0

0
0

文字

分享

0
0
0

公設化集合論的奧秘(15) 突破可數無限的星航艦企業號

翁 昌黎
・2015/03/10 ・2700字 ・閱讀時間約 5 分鐘 ・SR值 525 ・七年級

Christmas Tree, Bokeh Version [362/366]
credit : CC by Tim Sackton @ flickr

延續之前的努力,我們雖然試過聯集(加法)和笛卡爾乘積(乘法),仍然沒能突破可數無限的藩籬,可見如來佛這隻手比我們想像中還要寬。在陷入困境的時刻,忽然想到在數學運算裡,減法和除法會讓數值變小,而加法和乘法會讓數值變大。但哪種運算可以讓數值增加得更「快」一些呢? 我們任意拿兩個數,比如3和5來觀察看看:

3+5 = 8      3×5= 15    35 = 243

我們發現對任意兩個正數,乘法得到的結果比加法得到的結果大,而指數運算得到的結果又比乘法大。依此進行推想,如果在集合運算裡有類似指數運算的話,那它很有可能就是我們得以突破可數無限集合的「星航艦企業號」,問題只剩下:這樣的東西存在嗎?

確實有這樣一個東西,它在日常數學(也就是非基礎數學)裡雖然並不常見,卻是集合論的「常備良藥」。我們就來見識一下它的模樣:

定義6:A和B都是集合,我們定義從A到B的所有函數所成的集合為BA = {F〡F : A→ B為函數}

這個定義很容易讓人誤以為BA指的就是函數 ƒ: A→ B,於是認為BA只不過是函數ƒ 的另一個寫法罷了,但這種誤認卻是致命的。

當我們說函數 ƒ:A→B時,我們說的是某個特定的序對集合ƒ,這些序對的前項由A的元素構成而後項則由B的元素構成,所以函數ƒ的成員由序對形成。

舉個例子就能清楚了,比如A = 2而B = 3。那麼 ƒ 會是怎樣的型態呢?有人心裡可能會嘀咕說2和3不是自然數嗎?它們怎麼能夠充當定義域和對應域來形成函數呢?之所以有這種疑惑是因為集合論的馬步沒蹲扎實所致,才會忘了自然數本身就是集合啊!(請參考《公設化集合論的奧秘 (5)》) 所以自然數2 = {0, 1},自然數3 = {0, 1, 2},因此函數

ƒ: 2 → 3 就是
ƒ: {0, 1} → {0, 1, 2}。

現在我們可以據此定義一個個別函數,比如恆等函數(identity function) ƒi: x → x,它等於序對(0, 0) 和(1, 1) 所形成的集合{(0, 0), (1, 1)}。再比如說常數函數(constant function) ƒc: x → 2,則不論是0還是1,它們的函數值都等於2,所以函數ƒc就等於序對集合{(0, 2), (1, 2)}。

有了以上的例子我們澄清了BA是從A到B的各種可能函數所形成的集合 {ƒi, ƒc, ƒs, …},而不是任何特定函數ƒk。某個特定函數 ƒ: A→ B的成員是序對,但BA的成員則是函數。接下來需要確認的是這個定義是否捕捉到指數的核心本質?我們可以問當A = 2且B = 3時,BA有幾個成員?對於定義域的兩個元素0和1來說,它們各有3種選擇來形成序對,那就是(0, 0)、(0, 1)、(0, 2)和(1, 0)、(1, 1)、(1, 2)。

若要形成任何特定的函數ƒk,就必須從前面三個序對中選出某一個,然後再配上後面序對中的任一個,比如我們從前後都選第一個序對而形成{(0, 0), (1, 0)}這種函數組合。這樣的話所有可能的組合方式共有3+3+3 = 9種,也就是共有9個函數成員,正好是BA=32 = 9。因此對於有限數值來說,BA 的定義與指數運算相契合。

最後為了表明自己是公設化集合論的內行人,請不要忘記驗證BA為「合法」集合。對於任意序對 (a, b),a∈A且 b ∈ B 來說,( a, b) ∈ A X B,由於它們是函數的元素,所以由序對構成的函數F必定是A X B的子集,也就是F ⊆ A X B。由於冪集合是把子集作為元素而形成的集合,所以F ∈ P (A X B) 。我們在《公設化集合論的奧秘 (14)》中已經證明笛卡爾乘積A X B是集合,現在面對A X B 的冪集合P (A X B),我們根據ZF7 冪集合公設得知P (A X B)也是集合,因此P (A X B)的子集BA是集合沒錯。

有了BA這個武器之後,我們發現可以將原先只限於有限數值的指數運算擴展到無限集合,比如說2N。我們想知道這個運算是否能「飛出」可數無限集合的範圍? 對於有限數值的指數運算,我們有明確的規則和定義: 比如 25 就是將2連乘5次,而對任何自然數k,2k就是將2連乘k次。在沒有定義BA之前,我們並不知道2N或2ω代表甚麼意思,但我們現在知道2N是指所有以下這種函數所成的集合:

F: {0, 1, 2, 3, 4…} → {0, 1}

這種集合的對應域很簡單,不過就是0跟1,那它看起來會像甚麼呢? 想像有一排被編上號碼的電燈泡,從最左邊的0號開始一直往右無盡延伸,越往右邊號碼越大,每個函數F就相當於一種亮燈的方式。比如若F定義域裡的所有自然數的値都對應到1,那就相當於燈泡全亮的狀態,反之如果F定義域裡的所有自然數値都對應到0,那就是燈泡全暗的狀態。依此類推,每個特定的F都表示一種亮燈狀態,而這些燈泡的各種明暗組合方式就構成2N集合。

這看起來和我們在《公設化集合論的奧秘 (7)》裡提過的全體自然數的冪集合P(N)很像,所以我們要問: 2N的尺寸是否與P(N)相同? 也就是它們的基數〡P(N)〡與〡2N〡是否相等? 要證明這一點就必須在P(N)與2N之間找到一個一對一且映成的函數ƒ,那樣就證明了〡P(N)〡=〡2N〡。

由於P (N) 的元素是某個自然數的子集A ⊆ N,所以我們的目標是要將某個A(比如{0, 1, 2})與2N的元素之間建立起函數關係,也就是在

ƒ : P(N) → 2N

之間尋找一對一且映成關係。但2N的元素本身就是函數,該如何試當選取以完成這個艱難任務呢? 我們可以試著用特徵函數(characteristic function)來充當2N的元素,其定義如下:

IA: N → {0, 1}

公設化集合15

它的意思是說如果某個x 剛好是A裡的元素,那麼它的函數值等於1,也就是這個編號的燈泡是亮的。反之若x不是A裡的元素,那函數值等於0,也就是這個編號的燈泡是暗的。因此我們可以把函數ƒ 看成是一張書面指令和燈泡明暗組合之間的對應關係,由P(N)裡挑選出來的子集A可以看成是一道指令,它裡面包含的元素就是要點亮的燈號。當這條指令經由ƒ 送到特徵函數IA時,特徵函數就根據A指令佈署亮燈的方式,若函數值為1就是亮燈,若函數值為0就關燈。

我們以A = {0, 1, 2}作例子,A裡的元素等於是指令,讓我們依據指令將那幾個編號(0, 1, 2)的燈泡點亮,因此特徵函數據此進行判別之後就決定了一種亮燈的方式,也就是只有前3盞燈是亮的,而編號2之後的所有燈泡全是暗的。很容易可以看出若指令不同的話,也就是A ≠ B,則亮燈的方式也會有所不同,也就是IA ≠ IB。這就表示

ƒ : P(N) → 2N
A → IA

為一對一函數。反之對任何一種亮燈方式,也就是特徵函數IA,我們都可以找到某個指令A ∈ P(N) 使得ƒ (A) = IA,因此ƒ為映成。既然ƒ 為一對一且映成函數,所以它們等量,也就是〡P(N)〡=〡2N〡。

由於康托的對角線方法已經證明P(N)為不可數集合,因此與它等量的2N也同樣為不可數集合。終於成功了!2N運算讓我們擺脫可數無限的枷鎖而得以遨遊太虛之中,直達玄妙的不可數無限的領地,我們也使得冪集合P (N) 與2N在此相遇。從無限尺寸的觀點來看,它們(P(N)和2N)是同一個東西。在《公設化集合論的奧秘 (11)》裡我們證明了實數也是不可數的,那麼P(N)和2N與實數的尺寸是否一樣大呢?有辦法可以證明嗎?這就只有等下回再分解了。

文章難易度
翁 昌黎
18 篇文章 ・ 4 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。

0

2
2

文字

分享

0
2
2
【成語科學】運籌帷幄:古人不用筆算數學?一隻小竹棍居然可以開三次方根、解方程式!
張之傑_96
・2023/07/28 ・1261字 ・閱讀時間約 2 分鐘

劉邦(漢高祖)打敗項羽,取得天下,建立漢朝。一天舉行盛大宴會,他問群臣:「我為什麼會勝?項羽為什麼會敗?」群臣都說劉邦善於用人,項羽恰恰相反。劉邦點頭稱是,司馬遷在《史記‧高祖本紀》記下劉邦說的一段話

夫運籌帷幄之中,決勝於千里之外,吾不如子房。

帷幄,指營帳子房,是張良的字籌,指算籌,是古時的運算工具。這段話的意思是說,張良在營帳中運用算籌計算,就能決勝千里之外,這方面我(劉邦)不如張良。因此,這個成語的原意是在營帳中策劃謀略,後來泛指謀劃或指揮。讓我們造兩個句吧。

要不是孔明運籌帷幄,劉備哪有三分天下的機會!

在里長的運籌帷幄下,為社區更新取得有利的條件。

不用筆,那用什麼?

成語的出典說了,句子也造了,接下去就要談談這個成語的科學意義。我們現在演算數學,都是用筆在紙上運算,也就是筆算。古人呢?古人從來不用筆算,而是使用工具運算。元代以前使用算籌,元代以後使用算盤

算盤一直使用到 1980 年代,小朋友家裡可能還有。至於算籌,只有少數博物館裡才能看到。

國立自然科學博物館內藏的漢朝骨製算籌複製品。圖/wikipedia

其實算籌只是一根根小竹棍,外形和筷子差不多。小朋友千萬不要看輕這些小竹棍,中國古代的數學曾經輝煌一時,就是用這些小竹棍運算出來的。

驚人的運算能力 曾經輝煌一時的數學成就

算盤被木框框住,計算能力受到限制。凡是算盤能算的,算籌一定能算。反過來,算籌所能算的,算盤就不見得勝任。算盤主要是生意人用的,算籌可作各種運算,數學家喜歡用它。中國的數學宋代發展到顛峰,元代以後不進反退,到了明代已沒人懂得宋代的數學了。

算籌平時放在算袋裡,繫在腰上,運算時取出,在席子上或桌子上擺弄。除了加減乘除,還能開平方、開立方,甚至解高次方程等高中才學得到的數學!關於算袋,有個小故事,傳說秦皇島東巡時,把算袋扔到海裡,變成了烏賊,所以烏賊又稱算袋魚。

十四世紀朱世傑《四元玉鑒》中的「古法七乘方圖」,紀錄宋代展出的「楊輝三角形」,就是我們現在所說的「巴斯卡三角形」。圖中一根根長條物就是當時用來計算的「算籌」。楊輝三角形的產生也顯見宋代數學已經發展出高次多項式的乘法。圖/wikipedia

數學家用算籌運算時,有時擺弄得極快,不要說外行人,連內行人的眼睛幾乎都跟不上,所以古人用「運籌如飛」來形容。因此,用算籌運算,運算過程不會留下記錄,一陣擺弄之後,最後得出答案。這對一般才質的人來說,學起來的確有點困難。

張之傑_96
103 篇文章 ・ 221 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

1
0

文字

分享

0
1
0
跳脫古典數學邏輯!直覺主義的興起——《大話題:邏輯》
大家出版_96
・2023/04/08 ・1479字 ・閱讀時間約 3 分鐘

非古典邏輯:直覺主義

布勞威爾 (1881 – 1966)是最早脫離所謂「古典邏輯」系統的學者之一。他反對弗雷格和羅素將數學化約為邏輯的構想,認為數學根基於我們對某些基本數學物件(如數字和直線)的「直覺」,因此他的學說便稱為「直覺主義」。

直覺主義。圖/大話題:邏輯

惡魔論證

布勞威爾主要將焦點擺在無限集合和序列上,例如所有正數的集合和無理數(如 π 和)小數點後的數字形成的序列等等。他的論證大致如下:

我邏輯上能證明 666 這個序列一定會出現在任何無理數(如 π)的擴張裡。因為若主張 666 不在裡面,就代表 666 不出現在 π 的小數點後數字的任何地方,但這一點在數學上是無法證明的。就算世界上所有白紙都寫滿π的小數點後數字,還是有無限多的數字沒檢查到。

惡魔論證。圖/大話題:邏輯。

直覺邏輯的興起

雖然布勞威爾只想證明有些數學證明的方式和邏輯證明不同,但有些人發現他的論證也能用來證明某些數學領域的邏輯和其他數學領域不同,甚至有些人還據以建構出一套邏輯系統,並嘗試證明這套邏輯適用於所有數學領域。這套系統就叫「直覺邏輯」。

直覺邏輯系統。圖/大話題:邏輯。

直覺主義 v.s. 歸謬法

直覺邏輯有一個關鍵特點,就是不能用萊布尼茲的歸謬法。歸謬法是先假設某個數學陳述的否定為真,然後導出矛盾,進而證明該陳述為真。但要從「某事的否定為假」推導出「某事為真」就得仰賴排中律,因此在某些數學領域裡,歸謬法並不符合數學應該運作的方式,也就是從公理推導出數學語句。

直覺邏輯與歸謬法互相對立。圖/大話題:邏輯。

直覺主義的數學熱潮

上述問題在 1930 年代引發了一波新的數學熱潮,不少學者嘗試用直覺邏輯替一些常用的基本數學陳述找到證明,也確實找到了不少。

數學系和哲學系紛紛成立,新的學術領域也隨之誕生。就連希爾伯特的方法明明是直覺邏輯的對手,也被加以改造,只使用得到認可的直覺主義程序。直到這股風潮引起了哥德爾的注意。

儘管後來學者對這場爭辯的興趣削弱了一些,但「唯有構造性證明才能確保一個陳述句為真」的基本看法至今仍然得到不少邏輯學家、數學家、科學家和哲學家支持。

許多人試著用直覺邏輯替數學陳述找證明。圖/大話題:邏輯。

處理未來陳述句的老問題

大約同一時期,波蘭數學家盧卡西維茨(1897 – 1956)1920 年提出的構想勾起了一些學者的興趣。此前十多年,這個構想從來不曾在波蘭以外的地區引起多大反應。盧卡西維茨當時想解決的,是從亞里斯多德到羅素都面對過的老問題。

編按:「如何判斷大笨鐘一千年後會遇上大雪」這句話的真值?

未來陳述句是邏輯無法確認之事。圖/大話題:邏輯。

——本文摘自《大話題:邏輯》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

大家出版_96
14 篇文章 ・ 8 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。

0

1
0

文字

分享

0
1
0
白馬 ≠ 馬?當陳述句變成數學邏輯等式!——《大話題:邏輯》
大家出版_96
・2023/04/07 ・2243字 ・閱讀時間約 4 分鐘

從簡單陳述句轉變為複合句——「連接詞」

大約一百年後,克律西波斯(c.280 – c.206 BC)改變了邏輯的關注焦點,從簡單的主述詞陳述句轉向「蘇格拉底是人,且芝諾也是人」之類的複合句。

這是很大的進展。當時甚至有人說「克律西波斯的邏輯就是神會用的邏輯」。我們稍後會見到,克律西波斯的邏輯也是人類使用的邏輯,只不過我們還得等兩千年才會明白這一點。

複合句使用的連接詞不同,其真假受個別句子影響的方式也不同。

出現了「且」、「和」等連接詞。圖/大話題:邏輯。

譬如「不是…就是…」這個連接詞組可以這樣用,也只有「不是…就是…」這個連接詞組可以這樣用:

編按:「不是」穆罕默德到山那邊,「就是」山到穆罕默德這邊。

其後一千五百年甚至更久,克律西波斯沒有對邏輯留下多少影響。不僅因為他的作品失傳了,只留下他人的轉述,也因為亞里斯多德成了天主教會的心頭好。

「不是」;「就是」的應用。圖/大話題:邏輯。

萊布尼茲定律

接下來兩千年,邏輯學家建構出愈來愈多三段論,有些甚至前提不只兩個。這些邏輯學家就像煉金術士,拿著概念拼拼湊湊,想辦法生出有效論證。最後有一個人在這股狂熱當中想出了方法,那人就是萊布尼茲(1646 – 1716)。

萊布尼茲想到的方法是將陳述句看成代數裡的等式。等式使用等號(=)來表達式子兩邊數值相等。

例如:x2 + y2 = z2

萊布尼茲將等號帶進邏輯裡,用來指稱 a 和 b 等同。

萊布尼茲定律的陳述句。圖/大話題:邏輯。

自此之後,這個等同式就叫做「萊布尼茲定律」。萊布尼茲將 a = b 拆成兩個不可分割的述句「a 是 b」和「b 是 a」,意思是「所有 a 都是 b」和「所有 b 都是 a」。

例如:「所有單身漢都是沒結婚的男人,且所有沒結婚的男人都是單身漢。」

若 a 和 b 等同,那麼陳述句裡的 a 就算換成 b,這個陳述句的真假顯然不會隨之改變。例如,「蘇格拉底是沒結婚的男人,沒結婚的男人是單身漢,因此蘇格拉底是單身漢」。

這個定律很重要,因為有了它,我們就能以有限多的步驟來判斷近乎無限多的句子的真值。萊布尼茲使用的步驟數是四個。

陳述句中的等同式。圖/大話題:邏輯。

1. a = a

例:「蘇格拉底是蘇格拉底。」

2. 若 a 是 b,且 b 是 c,則 a 是 c

例:「所有人都會死,蘇格拉底是人,所以蘇格拉底會死。」

說「a 是 b」就等於說「所有 a 都是 b」。

3. a =非(非 a)

例:「如果蘇格拉底會死,則蘇格拉底不是不會死的。」

4. a 是 b = 非 b 是非 a

例:「蘇格拉底是人,意思是如果你不是人,你就不是蘇格拉底。」

利用這四個簡單的法則,萊布尼茲就能證明所有可能出現的三段論。比起亞里斯多德的四角對當,這才是人類史上第一個真正的真理理論,因為它使用事先定下的法則,藉由代換等同的符號(同義詞)來導出結論。

非真即假的歸謬法

萊布尼茲最常用的證明方法是一個極為重要的邏輯工具,深受後世邏輯學家和哲學家喜愛。他稱呼這個方法為歸謬法。

這個工具很簡單,卻好用得驚人,自萊布尼茲發明以來便廣獲使用。我們用一個例子來講最清楚。

檢驗「打籃球」得陳述句是否為真?圖/大話題:邏輯。

使用歸謬法時,我們先假設要檢驗的那個陳述句為真,再看它能導出哪些結論。如果導出的結論互相矛盾,我們就知道那個陳述句是假的,因為矛盾永遠為假。

歸謬法有一大好處,那就是即使我們不知道如何證明,也能判斷一個陳述句的真假;只要證明這個陳述句的否定會導出矛盾,就知道它是真的了。

歸謬法僅用真假二分,但卻沒有提出證明。圖/大話題:邏輯.

新工具

「我發明的這個工具完全使用理性,是裁決爭議的判官、解釋概念的權威、衡量可能性的天平、指引我們穿越經驗之海的指南針,是萬物的清單、思想的表格、檢視事物的顯微鏡、預測遙遠事物的望遠鏡、通用的演算法、不使詐的魔術、不空妄的計謀,也是人人都能用自己的語言閱讀,所及之處皆會帶來真宗教的經文。」

萊布尼茲致信漢諾威公爵,1679 年

不難想見,天主教會將萊布尼茲視為異端。但「思想有其必然法則」的想法卻對西方哲學家產生了深遠的影響,包括康德、黑格爾、馬克思和羅素。

萊布尼茲的思想影響到後世許多西方哲學家。圖/大話題:邏輯。

——本文摘自《大話題:邏輯》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

大家出版_96
14 篇文章 ・ 8 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。