Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

公設化集合論的奧秘(15) 突破可數無限的星航艦企業號

翁 昌黎
・2015/03/10 ・2700字 ・閱讀時間約 5 分鐘 ・SR值 525 ・七年級

-----廣告,請繼續往下閱讀-----

Christmas Tree, Bokeh Version [362/366]
credit : CC by Tim Sackton @ flickr

延續之前的努力,我們雖然試過聯集(加法)和笛卡爾乘積(乘法),仍然沒能突破可數無限的藩籬,可見如來佛這隻手比我們想像中還要寬。在陷入困境的時刻,忽然想到在數學運算裡,減法和除法會讓數值變小,而加法和乘法會讓數值變大。但哪種運算可以讓數值增加得更「快」一些呢? 我們任意拿兩個數,比如3和5來觀察看看:

3+5 = 8      3×5= 15    35 = 243

我們發現對任意兩個正數,乘法得到的結果比加法得到的結果大,而指數運算得到的結果又比乘法大。依此進行推想,如果在集合運算裡有類似指數運算的話,那它很有可能就是我們得以突破可數無限集合的「星航艦企業號」,問題只剩下:這樣的東西存在嗎?

確實有這樣一個東西,它在日常數學(也就是非基礎數學)裡雖然並不常見,卻是集合論的「常備良藥」。我們就來見識一下它的模樣:

-----廣告,請繼續往下閱讀-----

定義6:A和B都是集合,我們定義從A到B的所有函數所成的集合為BA = {F〡F : A→ B為函數}

這個定義很容易讓人誤以為BA指的就是函數 ƒ: A→ B,於是認為BA只不過是函數ƒ 的另一個寫法罷了,但這種誤認卻是致命的。

當我們說函數 ƒ:A→B時,我們說的是某個特定的序對集合ƒ,這些序對的前項由A的元素構成而後項則由B的元素構成,所以函數ƒ的成員由序對形成。

舉個例子就能清楚了,比如A = 2而B = 3。那麼 ƒ 會是怎樣的型態呢?有人心裡可能會嘀咕說2和3不是自然數嗎?它們怎麼能夠充當定義域和對應域來形成函數呢?之所以有這種疑惑是因為集合論的馬步沒蹲扎實所致,才會忘了自然數本身就是集合啊!(請參考《公設化集合論的奧秘 (5)》) 所以自然數2 = {0, 1},自然數3 = {0, 1, 2},因此函數

-----廣告,請繼續往下閱讀-----

ƒ: 2 → 3 就是
ƒ: {0, 1} → {0, 1, 2}。

現在我們可以據此定義一個個別函數,比如恆等函數(identity function) ƒi: x → x,它等於序對(0, 0) 和(1, 1) 所形成的集合{(0, 0), (1, 1)}。再比如說常數函數(constant function) ƒc: x → 2,則不論是0還是1,它們的函數值都等於2,所以函數ƒc就等於序對集合{(0, 2), (1, 2)}。

有了以上的例子我們澄清了BA是從A到B的各種可能函數所形成的集合 {ƒi, ƒc, ƒs, …},而不是任何特定函數ƒk。某個特定函數 ƒ: A→ B的成員是序對,但BA的成員則是函數。接下來需要確認的是這個定義是否捕捉到指數的核心本質?我們可以問當A = 2且B = 3時,BA有幾個成員?對於定義域的兩個元素0和1來說,它們各有3種選擇來形成序對,那就是(0, 0)、(0, 1)、(0, 2)和(1, 0)、(1, 1)、(1, 2)。

若要形成任何特定的函數ƒk,就必須從前面三個序對中選出某一個,然後再配上後面序對中的任一個,比如我們從前後都選第一個序對而形成{(0, 0), (1, 0)}這種函數組合。這樣的話所有可能的組合方式共有3+3+3 = 9種,也就是共有9個函數成員,正好是BA=32 = 9。因此對於有限數值來說,BA 的定義與指數運算相契合。

-----廣告,請繼續往下閱讀-----

最後為了表明自己是公設化集合論的內行人,請不要忘記驗證BA為「合法」集合。對於任意序對 (a, b),a∈A且 b ∈ B 來說,( a, b) ∈ A X B,由於它們是函數的元素,所以由序對構成的函數F必定是A X B的子集,也就是F ⊆ A X B。由於冪集合是把子集作為元素而形成的集合,所以F ∈ P (A X B) 。我們在《公設化集合論的奧秘 (14)》中已經證明笛卡爾乘積A X B是集合,現在面對A X B 的冪集合P (A X B),我們根據ZF7 冪集合公設得知P (A X B)也是集合,因此P (A X B)的子集BA是集合沒錯。

有了BA這個武器之後,我們發現可以將原先只限於有限數值的指數運算擴展到無限集合,比如說2N。我們想知道這個運算是否能「飛出」可數無限集合的範圍? 對於有限數值的指數運算,我們有明確的規則和定義: 比如 25 就是將2連乘5次,而對任何自然數k,2k就是將2連乘k次。在沒有定義BA之前,我們並不知道2N或2ω代表甚麼意思,但我們現在知道2N是指所有以下這種函數所成的集合:

F: {0, 1, 2, 3, 4…} → {0, 1}

這種集合的對應域很簡單,不過就是0跟1,那它看起來會像甚麼呢? 想像有一排被編上號碼的電燈泡,從最左邊的0號開始一直往右無盡延伸,越往右邊號碼越大,每個函數F就相當於一種亮燈的方式。比如若F定義域裡的所有自然數的値都對應到1,那就相當於燈泡全亮的狀態,反之如果F定義域裡的所有自然數値都對應到0,那就是燈泡全暗的狀態。依此類推,每個特定的F都表示一種亮燈狀態,而這些燈泡的各種明暗組合方式就構成2N集合。

-----廣告,請繼續往下閱讀-----

這看起來和我們在《公設化集合論的奧秘 (7)》裡提過的全體自然數的冪集合P(N)很像,所以我們要問: 2N的尺寸是否與P(N)相同? 也就是它們的基數〡P(N)〡與〡2N〡是否相等? 要證明這一點就必須在P(N)與2N之間找到一個一對一且映成的函數ƒ,那樣就證明了〡P(N)〡=〡2N〡。

由於P (N) 的元素是某個自然數的子集A ⊆ N,所以我們的目標是要將某個A(比如{0, 1, 2})與2N的元素之間建立起函數關係,也就是在

ƒ : P(N) → 2N

之間尋找一對一且映成關係。但2N的元素本身就是函數,該如何試當選取以完成這個艱難任務呢? 我們可以試著用特徵函數(characteristic function)來充當2N的元素,其定義如下:

-----廣告,請繼續往下閱讀-----

IA: N → {0, 1}

公設化集合15

它的意思是說如果某個x 剛好是A裡的元素,那麼它的函數值等於1,也就是這個編號的燈泡是亮的。反之若x不是A裡的元素,那函數值等於0,也就是這個編號的燈泡是暗的。因此我們可以把函數ƒ 看成是一張書面指令和燈泡明暗組合之間的對應關係,由P(N)裡挑選出來的子集A可以看成是一道指令,它裡面包含的元素就是要點亮的燈號。當這條指令經由ƒ 送到特徵函數IA時,特徵函數就根據A指令佈署亮燈的方式,若函數值為1就是亮燈,若函數值為0就關燈。

我們以A = {0, 1, 2}作例子,A裡的元素等於是指令,讓我們依據指令將那幾個編號(0, 1, 2)的燈泡點亮,因此特徵函數據此進行判別之後就決定了一種亮燈的方式,也就是只有前3盞燈是亮的,而編號2之後的所有燈泡全是暗的。很容易可以看出若指令不同的話,也就是A ≠ B,則亮燈的方式也會有所不同,也就是IA ≠ IB。這就表示

ƒ : P(N) → 2N
A → IA

-----廣告,請繼續往下閱讀-----

為一對一函數。反之對任何一種亮燈方式,也就是特徵函數IA,我們都可以找到某個指令A ∈ P(N) 使得ƒ (A) = IA,因此ƒ為映成。既然ƒ 為一對一且映成函數,所以它們等量,也就是〡P(N)〡=〡2N〡。

由於康托的對角線方法已經證明P(N)為不可數集合,因此與它等量的2N也同樣為不可數集合。終於成功了!2N運算讓我們擺脫可數無限的枷鎖而得以遨遊太虛之中,直達玄妙的不可數無限的領地,我們也使得冪集合P (N) 與2N在此相遇。從無限尺寸的觀點來看,它們(P(N)和2N)是同一個東西。在《公設化集合論的奧秘 (11)》裡我們證明了實數也是不可數的,那麼P(N)和2N與實數的尺寸是否一樣大呢?有辦法可以證明嗎?這就只有等下回再分解了。

-----廣告,請繼續往下閱讀-----
文章難易度
翁 昌黎
18 篇文章 ・ 5 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
替晶片打造數學工具的喬治.布爾(George Boole)
數感實驗室_96
・2024/06/01 ・561字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

煮湯時看到調理包背面寫著「加水且加入鹽巴或味精,就大功告成了」。

這句話該怎麼解讀呢?邏輯思維好的人可能很快就能反應過來,意思是加水是必須的,鹽巴和味精至少要加一個。當然,兩者都加也行,但似乎不太健康。

你可能會說:「煮湯時誰會想那麼多?這太哲學了!」其實,19 世紀有位數學家將邏輯建立在數學而非哲學之上,他的貢獻深深影響了現代電腦的運算。他就是我們今天的主角——喬治.布爾(George Boole)。

-----廣告,請繼續往下閱讀-----

在工作會議中,清晰的邏輯思維能幫助我們有條理地表達觀點,並迅速理解他人的意見;程式設計中,邏輯是核心,透過布林代數和邏輯運算,電腦能根據條件執行不同的任務,在智慧家電中利用邏輯閘判斷多個輸入條件來控制輸出結果。

因此,布爾提出的這一套邏輯思維與布林代數,不僅在學術領域至關重要,更是日常生活中不可或缺的工具。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

30
1

文字

分享

0
30
1
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。