顆粒反射了特定光線,導致翅膀呈白色的構造色。

不管是構造色的成因,以及所造就的色彩樣貌,當中複雜且多樣的機制,往往遠超出人類所想像。許多的昆蟲的表皮,構造色與色素色這兩類色源,並時常同時存在,兩者交織構成體表展現的色彩

用「光」代替顏料上色

物理結構形成的色彩,理論上能夠長期存在,能夠避免褪色的問題,人類也從中得到了不少科技靈感,試圖在工業產品上重現這般的顏色。

日本的纖維公司便參考了閃蝶翅膀的原理,研發出不使用化學染料,而是運用物理特性顯現色彩,名為「藍默纖維」(Morphotex)的環保材質。這樣的材質有什麼優點呢?構造色呈色的纖維不需要經過傳統的化學染色製程,能減少產生的廢料,亦減低了水資源與能源的消耗。

陽光下的異紋紫斑蝶(Euploea mulciber barsine),藍紫色光澤明顯。圖/作者提供

如果掌握了不會褪色的顏色技術,還有機會應用在太陽能板塗料、印刷、化妝品、鈔票防偽等方面,幫助解決許多技術問題。

昆蟲及各式動物與生俱來的外貌,有時比人類費力研發出的技術都要精巧得多,甚至可能悄悄改變人類的生活。人類應該善待並維護自然資源,這顯然是很重要的一項理由。

參考資料

  1. What Gives the Morpho Butterfly Its Magnificent Blue?
  2. Vukusic, P., Sambles, J. R., Lawrence, C. R., and Wootton, R. J. (1999). Quantified interference and diffraction in single Morpho butterfly scales. Proceedings: Biological Sciences, The Royal Society of London 266, 1403–1411.
  3. Ragaei, M., H.S. Al-Kazafy, N.A.E. Farag, H.H. Elbehery, and A. Abd-El Rahman. (2017). Role of photonic crystals in cabbage white butterfly, Pieris rapae and queen butterfly, Danaus glippus coloration. Biosci. Res. 14: 542-547.
  4. 王仁敏(2017)。蝶翼的絢麗幻色。蝶季刊 2017 卷 2 期:19 – 19。

 

網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策