0

0
0

文字

分享

0
0
0

大腦為何會利用「酮體」?生酮飲食是失智症的曙光嗎?

活躍星系核_96
・2017/11/23 ・2566字 ・閱讀時間約 5 分鐘 ・SR值 564 ・九年級
  • 文 / 許家綸|尋常一般的神經專科醫師。

著名小說魯濱遜漂流記的主角遭逢海難,孤身漂流到荒島,三餐成了他最迫切的問題。起初,他採過野果、也用僅剩不多的槍彈打獵,吃了幾頓肥羊大餐,但野果和肥羊的來源不穩定,食物短缺的恐懼總是縈繞心頭;直到他意外獲得一批種子,開始農耕生活⋯⋯。

早在西元一萬年前,人類開始耕種,相較之前的狩獵採集,農耕時代之後供的穩定糧量為日後文明發展奠下根基。在生物體中,碳水化合物分解成葡萄醣,經過糖解與氧化磷酸化作用,製造出「ATP」(Adenosine triphosphate)—— 一種細胞共通的能量貨幣,藉此趨動組織器官的運轉。

而大腦作為人體的中央處理器,僅僅只佔身體重量 2% 的大腦,卻驚人地吃掉了總能源的 20%,其中最受大腦歡迎的燃料也正是葡萄醣。

飲食可以帶給我們能量,藉此趨動組織器官的運轉,圖/by GiselaFotografie@pixabay。

大腦不斷電的秘密:隱藏的備用燃料

就像停電時備用發電機自動切換電源供源,人體也有雙電力系統。遇到飢荒、山難……等艱困時刻,當作為戰備儲糧的肝醣(glycogen)相繼用罄,血糖快速下降之際,身體隱藏的能源系統開始啟動。大量的游離脂肪酸(free fatty acid)從脂肪組織釋出,身體大部分的器官都可直接運用脂肪酸,但脂肪酸在為大腦所用之前,得先在肝藏轉成酮體(ketone body),才能穿過血腦屏障(blood brain barrier)。研究顯示,在長期挨餓的狀態,血液中的酮體濃度會提高到原來的 10-20 倍,這足以支援大腦 60% 的能源需求 1

在饑困時期轉由儲量豐沛的脂肪作為燃料,也許是生物體特化後的設計,它藉此保留重要的蛋白質與肌肉組織,為將來的生存留下一線希望。

大腦不斷電的秘密——利用體內大量的游離脂肪酸當能量,圖/by holdentrils@pixabay。

 誰都想不到,這種古老的備用系統,在竟然引發了一場飲食革命。

 失智症的根源:能源供應系統的異常?

過去 30 年,異常的β-類澱粉和 Tau 蛋白質堆積是失智病的元兇 2, 幾乎被當成一項事實寫進教科書裡。利用神經元高度仰賴葡萄醣的特性,科學家發展出葡萄醣-正子攝影(FDG-PET)並計算出腦部各區堿的葡萄醣的代謝速率,以一窺退化性大腦的能量之謎。

在早期失智症患者身上,有葡萄糖的使用率變差的現象;他們與同年齡層的健康老人相比,整體效率下降 14% 左右 3,尤其是在顳葉、頂葉與後側扣帶迴等區域。我們很自然地理解成是因為前述的異常堆積,破壞了神經元與突觸,代謝需求降低只是功能喪失後的結果。

但一些觀察性研究企圖挑戰這個論點,對一群健康但帶失智基因(Presenilin-1, Apolipoprotein E4) 的人所作葡萄醣-正子攝影 4,5,竟然也有類似的代謝下降(hypometabolism);而令人不解的是,在臨床上他們的認知功能完全正常,平均年齡更只有 30 歲左右。

失智症可能因為能量供應異常造成?圖/by chevskij@pixabay。

這又該怎麼說明呢?會不會葡萄醣不是這些大腦的最佳燃料?倘若如此那酮體利用情形又如何呢?研究輕度阿滋海默病患大腦利用酮體的能力,令人驚奇的是,結果竟與認知正常的對照組無異 3。這是否暗示古老的酮體可成為退化性大腦再運轉的關鍵?這些想法令生酮飲食的擁護者非常興奮。

編按:生酮飲食指的是高脂肪、適量蛋白質、低碳水化合物的飲食法,不同於一般均衡飲食的狀態,人體會利用碳水化合物轉化成的葡萄糖作為能量,當然也包含維持大腦運作。生酮飲食則因為攝取低碳水化合物,所以能量來源則變為利用脂肪轉換的酮體。

 美國的瑪莉-紐波特醫師便是酮體療法的著名倡議者之一,她以生酮飲食、中鍵脂脂酸、酮酯(ketone ester)等方式治療罹有失智症的先生 6,並撰文分享,她們的故事走進許多正深陷失智惡夢的家庭,令他們重燃希望。

但是⋯⋯這真有這麼神嗎?

酮體的逆襲之旅:仍是長路漫漫

回到了現實世界,其實客觀的證據還很薄弱,目前僅有寥寥幾篇的人體研究。

其中一個研究引入生酮飲食做為輕度知能障礙(Mild cognitive impairment)治療,相較於高碳水化合物飲食的對照組,6 週後發現可改善記憶功能 7。另外兩篇以口服中鍵脂肪酸提升血中酮體濃度,聲稱對失智患者的認知測試有正向意義 8,9,但在日本,類似的研究卻沒有顯著差異 10。說到底,要令科學家們心悅誠服的點頭稱是,恐怕還是漫漫長路。不僅如此,仍有諸多疑點尚待釐清,比如椰子油富含的飽和脂肪酸與動脈硬化的相關性、葡萄醣代謝異常與類澱粉沉積的因果關係、長期的高酮酸狀態是否是身體的另一個負擔?

究竟,大腦的能量運轉危機是否能夠開啟失智治療的新篇章呢?且讓我們懷抱期望、但客觀以待吧。

參考資料

  1. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF, Jr. Brain metabolism during fasting. J Clin Invest 1967;46:1589 –1595. 

  2. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10: 698–712.
  3. Castellano, C.A. et al. 2015. Lower brain 18F- fluorodeoxyglucose uptake but normal 11 C-acetoacetate metabolism in mild Alzheimer’s disease dementia. J. Alzheimers Dis43: 1343–1353. 

  4. Scholl, M. et al. 2011. Time course of glucose metabolism in relation to cognitive performance and postmortem neu-ropathology in Met146Val PSEN1 mutation carriers. J. Alzheimers Dis24: 495–506.

  5. Reiman, E.M. et al. 2004. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc. Natl. Acad. Sci. U.S.A. 101: 284–289. 
  6. Newport, M.T. et al. 2015. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement11: 99–103.
  7. Krikorian, R. et al. 2012. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 33: 425.e19– 27
  8. Reger, M.A. et al. 2004. Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 25: 311–314.
  9. Henderson, S.T. et al. 2009. Study of the ketogenic agent AC- 1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. (Lond.) 6: 31.
  10. Ohnuma T, Toda A, Kimoto A, Takebayashi R, Higashiyama R, et al. (2016) Bene ts of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer’s disease: a prospective, open-label pilot study. Clin Interven Aging 11: 29-36. 

數感宇宙探索課程,現正募資中!

文章難易度
活躍星系核_96
755 篇文章 ・ 89 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia


0

2
1

文字

分享

0
2
1

一生可以聆聽的聲音總量是註定的?戴上你的聽力計算機!

雅文兒童聽語文教基金會_96
・2022/05/17 ・3915字 ・閱讀時間約 8 分鐘
  • 文/黃上維 聽力師|雅文兒童聽語文教基金會

「早上跑了五圈操場,晚上吃個雞排加珍奶應該還好吧……」、「昨天買了一雙限量版精品鞋,這個月就不吃晚餐了……」,生活中充滿算數題,來決定我們的生活習慣與行為,其實,在聽力學領域中,也有類似概念哦!聽的刺激不夠,聽覺系統解析的功能會逐漸衰退;聽的刺激太多,聽覺系統也會感到疲勞或損傷。到底聽多少,才能剛剛好?今天就帶你揭密聆聽的守則。

世界衛生組織(World Health Organization,WHO)統計全球已超過 5% 人口有失能性聽力損失。然而,多數聽力損失可被預防,調查發現將近 50% 的年輕人使用過高的音量聆聽個人音訊設備,約 40% 經常去娛樂場所的人(包括演唱會、運動賽事)則暴露在過久的高音量下[1]。 WHO 為此著手訂定「安全聆聽」的保健策略,如同醫師及藥師給藥時會算劑量,安全聆聽需要計算聲音暴露容許量(sound allowance)。

聽得「過久」或「過大聲」都會造成傷害

聲音是一種能量,基於相等能量原理(equal energy principle),無論能量在時間上的分佈如何,相同聲能的聲音會造成一樣的永久性聽力變化,表示「長時間聆聽較低的音量」會產生與「短時間聆聽非常的大音量」相同的影響。

WHO 提出兩種標準,均以七天作為一周期[2]。當聲音能量加倍(以 3 分貝為級距),容許的時間要減半,如下圖所示,健康成人適用一般標準;「兒童、耳毒性藥物服用史」等對噪音更為脆弱的族群則適用敏感標準,其將風險起始點下修至 75 分貝(dBA)的聲音每周聆聽 40 小時。此外,視障、認知困難者及老年人,考量聽力一旦損失,對其產生的負向影響將更大,也應選用較嚴謹的標準[3]

WHO 聲音暴露容許量。分貝越高,容許時間越少。圖/作者,製作自參考資料 2

聽起來不難嗎?生活中的聲音有多大聲

當我們在身處安靜室內,隔著一張桌子與朋友聊天時,說話音量的分貝就已經有 55-60 分貝(dBA);此時若環境變得吵雜,我們也會不自覺提高說話音量,分貝來到 65 分貝,如此可見生活中的大聲音是無所不在。美國 3M 公司團隊針對超過 1700 種職業、娛樂、社區等噪音源進行實際量測或整理文獻,發表了各項分貝數值[4],本文整理生活常見情境,並將分貝範圍達 75 分貝以上者,標為警示音量。

常見聲音音量分布。淺色底表示範圍,深色底表示平均值。圖/作者,製作自參考資料 4

現在我們來將分貝數對應 WHO 的「成人聲音暴露容許量」,以果汁攪拌機為例,平均音量是 82 分貝,一周應避免超過 25 小時的從旁聆聽,這似乎是件輕鬆的事!(除非你家開果汁店那就另當別論);然而交通機車噪音平均達到 98 分貝,一周應避免超過 40 分鐘的騎乘,對被譽為「機車王國」的台灣而言,似乎就沒有那麼容易。

隱形聽力殺手:環境噪音及娛樂噪音

交通機車噪音除了來自周遭車輛與自體引擎外,氣流吹向安全帽框所產生的風切聲(wind noise)也是一來源,因此噪音量與車速、安全帽種類都有關。早在 30 年前就有研究發現,當騎乘車速約莫每小時 50 公里,佩戴全罩式安全帽的耳邊噪音量較高,為 95 分貝、佩戴 3/4 罩安全帽的耳邊噪音量較低,為 89 分貝;隨著車速提高至約莫 80 公里,兩者分別上升至 103、98 分貝(Ross B.C. , 1989)。看來,機車族不僅要思考哪種安全帽可以保護頭部安全,還得思考該如何在騎車時也保護耳朵的健康。

騎個車也可能會讓自己過度暴露在噪音中?圖/pexels

此外,隨著 3C 產品與藍芽技術推層出新,聽穿戴科技(hearable tech)結合音樂通話、健康追蹤、導航等需求,已成為「人耳兩機」的時尚趨勢,但常見智慧型手機連接耳機的最大輸出音量高達 113.1 分貝[6],當我們使用耳機聆聽,更應當留意音量大小,特別是周遭環境較吵雜時,若為了蓋過捷運、鐵路等交通噪音而不自覺加大音量,結果恐怕得不償失。

「相等能量原理」不是算命神器,你的聽力也要靠自己努力

噪音性聽損實為多重致因、複雜表徵的疾病,不單與聲音大小有關,也不單只損害「察覺」聲音的能力。首先是個體的易感性(susceptibility),基因變異或高血脂將使個人對噪音的暴露更脆弱,而營養均衡的飲食或自體生成的熱休克蛋白(能維持細胞活性、幫助細胞修復的蛋白質)則可提高個人的保護力[7][8];再者是細胞損傷的針對性,噪音導致的暫時性聽損雖有機會恢復,但長期來看恐加速與老化相關的聽損,且噪音對聽覺神經結構的破壞,將使「分辨」聲音的能力也退步[9]。因此雖單靠相等能量原理難以完美詮釋終身的噪音危害,但作為基礎的估算仍有其價值。

善用工具!落實安全聆聽

為了盡可能減少噪音性聽損的風險,許多防音防護具(hearing protection devices)已經上市,除了一般通用的耳塞、耳罩,依照不同款式與材質、正確配戴與否,所能帶來的噪音衰減評比值(Noise Reduction Rating,NRR)在 0-35 分貝間[10];臺灣亦有不少助聽器公司,能由專業聽力師為我們取下專屬耳型(ear impression),再製作成客製化耳塞,更貼合個人的耳道以提高舒適。

在特殊製防音具中,分為基於音量水平(level-dependent)或基於頻率均等的衰減(uniform attenuation)。音量水平僅針對高音量衰減,而能保留安靜情境中較低音量的語音溝通需求,通常可應用在營造、紡織、航空等高噪職業。簡單來說,這樣的技術可以過濾機械運作時產生的大聲噪音,讓作業員較輕鬆聽到其他同事的說話聲。均等的衰減技術則考慮傳統耳塞對高頻率音的衰減大於低頻率音,因此在設計上利用聲學特性對高頻音產生額外共振,這樣就能留有貼近原音的清晰音質,可供音樂家、音響工程師,及講求高音質的大眾使用[11]

客製化防噪耳塞,結合內部音管做濾音功能,預期能達到頻率均等的衰減。圖/作者

人人在手的安全聆聽幫手

響應 WHO 與國際電信聯盟(International Telecommunication Union)在 2019 年提出的安全聆聽設備標準[2],許多手機與耳機製造商已開始著手在軟硬體端導入 WHO 的聆聽標準,可由「設定」內的「聲音與觸覺回饋/音效與震動」或下載應用程式做設定,功能雖因廠牌有異,但多涵蓋下述項目:

  1. 耳機高音量通知:當聆聽超過聲音累積允許量時發出通知提醒。
  2. 降低耳機高音量:選定設備最高音量限制,系統會分析耳機音訊並降低任何超出的音訊。
  3. 即刻檢視耳機音量:在聆聽音訊時,查看當前的音量變化。
  4. 個人化音訊調節:輸入專屬的聽力圖,系統能根據個人在不同頻率的聽力程度客製化調整音訊,使聆聽感受更清晰,或許你就能稍微調降整體音量,延長聆聽的允許時間。
  5. 累積耳機音量:部分根據耳道聲學,自動計算一段時間的耳內音量,標示使用狀況屬於正常或大聲;或將聲音暴露容許量以百分比告知每日/每周聆聽的餘額。
  6. 累積環境音量:自動計算一段時間的環境音量,標示正常或大聲;或將聲音暴露容許量以百分比告知每日/每周接觸的餘額。
為了一生的聽覺健康,記得落實安全聆聽的守則。圖/pexels

噪音對健康的影響不止於聽覺,也與睡眠障礙、新陳代謝與心血管疾病、兒童的認知表現下降有關[12]。因此不論先天的聽力基礎如何,聽力保健是人人都要關心的健康議題。大家不妨現在就拿起手機與耳機、開始設定,讓智慧 3C 發揮「智慧生活」的價值,協助你我「落實安全聆聽」吧!

參考資料

  1. World Health Organization. (2021). World Report on Hearing, 40,65. Available at:https://www.who.int/publications/i/item/world-report-on-hearing
  2. World Health Organization. (2019). Safe listening devices and systems: a WHO-ITU standard, 15-16. Available at:https://www.who.int/publications/i/item/9789241515276
  3. Berglund, Birgitta, Lindvall, Thomas, Schwela, Dietrich H & World Health Organization. Occupational and Environmental Health Team. (‎1999)‎. Guidelines for community noise, 35. Available at:https://apps.who.int/iris/handle/10665/66217
  4. Elliott H. Berger, Rick Neitzel, & Cynthia A. Kladden. 3M Personal Safety Division. (2015). Noise Navigator: Sound Level Database, 39-46 Available at:https://multimedia.3m.com/mws/media/888553O/noise-navigator-sound-level-hearing-protection-database.pdf
  5. Ross B. C. (1989). Noise exposure of motorcyclists. The Annals of occupational hygiene, 33(1), 123–127. https://doi.org/10.1093/annhyg/33.1.123
  6. Kim, G., & Han, W. (2018). Sound pressure levels generated at risk volume steps of portable listening devices: types of smartphone and genres of music. BMC public health, 18(1), 481. https://doi.org/10.1186/s12889-018-5399-4
  7. Le, T. N., Straatman, L. V., Lea, J., & Westerberg, B. (2017). Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. Journal of otolaryngology – head & neck surgery, 46(1), 41. https://doi.org/10.1186/s40463-017-0219-x 
  8. 張寧家(2011)。 影響台灣勞工噪音性聽力障礙易感性相關因子之研究。高雄醫學大學醫學研究所博士學位論文。 
  9. Wu, P. Z., O’Malley, J. T., de Gruttola, V., & Liberman, M. C. (2021). Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores. The Journal of neuroscience, 41(20), 4439–4447. https://doi.org/10.1523/JNEUROSCI.3238-20.2021
  10. Centers for Disease Control and Prevention, USA. (December 11, 2018). How Do I Prevent Hearing Loss from Loud Noise? Retrieved from https://www.cdc.gov/nceh/hearing_loss/how_do_i_prevent_hearing_loss.html
  11. Patricia A. Niquette. (Mar 7, 2007). Uniform Attenuation Hearing Protection Devices. Retrieved from https://hearingreview.com/hearing-products/uniform-attenuation-hearing-protection-devices
  12. Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., & Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. Lancet, 383(9925), 1325–1332. https://doi.org/10.1016/S0140-6736(13)61613-X

數感宇宙探索課程,現正募資中!

雅文兒童聽語文教基金會_96
9 篇文章 ・ 7 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。