1

0
0

文字

分享

1
0
0

公設化集合論的奧秘(12) 為什麼宇集不存在?

翁 昌黎
・2015/02/11 ・2821字 ・閱讀時間約 5 分鐘 ・SR值 559 ・八年級

credit:wiki
credit:wiki

文 / 翁昌黎(《孔恩vs.波普》中文譯者)

許多人在學習集合論的過程中經常會聽到一個說法,那就是所有的集合都是從宇集(universe)—也就是所有集合所成的集合—裡拿出來的,彷彿先要有個上帝般的宇集,隨後所有的集合才從那裡生出。好比你要學習天文學,有人會告訴你我們住在一個大爆炸之後的廣大宇宙裡,然後依序介紹衛星、行星、恆星、太陽系、銀河系、星系團等等天文學「物件」。先給個最大的概念舞台,然後再進入舞台上的佈景和道具的細節,這樣的理解過程似乎合情合理。可是對集合論來說,這樣的說法是災難性的,不只是由於宇集的概念充滿詭異,而是宇集根本就不存在!

這到底是怎麼回事?才剛開始要碰觸現代數學核心的集合論概念,卻從一個完全錯誤的起點出發,這難道不讓人背脊發涼嗎?那就先來看看宇集到底長甚麼樣子吧!一般我們用大寫的V來代表宇集,所以根據素樸集合論的概括公設原理(請參考《公設化集合論的奧秘 (3)》),宇集就是:

V= {x〡x是個集合}   或者

-----廣告,請繼續往下閱讀-----

V = {x〡x=x} (庫能等人使用這個寫法)

它們的意思很清楚,只要算是個集合都可以放進我們的大百寶箱V裡邊。但這樣做為什麼會有問題呢?既然要研究集合,那我們事先把所有的集合通通蒐羅起來形成一個最完整的集合有甚麼錯呢?

我們來觀察一下這個集合的形式有甚麼奇特之處,既然V是所有集合所成的集合,那V裡邊一定得有它自己,否則的話它就沒資格宣稱自己是包含所有集合的集合。因此V必然會有如下這種形態:

V= {a, b, c, d, e, … , V, x, y, z, …}

-----廣告,請繼續往下閱讀-----

按照道理,宇集內部那個V(我們已經標成紅色)跟外面那個V是一樣的,因為宇集既然是宇宙間所有集合的集合,那它就是最大的集合,所以必然只有唯一的一個最大集合。因此:

V = {a, b, c, d, e, … , V, x, y, z, …}

把這個紅V套上去就應該是底下這種樣子:

V= {a, b, c, d, e, … , {a, b, c, d, e, … , V, x, y, z, …}, x, y, z, …}

-----廣告,請繼續往下閱讀-----

而更裡面那個標紅的V也必定是複制了同樣的形態:

{a, b, c, d, e, … , V, x, y, z, …}

像這樣無窮無盡層層疊疊複制下去,永無盡頭。

頭被搞暈了吧?這樣的怪物到底是甚麼?雖說這樣的造形讓人頭暈目眩,但我們還是沒有充分的理由說它不存在。要如何證明它存在或不存在呢?如果你懷疑這樣的集合不存在該怎麼做呢?有一個很符合邏輯的想法就是,既然V「揚言」自己是所有集合所成的集合,那如果我們能夠製造出一個集合,然後證明它不在V裡,不就拆穿V的牛皮了嗎?但去哪裡找這個集合呢?

-----廣告,請繼續往下閱讀-----

俗話說踏破鐵鞋無覓處,忽然想起一個老朋友R = { x 〡x ∉ x},它不就是在《公設化集合論的奧秘 (3)》裡所談到的羅素詭論集合嗎?我們將其稍加改裝成為如下集合:

B = {x ∈ V 〡: x ∉ x}

這個微小的差異在於現在有個號稱包含一切集合的V,那麼任何集合都必須是它的成員才行,所以有x ∈ V這個條件。我們還可以接著問,B集合是它自己的成員嗎?如果是的話,那麼B ∈ B,則B必須符合上述集合的條件,也就是B ∈ VB ∉ B

把它寫成數理邏輯式就是:

-----廣告,請繼續往下閱讀-----

(L1)   B ∈ B ⇒ (B ∈ V) · (B ∉ B)    (其中黑點為and的意思)

反過來說,如果B ∉ B,那麼根據假設,V包含一切集合,所以B ∈ V,這樣的話B剛好又符合集合B = {x ∈ V 〡: x ∉ x}的條件,所B ∈ B

整理成理邏輯式就成了:

(L2)    (B ∈ V) · (B ∉ B) ⇒ B ∈ B

-----廣告,請繼續往下閱讀-----

把(L1)和(L2)組合起來可以得到一個雙條件句:

(L3)     B ∈ B ⇔ (B ∈ V) · (B ∉ B) 

學過一點數理邏輯的人都知道,符號⇔兩邊的邏輯語句等值,也就是兩邊必須同為真或同為假整個邏輯式才能成立。但由於B ∉ BB ∈ B的否定,所以它們必定一真一假,那麼邏輯式 (L3) 為真的唯一希望就是B ∈ V為假了。因為若B ∈ V為真,那兩邊的另兩個語句永遠一真一假,(L3) 就永遠沒有成真的希望了。因此根據邏輯,我們得出B ∈ V為假,也就是B ∉ V

這個結論的重要性在於既然有一個集合B不在V裡,那表示V根本不是包含一切集合的集合,牛皮終於吹爆,詐騙案宣告偵破。換句話說,那樣的集合V並不存在。

-----廣告,請繼續往下閱讀-----

因此宇集V和羅素集合R一樣,都會導致邏輯矛盾,因此都成為公設化集合論「掃黑」的對象。在集合論發展的過程裡,對於排除這種搗蛋分子有兩條路線,一個是我們一開始採用的ZF集合論,它直接將這種龐然怪物趕出集合的園子,塑造了一個純淨的理念世界,其中只有一種物件(集合)和一種關係(∈),不需要其他多餘的材料。

ZF系統如何處理羅素詭論我們已經在《公設化集合論的奧秘(4)》裡談過了,現在簡短介紹一下另一條路線的主要系統NBG如何面對這種邏輯困境。所謂NBG是這個系統的三個主要貢獻者的名字縮寫,這個陣容也是夠嚇人的。N是被稱為神童的電腦之父馮·紐曼(John von Neumann),B是瑞士知名數學家伯納斯(Paul Bernays),證明論的現代奠基者根岑(Gerhard Gentzen)就是他的弟子,G不用說就是大名鼎鼎的哥德爾。

NBG系統的最大特徵是它用(class)來函蓋所談論的理論對象,集合是類的一種,而那些不屬於集合的V和R則稱為真類(proper class),但在ZF系統裡是不談論真類的,所以在進入NBG系統之前必須先定義好集合和真類以免混淆。一般用M(X)來代表X是個集合,用邏輯表達式(∃Y)( X∈Y)來定義。它的意思是說如果X是集合,那它可以被登記在另一個集合之下成為它的成員。但真類無法這樣,所以它的定義就是M(X)的否定(寫成¬M(X)),因為它們無法被登記在任何集合之下成為成員,所以真類不是集合。或者換個說法,如果一個類可以登記在其他集合名下,那這個類就稱為集合,如果不可以登記在任何集合名下就稱之為真類。

按照這個新規定,我們發現之前為宇集V所做的造型

V= {a, b, c, d, e, … , V, x, y, z, …}就不能存在了。

首先紅V沒有資格登記在任何集合名下,況且外邊那個V(當然是同一個V)也不是集合,兩個集合的條件都不符合,在這種裡外不是人的情況下,我們之前對宇集那令人頭昏腦脹的構造方式瞬間煙消雲散,好似鬼魅夜間幻化的亭台樓閣到了白晝只剩下荒草間的荒塚。

雖然NBG理論系統可以合法談論真類,算是一種擴張了的類理論而不僅是集合論,但從集合和真類的定義(也就是M(X)¬M(X))可以知道,類並不是集合。所以在集合論的領域裡,兩者並無本質差異,也就是NBG並沒有因為加入真類而推導出某些ZF所沒有的定理。

由於真類會在集合系統裡引發邏輯矛盾,所以NBG將其納入並非改變或擴展集合的定義,只是一種權宜之計。它認為在探討一個理論時,若給「非集合」一個代表符號則能增加理論符號系統的表達力,對理論探索來說不見得是壞事。正如聊齋裡談到很多鬼靈精怪的故事,它給我們增加了許多生活的樂趣,但不表示這些名稱所說的東西就真的存在。

僅管NBG有那麼強的卡司陣容和理論表達力,但在集合論領域的普及程度卻趕不上ZF,其中一個原因還是在於理論的簡潔和美感。ZF集合論讓你看到一個純淨而單一的世界,裡面沒有塵土只有琉璃和寶石,沒有魑魅魍魎只有潔白的柏拉圖地磚。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
翁 昌黎
18 篇文章 ・ 6 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

0
0

文字

分享

1
0
0
公設化集合論的奧秘(18) 優雅的等式〡R〡=〡P(N)〡=〡2^N〡
翁 昌黎
・2015/04/02 ・3222字 ・閱讀時間約 6 分鐘 ・SR值 537 ・八年級

Georg Cantor credit:wiki
Georg Cantor
credit:wiki

有一種說法認為集合論的發明是在1873年12月,精確地說是1873年12月7日,因為那一天康托證明了連續統(continuum)是不可數的,所以應該把那一天當成現代集合論的生日。不論你是否同意這個出生證明,但康托1873年年底所用的證明方法並非後來廣為人知的對角線法,也就是我們在《公設化集合論的奧秘 (11)》所採用的方法,對角線法的提出要到大約19年後的1892年才公諸於眾。

但從那一天起,人類對無限的了解進入了一個全新的階段,我們知道實數(連續統)比自然數還大。在證明實數是不可數之後,我們可否進一步下結論說自然數的冪集合P(N)與實數的尺寸一樣大,因為它們都是不可數集合?在沒發現不可數集合之前,我們原以為無限只有一種,那就是像自然數一樣可以從0, 1, 2, 3, 4, 5, 6 … 一直往下數沒有盡頭這種無限,直到這種想法被康托的證明方法擊碎。有了這個教訓,我們最好更加謹慎,任何直觀的想法都應該由嚴格的證明來確認,所以尋找證明是必要的工作。

假如要證明實數集合R與P(N) 等量,那麼根據定義1 (請參考《公設化集合論的奧秘 (8)》) ,就必須找到一個一對一且映成的函數F: R → P(N)才行。但這可不是件容易的事,我們如何在浩如星辰的實數和全體自然數的冪集合之間找到這種一一對應呢?先別失望,我們之前介紹的戴德金左集合(請參考《公設化集合論的奧秘 (16)》《公設化集合論的奧秘 (17)》)或許可以在此危難之際發揮作用。由於戴德金實數是由一堆有理數(實際上是可數無限個)來定義的,這給了我們一個透視實數集合結構的絕佳機會。

-----廣告,請繼續往下閱讀-----

既然每個戴德金實數就相當於無限多個有理數的集合,比如0被定義為 {q〡q ∈ Q 且q<0},也就是所有負有理數的集合,那我們正好可以定義一個一對一的恆等函數,使得每個實數r (相當於一個戴德金左集合)對應到一個相等的有理數子集合:

f: R → P(Q)

 r → r

也就是說定義域R裡裝了哪一堆有理數那我的値域就取同樣一堆有理數來配對,因為這樣一堆有理數正好符合對應域P(Q)的定義條件—全體有理數的子集合。這麼容易就完成證明啦?還是個恆等函數,這也簡單到有點欺負人了吧!

-----廣告,請繼續往下閱讀-----

且慢,有兩個問題尚待解決。首先,我們所要證明的函數關係是從 R → P(N)而不是R → P(Q)。其次,R和P(N)等量的條件是找到一個一對一且映成的函數,但我們剛剛找的f: R → P(Q)只滿足一對一的條件卻不映成,這一點可以很容易看出來。由於戴德金實數必定由無限個有理數所構成,因為左集合會往負數方向無限伸展,可是對於P(Q)來說,它顯然也必須包含由有限元素所構成的集合,比如{1/6, 37, 522}就是Q的一個有限子集合,但我們無法找到與之相對應的戴德金實數r

現在回顧《公設化集合論的奧秘 (14)》裡的定義:

定義5如果在集合A和B之間存在一個一對一函數ƒ : A→B,則說A小於或等量於B,寫成A ≤ B。相當於〡A〡≤  〡B〡,也就是A的基數小於等於B的基數。

由這個定義得知,我們目前能確定的只是〡R〡≤ 〡P(Q)〡,而不是〡R〡= 〡P(N)〡。證明定理有時候就像擬訂作戰策略,對於無法一次消滅的敵人,你要分段把它逐步吃掉,而不能急於蟒蛇吞象最後把自己噎死。千萬不要輕忽每一次的小進展,那就讓我們把以上成果當成是一個好的開始吧。

-----廣告,請繼續往下閱讀-----

有了半壁江山,就想辦法湊出另一半吧!這提醒我們之前提到的施洛德—伯恩斯坦定理(Schröder-Bernstein theorem) ,它的一般表述形式是:

對任意集合A和B,如果〡A〡≤ 〡B〡〡B〡≤ 〡A〡

〡A〡=〡B〡

這個定理的威力在於它允許我們使用和有限數值一樣的方式來辨認集合的尺寸。比如有兩個數a和 b,如果a ≤ b 而且b ≤ a的話,那一定會得出a = b,施洛德—伯恩斯坦定理把這層關係從有限數推廣到不可數無限集合。

-----廣告,請繼續往下閱讀-----

此外,這個定理還有一個實際功能,那就是當我們想證明兩個集合等量卻苦於找不到一對一且映成函數時,可以有個更簡潔的辦法。我們只需找到兩個一對一函數,一個從A到B,另一個從B到A就成了,對於許多複雜的集合等量證明來說,這不啻是天降福音。接下來只須稍稍解決一個小問題,那就是之前我們已經證明有理數和自然數一樣多(《公設化集合論的奧秘 (9)》),所以〡Q〡=〡N〡,得到〡P(Q)〡=〡P(N)〡,因此原來的戰鬥成果〡R〡≤ 〡P(Q)〡就可以順理成章地變成〡R〡≤ 〡P(Q)〡=〡P(N)〡,用小學的數學就能得到〡R〡≤ 〡P(N)〡

以施洛德—伯恩斯坦定理的觀點來看,證明已經完成了一半。接下來我們想要在2NR之間建立起一個一對一函數,也就是讓〡2N 〡≤ 〡R〡成立。我們再次用小學數學來解釋這樣做的理由,在《公設化集合論的奧秘 (15)》我們證明了〡P(N)〡=〡2N,因此只要〡2N 〡≤ 〡R〡成立,那麼〡P(N)〡≤ 〡R〡就會成立。

這讓我想起一個卡通節目,每次當兩位總在冒險旅途的主角一遇到甚麼災難,只要把兩枚原本一體的神奇戒指結合,就會跑出一個法力無邊的阿拉伯神祇名叫蘇仙,祂的神通可以打退各方的妖魔鬼怪。數學式〡R〡≤ 〡P(N)〡〡P(N)〡≤ 〡R〡就有如集合論中的神奇戒指,當它們一結合就能招喚出法力無窮的蘇仙讓我們見識到集合論的奇蹟:〡R〡= 〡P(N)〡

但要如何打造另外一半的戒指呢?我們需要找到一個一對一函數

-----廣告,請繼續往下閱讀-----

θ: 2N → R

之前說過2N是指以下這種函數類型所成的集合

F: {0, 1, 2, 3, 4…} → {0, 1}

所以我們的目標是找一個這種類型的函數f對應到某個實數r。它的形式就是:

-----廣告,請繼續往下閱讀-----

θ: 2N → R

     f →  r

化繁為簡是數學思考的靈魂,所以在尋找f之前我們先將θ的對應域R做點簡化工作。在《公設化集合論的奧秘 (11)》一文我們已經證明全體實數R的個數和開區間(0, 1)裡的實數一樣多,因此我們可以把目標函數θ: 2N → R調整為θ: 2N → (0, 1),也就是讓2N 中的元素f對應到(0, 1)間的某個實數即可。這個函數的樣貌如下:

θ: 2N →(0, 1)

-----廣告,請繼續往下閱讀-----

     f →  0.a0a1a2a3a4…an

我們之前介紹過 2N的成員,它的成員是某個函數f,有如一排編上號碼從0一直延伸至無窮的燈泡,每個燈泡可以是亮燈或關閉的狀態,而f就相當於某種特定的亮燈組合方式。比如現在給出一種亮燈組合,它規定只有第一個編號為0的燈點亮,其餘所有的燈都是暗的,這時f函數的値有如下的規律:

f(0) = 1, f(1) = 0, f(2) = 0, f(3) = 0, f(4) = 0,  … f(n) = 0 …

每個不同的函數f代表一種特定的亮燈組合方式。

現在只要把f的第一個函數值f(0)指定為a0 ,第二個函數值f(1)指定為a1,第三個值f(2)指定為a2,依此類推,我們就能夠得到一個介於0和1之間的實數,其小數點之後的位數只由0與1構成。以剛才的函數為例,我們得到a0 =1, a1=0, a2=0, a3=0… 因此和它對應的實數就是0.100000000…,也就是0.1。顯然如果函數不同f1 ≠ f2,則其指定的每個an值當然不同,這就導致與其相對應的實數0.a0a1a2a3a4…an …也不同,於是我們得到 θ(f1) ≠ θ(f2),因此θ為一對一函數。於是我們證明了蘇仙戒指的另一半:

〡2N 〡= 〡P(N)〡≤ 〡R〡

於是我們所知道的不可數集合的三種形態全部等量,形成一個相當優雅簡潔的集合等式〡R〡= 〡P(N)〡=〡2N

我們之前用0來標示自然數和有理數這種可數無限集合的基數,因此我們有等式:

〡N〡= 〡Q〡= ℵ0

而對於比0還大的不可數集合我們用1來表示,因此又有如下的等式:

〡R〡= 〡P(N)〡=〡2N〡= ℵ1

經過長期的努力,我們終於將這些主要的無限集合之間的尺寸關係弄清楚了, 但這就是故事的終點了嗎?發揮想像力,朝著變大和變小的方向飛行,兩個有趣的問題又會浮現出來。第一個問題是有比1更大的集合嗎?如果有,那要如何才能發現它呢?或者怎樣才能把它製造出來呢?第二個問題是在01之間有沒有一種中等尺寸的無限集合,它既比0大但又比1小,比如說是否存在一個基數為1/2的集合?要回答這些有趣的問題就只有等下回再分解了!

-----廣告,請繼續往下閱讀-----
所有討論 1
翁 昌黎
18 篇文章 ・ 6 位粉絲
中央大學哲學研究所碩士,曾籌劃本土第一場「認知科學與佛教禪修系統」對話之大型研討會,於1995年6月在法光佛教研究所舉行,並發表文章。後隱居紐西蘭,至今已20載。 長年關注「意識轉變狀態的科學」和「意識本質的科學與哲學」問題,曾與大寶法王辯經教授師拿旺桑結堪布成立「大乘佛教禪修研究中心」。其他研究興趣為「唯識學」、「超個人心理學」、「數理邏輯」、「公設化集合論」和「後設數學」等等。