0

4
1

文字

分享

0
4
1

大腦為何會利用「酮體」?生酮飲食是失智症的曙光嗎?

活躍星系核_96
・2017/11/23 ・2566字 ・閱讀時間約 5 分鐘 ・SR值 564 ・九年級

  • 文 / 許家綸|尋常一般的神經專科醫師。

著名小說魯濱遜漂流記的主角遭逢海難,孤身漂流到荒島,三餐成了他最迫切的問題。起初,他採過野果、也用僅剩不多的槍彈打獵,吃了幾頓肥羊大餐,但野果和肥羊的來源不穩定,食物短缺的恐懼總是縈繞心頭;直到他意外獲得一批種子,開始農耕生活⋯⋯。

早在西元一萬年前,人類開始耕種,相較之前的狩獵採集,農耕時代之後供的穩定糧量為日後文明發展奠下根基。在生物體中,碳水化合物分解成葡萄醣,經過糖解與氧化磷酸化作用,製造出「ATP」(Adenosine triphosphate)—— 一種細胞共通的能量貨幣,藉此趨動組織器官的運轉。

而大腦作為人體的中央處理器,僅僅只佔身體重量 2% 的大腦,卻驚人地吃掉了總能源的 20%,其中最受大腦歡迎的燃料也正是葡萄醣。

飲食可以帶給我們能量,藉此趨動組織器官的運轉,圖/by GiselaFotografie@pixabay。

大腦不斷電的秘密:隱藏的備用燃料

就像停電時備用發電機自動切換電源供源,人體也有雙電力系統。遇到飢荒、山難……等艱困時刻,當作為戰備儲糧的肝醣(glycogen)相繼用罄,血糖快速下降之際,身體隱藏的能源系統開始啟動。大量的游離脂肪酸(free fatty acid)從脂肪組織釋出,身體大部分的器官都可直接運用脂肪酸,但脂肪酸在為大腦所用之前,得先在肝藏轉成酮體(ketone body),才能穿過血腦屏障(blood brain barrier)。研究顯示,在長期挨餓的狀態,血液中的酮體濃度會提高到原來的 10-20 倍,這足以支援大腦 60% 的能源需求 1

-----廣告,請繼續往下閱讀-----

在饑困時期轉由儲量豐沛的脂肪作為燃料,也許是生物體特化後的設計,它藉此保留重要的蛋白質與肌肉組織,為將來的生存留下一線希望。

大腦不斷電的秘密——利用體內大量的游離脂肪酸當能量,圖/by holdentrils@pixabay。

 誰都想不到,這種古老的備用系統,在竟然引發了一場飲食革命。

 失智症的根源:能源供應系統的異常?

過去 30 年,異常的β-類澱粉和 Tau 蛋白質堆積是失智病的元兇 2, 幾乎被當成一項事實寫進教科書裡。利用神經元高度仰賴葡萄醣的特性,科學家發展出葡萄醣-正子攝影(FDG-PET)並計算出腦部各區堿的葡萄醣的代謝速率,以一窺退化性大腦的能量之謎。

在早期失智症患者身上,有葡萄糖的使用率變差的現象;他們與同年齡層的健康老人相比,整體效率下降 14% 左右 3,尤其是在顳葉、頂葉與後側扣帶迴等區域。我們很自然地理解成是因為前述的異常堆積,破壞了神經元與突觸,代謝需求降低只是功能喪失後的結果。

-----廣告,請繼續往下閱讀-----

但一些觀察性研究企圖挑戰這個論點,對一群健康但帶失智基因(Presenilin-1, Apolipoprotein E4) 的人所作葡萄醣-正子攝影 4,5,竟然也有類似的代謝下降(hypometabolism);而令人不解的是,在臨床上他們的認知功能完全正常,平均年齡更只有 30 歲左右。

失智症可能因為能量供應異常造成?圖/by chevskij@pixabay。

這又該怎麼說明呢?會不會葡萄醣不是這些大腦的最佳燃料?倘若如此那酮體利用情形又如何呢?研究輕度阿滋海默病患大腦利用酮體的能力,令人驚奇的是,結果竟與認知正常的對照組無異 3。這是否暗示古老的酮體可成為退化性大腦再運轉的關鍵?這些想法令生酮飲食的擁護者非常興奮。

編按:生酮飲食指的是高脂肪、適量蛋白質、低碳水化合物的飲食法,不同於一般均衡飲食的狀態,人體會利用碳水化合物轉化成的葡萄糖作為能量,當然也包含維持大腦運作。生酮飲食則因為攝取低碳水化合物,所以能量來源則變為利用脂肪轉換的酮體。

 美國的瑪莉-紐波特醫師便是酮體療法的著名倡議者之一,她以生酮飲食、中鍵脂脂酸、酮酯(ketone ester)等方式治療罹有失智症的先生 6,並撰文分享,她們的故事走進許多正深陷失智惡夢的家庭,令他們重燃希望。

但是⋯⋯這真有這麼神嗎?

-----廣告,請繼續往下閱讀-----

酮體的逆襲之旅:仍是長路漫漫

回到了現實世界,其實客觀的證據還很薄弱,目前僅有寥寥幾篇的人體研究。

其中一個研究引入生酮飲食做為輕度知能障礙(Mild cognitive impairment)治療,相較於高碳水化合物飲食的對照組,6 週後發現可改善記憶功能 7。另外兩篇以口服中鍵脂肪酸提升血中酮體濃度,聲稱對失智患者的認知測試有正向意義 8,9,但在日本,類似的研究卻沒有顯著差異 10。說到底,要令科學家們心悅誠服的點頭稱是,恐怕還是漫漫長路。不僅如此,仍有諸多疑點尚待釐清,比如椰子油富含的飽和脂肪酸與動脈硬化的相關性、葡萄醣代謝異常與類澱粉沉積的因果關係、長期的高酮酸狀態是否是身體的另一個負擔?

究竟,大腦的能量運轉危機是否能夠開啟失智治療的新篇章呢?且讓我們懷抱期望、但客觀以待吧。

參考資料

  1. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF, Jr. Brain metabolism during fasting. J Clin Invest 1967;46:1589 –1595. 

  2. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10: 698–712.
  3. Castellano, C.A. et al. 2015. Lower brain 18F- fluorodeoxyglucose uptake but normal 11 C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J. Alzheimers Dis43: 1343–1353. 

  4. Scholl, M. et al. 2011. Time course of glucose metabolism in relation to cognitive performance and postmortem neu-ropathology in Met146Val PSEN1 mutation carriers. J. Alzheimers Dis24: 495–506.

  5. Reiman, E.M. et al. 2004. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl. Acad. Sci. U.S.A. 101: 284–289. 
  6. Newport, M.T. et al. 2015. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement11: 99–103.
  7. Krikorian, R. et al. 2012. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 33: 425.e19– 27
  8. Reger, M.A. et al. 2004. Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 25: 311–314.
  9. Henderson, S.T. et al. 2009. Study of the ketogenic agent AC- 1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. (Lond.) 6: 31.
  10. Ohnuma T, Toda A, Kimoto A, Takebayashi R, Higashiyama R, et al. (2016) Bene ts of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: a prospective, open-label pilot study. Clin Interven Aging 11: 29-36. 
文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
2

文字

分享

0
2
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
有效減重三部曲!快來量身製訂你的減肥計畫——《大自然就是要你胖!》
天下文化_96
・2024/06/27 ・3334字 ・閱讀時間約 6 分鐘

可持之以恆的減重計畫

有效減重的第一步是刺激脂肪燃燒。由於我們只在需要額外能量時才會燃燒脂肪,因此需要減少來自飲食的能量。所有以減重為目標的飲食法都會限制熱量,然而,最成功的飲食法必須也能關閉生存開關,因為這能減少覓食反應,有助於緩和飢餓感。正是因為如此,主要著重在熱量限制、但允許糖類和高升糖碳水化合物的飲食法,一旦結束熱量限制,就會注定失敗。也因為如此,飲食中即使沒有特別限制熱量,僅限制糖和高升糖碳水化合物的攝取,也有減輕體重的效果。這樣的飲食法是透過微調生存開關,減少飢餓感,讓人自然而然限制熱量的攝取。此外,調低開關可更有效的燃燒脂肪,因為正如前面所提的,生存開關的作用之一,就是阻止脂肪燃燒(請參閱第三章)。

第二步是阻止新陳代謝速率變慢。當體重減輕時,身體會降低新陳代謝速率做為補償,以維持現有體重。正如前面提過的,長期超重者的能量工廠運作效率會降低,因為身體將超重視為新的常態。在這種情況下,身體會降低新陳代謝來因應體重減輕,因此原本可保持穩定體重的攝食量,這時卻會導致體重增加。這幾乎是所有節食法功敗垂成的主因。

為了克服這個問題,我們必須調整生存開關,避免能量工廠遭受進一步的傷害,同時刺激新的能量工廠建立,增加能量產出。

目前,建立新能量工廠的最佳方法是運動,而且正如前面所提的,是特定類型的運動。這裡的運動主要是為了刺激能量工廠,而不是燃燒熱量。雖然運動也能燃燒熱量,帶來好處,但想要燃燒脂肪,最好的方法還是透過飲食限制、減少可用熱量。的確,如果生存開關一直處於活躍狀態,運動時燃燒掉的熱量,很容易因為休息時新陳代謝變慢而補償回來。這是飢餓的動物補償覓食時能量損耗的方式,也是哈扎人可以走上一整天尋找食物,卻不會增加整體能量消耗的原因,因為透過食用大量蜂蜜啟動生存開關後,他們的身體會在休息時減少能量消耗,補償活動耗去的能量。

-----廣告,請繼續往下閱讀-----
想要燃燒脂肪,最好的方法還是透過飲食限制、減少可用熱量。圖/envato

低醣飲食、生酮飲食有助於減肥嗎?

若希望維持減重後的體重,我建議最好從低醣飲食或生酮飲食開始。原因是這些飲食嚴格限制添加糖,而添加糖是飲食中主要的果糖來源;另外也限制高升糖碳水化合物,這是飲食中主要的葡萄糖來源,身體會將葡萄糖轉化為果糖。

這些飲食法可減弱生存開關,讓飢餓感自然降低,而原本受生存開關保護的脂肪,也會變得可以燃燒。這樣的飲食也能讓你的身體系統「重新開機」,擺脫過去慣於吃高果糖食物的狀態,不再快速吸收和代謝果糖(參見第八章)。偶爾吃點甜食時,也更能抵抗糖的作用。

這樣的飲食還能減少肝醣儲存。之前提過,身體會同時儲存脂肪和碳水化合物,其中碳水化合物是以肝醣的形式儲存。在斷食期間,身體首先燃燒的是肝醣,因為身體偏好以葡萄糖做為燃料。如果我們成天吃碳水化合物,腹部儲存的脂肪會繼續保留。但若減少攝取碳水化合物,尤其是高升糖或含有果糖的碳水化合物,就可減少儲存的肝醣,進而增加脂肪燃燒。因此限制碳水化合物,對於減重十分有效。

睡飽也可以幫助減肥?

身體對肝醣的偏好,也有助於解釋為什麼睡眠八小時以上有很大的幫助,以及為什麼早上運動(早餐前)比晚上運動更能有效減肥。睡覺時,大部分的肝醣儲備會燃燒掉,因此我們醒來,是處於脂肪燃燒模式。若是在晚上運動,燃燒的主要是白天累積的肝醣。

-----廣告,請繼續往下閱讀-----
睡覺時,大部分的儲備肝醣會燃燒掉,因此睡飽八小時對減重大有幫助。圖/envato

低醣飲食控制血壓、血糖

最後,正如我們在低果糖和低鹽飲食研究中發現的,低醣飲食可能促進粒線體生長。實行低醣和生酮飲食有些注意事項。首先,這會增加低血糖的風險。如果感到出汗或頭暈,可能需要檢查血糖或吃一塊水果(儘管這是一種碳水化合物)。

其次,低醣飲食中的某些食物仍會啟動生存開關,例如含鹽量高和富含鮮味的食物(如紅肉和帶殼海鮮)。前面提過,含鹽量高的食物會刺激葡萄糖轉化為果糖,進而啟動生存開關。但採行低醣飲食時,可轉化為果糖的葡萄糖相對較少,因此即使攝取高鹽食物,也不太可能產生果糖,不致於因此增加體重。然而,鮮味豐富的食物仍然很有可能導致體重增加。另外,要考慮減少或戒除飲酒,因為酒精也能活化生存開關。

低醣飲食也能降低血壓,因為生存開關變弱了。若是正在服用降血壓藥物,必須仔細監測血壓,因為可能需要減少劑量。

同時減少鹽和碳水化合物的攝取,也可能導致低血壓,若是感到頭暈,除了檢查血糖,可能還得檢查血壓。因此,我建議在實施低醣飲食幾週後,再開始減少每天攝取的鹹味食物及其他可活化生存開關的食物。

-----廣告,請繼續往下閱讀-----

此外,我建議每天至少喝八杯水,確保身體獲得足夠的水分,還要監測有害的低密度脂蛋白膽固醇濃度,以及血液中的尿酸濃度。低醣飲食有時會導致低密度脂蛋白膽固醇顯著增加,若出現這種情況,必須減少飽和脂肪的攝取量。如前一章提過的,生酮飲食也可能導致尿酸濃度升高,而目前還不清楚尿酸增加的生理效應,不過這可能是身體為了維持血糖濃度(尿酸會激發胰島素抗性)和血壓的補償作用。然而,高尿酸也會對能量工廠造成氧化壓力,若是尿酸濃度大幅上升(例如高於八毫克/分升),可能需要與醫師討論,權衡治療的風險和潛在益處(請參閱上一章)。

減肥時也需要適時補充水分。圖/envato

雖然有些人可以長年維持低醣飲食,但對大多數人來說,這種飲食法很難持續超過幾個月。部分原因是,我們天生就渴望飲食中有較多的碳水化合物。因此,我建議採用其他的替代方案來減肥。

若是不想採行低醣飲食,可以考慮地中海飲食法,或是我的開關飲食法,但必須更嚴格的限制會活化生存開關的食物,也就是嚴格限制高升糖碳水化合物的攝取,特別是白米飯、馬鈴薯、麵包、薯條和早餐麥片。如果這還是太具挑戰性,可以稍作調整,每天有一餐可吃高升糖碳水化合物(也許是半份),記得要細嚼慢嚥,花一個小時用餐。其他餐飲中則只能攝取低升糖碳水化合物,並完全限制會啟動生存開關的食物,例如高鹽或鮮味豐富的食物和酒。你可以挑幾天進行 168 斷食法,透過間歇性斷食加強熱量限制,同時刺激能量工廠生長。(這裡有個重點:有證據顯示禁食會損害日常表現,尤其是兒童。無論如何我都不建議孩子採行間歇性斷食,請牢記在心。)開關飲食法的減重效果較慢,但對許多人來說,可能比較容易忍受。

無論你選擇哪一種飲食法,每週有三、四天必須運動,每次至少持續一小時,重點是保持在第二區運動。(世界衛生組織等團體建議,除了輕度運動,每週進行 75 至 150 分鐘的高強度鍛鍊,可能帶來額外的好處。不過就我們的目的而言,這是附加選項,因為第二區運動對於能量工廠的增加和脂肪燃燒,具有最好的效果。)此外,可以考慮記錄你的步行距離和時間,觀察自己的自然步態是否改善,這意味著體內的能量工廠變得更健康。最後,如上一章我對開關飲食法的建議,每天要喝大量的水,並吃一盎司(約 30 公克)黑巧克力。

-----廣告,請繼續往下閱讀-----

最後一點:我不建議透過長期禁食來減肥(雖然我認為這是大自然的現象,所以我也可能是錯的)。前面曾提過巴比里禁食了一年,雖然如此,巴比里開始禁食幾個月後,實驗室檢驗發現他的血糖濃度非常低,只有約 30 毫克/分升,有時會降至 20 毫克/分升。這樣低的葡萄糖濃度如果突然發生在你我身上,我們會陷入昏迷,而且有永久性腦損傷或死亡的風險。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

討論功能關閉中。

天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

5
0

文字

分享

0
5
0
含糖飲料讓思考能力受損,還和失智有關聯?——《大自然就是要你胖!》
天下文化_96
・2024/06/24 ・2352字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

認知與失智

阿茲海默症是現代社會面臨的一大困擾,這種可怕的疾病是俗稱老年痴呆的失智症最常見的原因,也是 2022 年全美第七大死因。阿茲海默症是一種行為失能疾病,目前尚無有效的治療方法。這項疾病的特徵是神經元會持續死亡、大腦萎縮、神經元之間形成富含 β 澱粉樣蛋白(beta-amyloid)的蛋白質斑塊,並在神經元內部出現濤蛋白(tau)累積。患者通常一開始的症狀是短期記憶喪失,並在幾年內發展為完全的失智。

阿茲海默症中,Tau蛋白異常會造成腦細胞內的微管瓦解。圖/wikimedia

大多數科學家認為,若能阻止澱粉樣蛋白在腦部沉積或濤蛋白在腦神經中累積,就可以預防失智症。然而,目前有幾種治療失智症的方法,正是採行預防或減少澱粉樣斑塊累積,只是全都失敗,導致有人質疑澱粉樣蛋白斑塊是否真的是致病原因,並開始嘗試尋找其他可能的解釋。

許多科學家指出,阿茲海默症患者在早期通常會表現出兩種顯著的特徵。首先,患者大腦中的某些區域,會減少對葡萄糖的吸收和代謝,因此有人將阿茲海默症稱為「大腦糖尿病」或「第三型糖尿病」。其次,大腦神經元內的能量工廠粒線體,不論是數量或功能都出現下滑,導致 ATP 產量減少。這兩項特徵都顯示生存開關可能涉入其中。

的確,大量攝取糖、高升糖碳水化合物和鹽,全都是阿茲海默症的危險因子,而這些食物正好都會啟動生存開關。肥胖症和糖尿病等疾病也可能提高罹患阿茲海默症的風險。若果糖是導致肥胖症和糖尿病的根本原因,而肥胖症和糖尿病又與阿茲海默症的罹患風險上升有關,那可以合理懷疑:果糖也可能是造成阿茲海默症的原因。

-----廣告,請繼續往下閱讀-----

實驗研究也支持糖與認知之間的關聯。例如,實驗室大鼠飲用含糖飲料之後,思考能力會受損。我的同事生理學家魯尼(Kieron Rooney)每天餵食大鼠兩小時的蔗糖水,濃度為 10%,大約與軟性飲料相同,為期一個月。結果這些喝糖水的大鼠,變得很難找到走出迷宮的路。更令人擔憂的是,即使大鼠停止飲用糖水,這種情況還是持續了六週。同樣的,經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。

經常飲用軟性飲料的兒童,在閱讀、寫作、文法和數學方面的學業表現,都相對較差。圖/envato

這些研究顯示,攝取含糖飲料可能對認知功能造成影響,而且影響所及的時間有可能持續。然而,這不一定代表蔗糖會導致失智。即使每天喝一種或多種含糖飲料,與情節記憶(episodic memory,對過去經歷或事件的回憶)受損和腦容量萎縮有關,但目前還無法做出任何定論。

不過,有愈來愈多證據將果糖與阿茲海默症聯繫起來。阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。也有證據顯示,大腦中的果糖大多是透過多元醇途徑生成。這些患者腦內有大量的山梨糖醇,也就是果糖的前驅物,這跟躁鬱症患者的情況類似。正如我們所知的,果糖一旦生成,會刺激生存開關啟動,造成細胞中的 ATP 含量減少。此外,阿茲海默症患者大腦中負責「清除」AMP 的酵素濃度,比同年齡對照組高出約兩倍。AMP 原本可重新轉化為 ATP,當愈多 AMP 遭到清除,腦內的能量濃度也就隨之下降。

我認為果糖導致阿茲海默症的途徑大致如下。之前提過,在缺少食物時,身體會活化生存開關以保護大腦,這時血液中的葡萄糖無法進入肌肉和肝臟,而會保留在血液中供大腦吸收與使用。這道開關的運作是透過阻斷胰島素作用來完成,因為肌肉和肝細胞需要胰島素才能吸收和使用葡萄糖,但大腦多半不需要。

-----廣告,請繼續往下閱讀-----
阿茲海默症患者大腦中的果糖濃度偏高,且含量比同年齡、同性別的非患者高出四至六倍,而果糖濃度最高的地方通常就是病變區域。圖/envato

然而有例外,大腦中與記憶和決策相關的區域,需要借助胰島素的作用才能攝取葡萄糖。加州大學洛杉磯分校的神經生理學家戈梅茲皮尼拉(Fernando Gomez-Pinilla)發現,大鼠攝取果糖後,大腦中與記憶和決策相關的區域會失去對胰島素的反應,導致葡萄糖吸收減少。實際上,果糖引起胰島素抗性的區域除了肌肉和肝臟,還有與記憶相關的大腦重要區域,這或許正是阿茲海默症的根本原因。

但限制大腦的這些特定區域攝取葡萄糖,對生存有什麼好處?之前提過,衝動和探索屬於覓食行為。記憶受壓抑的動物,可能更願意前往危險區域探索,因為牠們忘了潛在危險,而決策區受損的動物則會變得更衝動。因此可合理推測,果糖會透過在特定大腦區域引發胰島素抗性,以促進覓食行為,這是一種生存反應。

生存開關活化導致特定腦區的功能受到短期抑制,一開始的確能帶來生存優勢,但如果是反覆或慢性的刺激,反而可能導致腦部損傷。這些重要的神經元長期得不到足夠的葡萄糖,最終可能因為營養不良而功能受損。而且果糖代謝會對粒線體造成氧化壓力,使得 ATP 產量減少,更使狀況進一步惡化。一旦 ATP 濃度過低,神經元會死亡,最後的結果就是阿茲海默症。依此觀點來看,阿茲海默症患者大腦的後續變化,例如澱粉樣蛋白和濤蛋白的積累,都是次要的,而阿茲海默症的根本原因,主要是生存開關慢性活化。

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

4
1

文字

分享

0
4
1
大腦為何會利用「酮體」?生酮飲食是失智症的曙光嗎?
活躍星系核_96
・2017/11/23 ・2566字 ・閱讀時間約 5 分鐘 ・SR值 564 ・九年級

-----廣告,請繼續往下閱讀-----

  • 文 / 許家綸|尋常一般的神經專科醫師。

著名小說魯濱遜漂流記的主角遭逢海難,孤身漂流到荒島,三餐成了他最迫切的問題。起初,他採過野果、也用僅剩不多的槍彈打獵,吃了幾頓肥羊大餐,但野果和肥羊的來源不穩定,食物短缺的恐懼總是縈繞心頭;直到他意外獲得一批種子,開始農耕生活⋯⋯。

早在西元一萬年前,人類開始耕種,相較之前的狩獵採集,農耕時代之後供的穩定糧量為日後文明發展奠下根基。在生物體中,碳水化合物分解成葡萄醣,經過糖解與氧化磷酸化作用,製造出「ATP」(Adenosine triphosphate)—— 一種細胞共通的能量貨幣,藉此趨動組織器官的運轉。

而大腦作為人體的中央處理器,僅僅只佔身體重量 2% 的大腦,卻驚人地吃掉了總能源的 20%,其中最受大腦歡迎的燃料也正是葡萄醣。

飲食可以帶給我們能量,藉此趨動組織器官的運轉,圖/by GiselaFotografie@pixabay。

-----廣告,請繼續往下閱讀-----

大腦不斷電的秘密:隱藏的備用燃料

就像停電時備用發電機自動切換電源供源,人體也有雙電力系統。遇到飢荒、山難……等艱困時刻,當作為戰備儲糧的肝醣(glycogen)相繼用罄,血糖快速下降之際,身體隱藏的能源系統開始啟動。大量的游離脂肪酸(free fatty acid)從脂肪組織釋出,身體大部分的器官都可直接運用脂肪酸,但脂肪酸在為大腦所用之前,得先在肝藏轉成酮體(ketone body),才能穿過血腦屏障(blood brain barrier)。研究顯示,在長期挨餓的狀態,血液中的酮體濃度會提高到原來的 10-20 倍,這足以支援大腦 60% 的能源需求 1

在饑困時期轉由儲量豐沛的脂肪作為燃料,也許是生物體特化後的設計,它藉此保留重要的蛋白質與肌肉組織,為將來的生存留下一線希望。

大腦不斷電的秘密——利用體內大量的游離脂肪酸當能量,圖/by holdentrils@pixabay。

 誰都想不到,這種古老的備用系統,在竟然引發了一場飲食革命。

-----廣告,請繼續往下閱讀-----

 失智症的根源:能源供應系統的異常?

過去 30 年,異常的β-類澱粉和 Tau 蛋白質堆積是失智病的元兇 2, 幾乎被當成一項事實寫進教科書裡。利用神經元高度仰賴葡萄醣的特性,科學家發展出葡萄醣-正子攝影(FDG-PET)並計算出腦部各區堿的葡萄醣的代謝速率,以一窺退化性大腦的能量之謎。

在早期失智症患者身上,有葡萄糖的使用率變差的現象;他們與同年齡層的健康老人相比,整體效率下降 14% 左右 3,尤其是在顳葉、頂葉與後側扣帶迴等區域。我們很自然地理解成是因為前述的異常堆積,破壞了神經元與突觸,代謝需求降低只是功能喪失後的結果。

但一些觀察性研究企圖挑戰這個論點,對一群健康但帶失智基因(Presenilin-1, Apolipoprotein E4) 的人所作葡萄醣-正子攝影 4,5,竟然也有類似的代謝下降(hypometabolism);而令人不解的是,在臨床上他們的認知功能完全正常,平均年齡更只有 30 歲左右。

失智症可能因為能量供應異常造成?圖/by chevskij@pixabay。

-----廣告,請繼續往下閱讀-----

這又該怎麼說明呢?會不會葡萄醣不是這些大腦的最佳燃料?倘若如此那酮體利用情形又如何呢?研究輕度阿滋海默病患大腦利用酮體的能力,令人驚奇的是,結果竟與認知正常的對照組無異 3。這是否暗示古老的酮體可成為退化性大腦再運轉的關鍵?這些想法令生酮飲食的擁護者非常興奮。

編按:生酮飲食指的是高脂肪、適量蛋白質、低碳水化合物的飲食法,不同於一般均衡飲食的狀態,人體會利用碳水化合物轉化成的葡萄糖作為能量,當然也包含維持大腦運作。生酮飲食則因為攝取低碳水化合物,所以能量來源則變為利用脂肪轉換的酮體。

 美國的瑪莉-紐波特醫師便是酮體療法的著名倡議者之一,她以生酮飲食、中鍵脂脂酸、酮酯(ketone ester)等方式治療罹有失智症的先生 6,並撰文分享,她們的故事走進許多正深陷失智惡夢的家庭,令他們重燃希望。

但是⋯⋯這真有這麼神嗎?

酮體的逆襲之旅:仍是長路漫漫

回到了現實世界,其實客觀的證據還很薄弱,目前僅有寥寥幾篇的人體研究。

-----廣告,請繼續往下閱讀-----

其中一個研究引入生酮飲食做為輕度知能障礙(Mild cognitive impairment)治療,相較於高碳水化合物飲食的對照組,6 週後發現可改善記憶功能 7。另外兩篇以口服中鍵脂肪酸提升血中酮體濃度,聲稱對失智患者的認知測試有正向意義 8,9,但在日本,類似的研究卻沒有顯著差異 10。說到底,要令科學家們心悅誠服的點頭稱是,恐怕還是漫漫長路。不僅如此,仍有諸多疑點尚待釐清,比如椰子油富含的飽和脂肪酸與動脈硬化的相關性、葡萄醣代謝異常與類澱粉沉積的因果關係、長期的高酮酸狀態是否是身體的另一個負擔?

究竟,大腦的能量運轉危機是否能夠開啟失智治療的新篇章呢?且讓我們懷抱期望、但客觀以待吧。

參考資料

  1. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF, Jr. Brain metabolism during fasting. J Clin Invest 1967;46:1589 –1595. 

  2. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10: 698–712.
  3. Castellano, C.A. et al. 2015. Lower brain 18F- fluorodeoxyglucose uptake but normal 11 C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J. Alzheimers Dis43: 1343–1353. 

  4. Scholl, M. et al. 2011. Time course of glucose metabolism in relation to cognitive performance and postmortem neu-ropathology in Met146Val PSEN1 mutation carriers. J. Alzheimers Dis24: 495–506.

  5. Reiman, E.M. et al. 2004. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl. Acad. Sci. U.S.A. 101: 284–289. 
  6. Newport, M.T. et al. 2015. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement11: 99–103.
  7. Krikorian, R. et al. 2012. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 33: 425.e19– 27
  8. Reger, M.A. et al. 2004. Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 25: 311–314.
  9. Henderson, S.T. et al. 2009. Study of the ketogenic agent AC- 1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. (Lond.) 6: 31.
  10. Ohnuma T, Toda A, Kimoto A, Takebayashi R, Higashiyama R, et al. (2016) Bene ts of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: a prospective, open-label pilot study. Clin Interven Aging 11: 29-36. 
文章難易度
活躍星系核_96
752 篇文章 ・ 126 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia