Loading [MathJax]/extensions/tex2jax.js

1

0
0

文字

分享

1
0
0

拿杯咖啡走路,為什麼咖啡會濺出來?-2012年搞笑諾貝爾流體力學獎

吳京
・2014/12/11 ・1439字 ・閱讀時間約 2 分鐘 ・SR值 507 ・六年級

數學家說這是波動方程式於幾合規範下局部不穩定的模式。
化學家表示這是黃嘌呤生物鹼化合物溶液彼此擠壓下的反應。
工程師認為這是接收液面晃動feedback之control loop有bug。
筒衣企業代表則宣示會儘速將6號塑膠杯蓋換成5號杯蓋。
負責會議記錄的文青寫下「在晨光中   蕩漾著一杯咖啡的   微   確幸….」
抗議民眾在場外舉起標語「這是咖啡的自由!要擺脫馬克杯的框架!」
最終,國家元首做了結論:「一杯咖啡濺出來不夠喝,那要買兩杯啊!」

以上當然是玩笑話,畢竟貴為國家元首應該不會說出那麼天真無知的話。(!?)

但拿杯咖啡走路,為什麼咖啡容易濺出來呢?

Credit:Simon James
Credit:Simon James

這雖然是一個普通的現象,卻不是一個簡單的問題。因為這個力學系統所牽涉到的兩個單元是生物(持咖啡者)及流體(咖啡),生物的運動模式不若機械般穩定,而流體力學也是出了名的難搞,兩者合一,創造出更多不確定的變因。

-----廣告,請繼續往下閱讀-----

然而,也許是被濺出的咖啡惹毛了,加州大學聖塔巴巴拉分校機械系的Mayer及Krechetnikov決定尋找這問題的答案。他們拍攝了多位實驗參與者拿著裝有咖啡的杯子走路之畫面,經由影像分析軟體及咖啡杯上的感測器,可得到人員及咖啡杯上下、左右、前後及斜傾的運動狀態,並套用非線性單擺的力學模式來類比咖啡液面,用電腦解算這個模型。經由實測及電腦模擬,總算摸清了這個系統的樣貌。

經由實驗觀察到,人們拿起咖啡杯開始走路後,在跨出的第七步到第十步之間,是咖啡最容易濺出的時刻

這個問題當然跟咖啡杯的幾何大小有關,液體的材質及形狀影響其振盪的自然頻率。用一般常見的馬克杯所盛裝的咖啡,其自然頻率約為2.6至4.3赫茲;而人們走路的頻率則約1至2.5赫茲,屬同一個數量級,因此杯中咖啡的振盪易受持杯者步伐的影響。另外,咖啡杯平滑的內緣,讓咖啡的振盪幾乎沒有阻礙。

進一步分析,人們從靜止狀態起步時,通常於第一步到第四步之間是一小段加速運動,杯中咖啡就如公車上的乘客一般,會受起步加速度影響而讓液面傾斜,提供後續晃動的初始位能。第四步之後,人們多半就定速前進了,但每一步之間還是會有微小的速度差,這讓杯中咖啡處於一個前後搖擺的加速度力場之下,更助長了咖啡要越出杯子的氣燄。

-----廣告,請繼續往下閱讀-----

降低初始位能和減少後續搖擺是防止咖啡溢出的不二法門,然而這個實驗揭露一個弔詭的現象:走路快的人,通常起步加速猛烈,造成液面初始位能大;而走路慢的人,步伐反而沒有走路快的人來得穩定,不斷地強化液面的晃動。所以說,不論你走得快或走得慢,都有很好的理由把咖啡濺出來。

當然,只要人們能專注於咖啡液面晃動的情況,就可以自然而然的讓自已有緩和的加速和穩健的步伐。此外,研究人員也建議使用彈性材質、或內圍有環狀構造的杯子,以吸收其內液體晃動的力道或增加阻力,都能有效避免咖啡濺出。

除了防止咖啡濺出外,這個研究還有工程應用的價值。在建築管線或大型機具中,常可以看到許帶有液面的管柱,如汙水管、液壓管等,此研究建立出的數學模型可模擬管柱中液體受到振動影響所產生的沖激運動(sloshing dynamics),有利於防濺設計的開發。

但撇開工程應用之價值不談,用如此「厚工」的實驗架構去看這個濺出咖啡這種芝麻綠豆般的事,大有殺雞用牛刀之感,讓這兩位科學家戴上了2012年搞笑諾貝爾「流體力學獎」的桂冠。

-----廣告,請繼續往下閱讀-----

再說,在咖啡杯上加個杯蓋不就好了嗎?

參考資料:

  1. 2012年搞笑諾貝爾得主暨得獎內容介紹
  2. Walking with coffee: Why does it spill?” H. C. Mayer and R. Krechetnikov, PHYSICAL REVIEW E 85, 046117 (2012).

本文轉載自作者部落格吳京的量子咖啡館

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
吳京
26 篇文章 ・ 3 位粉絲
正職是二個娃兒的奶爸,副業為部落格《吳京的量子咖啡館》之館主。為人雜學而無術、滑稽而多辯,喜讀科學文章,再用自認有趣的方式轉述,企圖塑造博學又詼諧的假象。被吐嘈時會辯稱:「不是我冷,是你們不懂我的幽默。」

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
睡眠不足來杯咖啡?小心!這可能是個惡性循環——《人類文明》
天下文化_96
・2024/06/19 ・2251字 ・閱讀時間約 4 分鐘

咖啡因對大腦的影響

咖啡因是一種分子上的模仿大師。人類醒著的每一分鐘,腦中都會不斷增加腺苷(adenosine)這種化學物質,像是沙漏的沙子不斷累積,能夠告訴我們已經醒著多久,且會讓大腦運作逐漸放緩,創造出一種睡眠壓力,讓人體做好入眠的準備。所以醒著 12 個小時到 16 個小時,人就會感受到一種難以抗拒的誘惑,想回臥室躺著進入夢鄉。

然而,咖啡因的分子結構十分類似腺苷,能夠搶先一步與腺苷的受體結合,卻不會活化受體;這樣一來,反而是對這些腺苷受體形成一種化學封鎖。所以,只要你的腦中有大量咖啡因,腺苷就無法與受體結合,難以傳遞正常的訊號咖啡因就是靠著這種藥理作用來抑制睡意,使大腦保持警覺與專注。雖然腺苷依然不斷在大腦中堆積,只不過所發出的訊號就這樣被咖啡因給堵住了。但是,等到身體分解了咖啡因,腺苷就會宛如大壩潰堤,讓人感受到沛不可擋的睏意——這就是可怕的咖啡因崩潰(caffeine crash)。

植物合成咖啡因,原本是做為一種天然的殺蟲劑,避免葉子或種子遭到啃食,甚至還能殺死昆蟲。但奇怪的是,像是包括幾種咖啡類與柑橘類植物在內,有些植物的花蜜也含有咖啡因,花蜜原本該是用來吸引昆蟲授粉的。實驗結果顯示,咖啡因能夠增強蜜蜂的嗅覺學習能力,讓蜜蜂更能記得這些花的氣味,於是不斷回訪這些有著咖啡香氣的花朵。也就是說,這些植物等於是讓蜜蜂吸了興奮劑,引誘它們成為自己忠實的授粉者;可以說,正是咖啡因讓蜜蜂願意不斷嗡嗡嗡上工。

研究顯示,咖啡因是蜜蜂的興奮劑,可以讓他們願意不斷嗡嗡嗡上工。圖/envato

咖啡因的另一個作用是增加依核裡的多巴胺濃度,同時也會提高多巴胺受體的敏感性。這會刺激我們前面提過的中腦邊緣報償路徑,讓人在喝到一杯好茶或咖啡的時候,感受到愉悅的好心情;但也會讓人上癮。人類之所以愛喝咖啡或茶之類的飲料,是因為這能夠刺激大腦、抑制睡意;而且只要一開始喝了,就會因為咖啡因成癮而讓人維持這樣的習慣。於是回過頭來,我們就看到咖啡因對歷史產生了長久的影響。

-----廣告,請繼續往下閱讀-----

在啟蒙時代,咖啡在歐洲咖啡館裡刺激了知識份子的思想與話語;到了不斷變化的工業時代,則是茶讓英國工人階級的身心得以調適。工業革命淘汰了像是編織、打鐵這些傳統工藝,以龐大的機器加以取代。從煤氣燈到電燈泡,各種人造光源讓工廠開始能夠一路運作到深夜。而咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。茶裡面加的糖也能提供熱量,讓人在長時間的輪班期間維持體力。咖啡因就這樣將工人變成了更好的零件,更能配合那些永遠不知疲倦為何物的鋼鐵機器。

〔附注:出於類似的原因,戰爭時期的軍隊也會運用各種精神藥物。像是希特勒速度驚人的閃電戰,先是在 1939 年 9 月橫掃波蘭,接著在 1940 年初攻下法國與比利時。這一方面靠的當然是德意志國防軍裝甲師的機動性,坦克既配備了無線電裝置用於協調,還能得到德意志空軍轟炸機的空中支援。但另一方面,這項成功的背後還有另一項技術的支援:靠著合成興奮劑「甲基安非他命」(methamphetamine,分子結構類似腎上腺素),德軍能夠戰得更猛更久,而不會感覺精神倦怠或身體疲勞。安非他命的化學作用讓人進入高度警覺狀態,也大大提升了自信與攻擊性。閃電戰的成功,靠的其實也是部隊嗑了藥。就連希特勒本人也同時混打多種藥物(古柯鹼、甲基安非他命、睪固酮),提供作戰指揮時的體力。〕

咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。圖/envato

所以講到工業革命,工廠與磨坊的動力靠的是蒸汽機,但如果是操作機器的工人,靠的燃料就是東印度公司帶來的茶葉、加上來自西印度群島的糖。於是,茶的歷史深深植根於對勞工的剝削——從印度的茶園、加勒比海的甘蔗栽培園、再到英國的工廠,都壓榨著這些工人所有清醒的時分。

如今,若想要控制我們的睡眠清醒週期(sleep-wake cycle),咖啡因仍然是一項重要工具。這個科技社會的步調太過急促,不允許我們被動順應自己的生物時鐘,得主動加以調整,適應數位時鐘的要求。而很多人靠的就是自行攝取咖啡因,在每天上班途中把自己叫醒、讓自己能在辦公桌前熬夜趕工,或是在長途飛行後,把生理時鐘同步到新的時區。很多咖啡因成癮者都能自己調整這種藥物的劑量,一方面巧妙發揮咖啡因的正面作用,讓自己更能面對現代世界對專注力的需求,另一方面也能避免過度攝入造成的負面作用,像是焦躁不安、心跳加速、胃部不適。

然而,咖啡因雖然讓我們得以抑制大腦發出的睡意訊號,卻也成了現代人常常睡眠不足的一大主因。咖啡和茶就這樣和人類玩著兩面手法:我們喝咖啡和茶,是為了緩解長期的嗜睡;但造成這種情形的元凶也正是咖啡因。事實上,我們早上會想趕快來杯咖啡,讓腦子清醒一點、或是提振精神,很多時候其實是在緩解一夜難眠的戒斷症狀。

-----廣告,請繼續往下閱讀-----

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

2
0

文字

分享

1
2
0
【2023 年搞笑諾貝爾化學與地質獎】舔石頭以外,猛獁象竟是海龜湯?
寒波_96
・2023/10/20 ・2211字 ・閱讀時間約 4 分鐘

搞笑諾貝爾獎每年都是新的開始,2023 年也不例外。今年「第 33 次第一屆搞笑諾貝爾獎」頒發十個獎項,「化學與地質獎」以看似獵奇的舔石頭博取不少眼球,不過得主揚.扎拉謝維奇( Jan Zalasiewicz)的文章中,其實還提到另一件知名的歷史公案。

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

1951 年晚宴真相,竟然是海龜湯?!圖/americanoceans

文學史上用味覺帶出情節,最知名的案例之一是普魯斯特的小說《追憶似水年華》開頭,由瑪德蓮的味道切入,接著進入意識的海洋游泳。扎拉謝維奇的文章開頭,也從品嚐岩石的味道切入,自由切換不同的題材。

地質學家為什麼要舔石頭?《舌頭、石頭,迸出新滋味?科學家為什麼要舔石頭?——2023 搞笑諾貝爾獎》一文有精簡介紹。最主要的理由是,缺乏現代儀器之際,舌頭可謂方便的化學感應器,能提供有用的資訊。

-----廣告,請繼續往下閱讀-----

當然,即使有了現代儀器,舌頭還是很方便的工具。

處於意識流科學史中,扎拉謝維奇的文章從舌頭感應器,十分合理地切換到一場宴會。那場 1951 年的晚宴中,據說提供猛獁象肉製作的餐點。

這場晚宴由美國的「探險俱樂部(The Explorers Club)」舉行,主辦方宣稱當天有道菜,來自已經滅絕的動物大地懶(Megatherium)。但是幾天後有報紙披露,宴會中的奇珍異獸不是大地懶,而是來自阿留申群島,25 萬年久遠的猛獁象!

1951 年保存至今的晚餐。圖/取自 參考資料3

-----廣告,請繼續往下閱讀-----

奇妙的是,當天的餐點竟然有少量樣本被保留至今。當時沒有參加的豪威斯(Paul Griswold Howes)寫信要到一份樣本,一直保存到他去世為止。後來樣本輾轉來到耶魯大學的皮博迪自然史博物館(Yale Peabody Museum)。

那一餐到底是大地懶,還是猛獁象呢?2014 年,耶魯大學的研究生葛拉斯(Jessica Glass)等人成功由樣本中取得 DNA,結果在 2016 年發表。比對之下相當明顯,答案是綠蠵龜。

現今綠蠵龜是保育類動物,合法的狀況下沒有機會吃到。然而 1951 年那個時候,綠蠵龜尚未面臨滅團威脅,仍然是普遍的食材。

區區綠蠵龜製成的海龜湯,當然無法彰顯晚宴的尊絕不凡。不過俱樂部宣稱的大地懶,怎麼又會變成猛獁象?

-----廣告,請繼續往下閱讀-----

最可疑的是當天在場的俱樂部成員尼可斯(Herbert Bishop Nichols),他也是基督科學箴言報(The Christian Science Monitor)的科學編輯。可考的記錄中,他第一個對外提出相關描述,後來被視為吃猛獁象的證據。

海龜湯的幾位相關人猿。(A) 據說將食材從北極帶回的極區探險家 Father Bernard Rosecrans Hubbard。(B) 極區探險家 George Francis Kosco。(C) 晚宴主辦人 Wendell Phillips Dodge。(D) 保存樣本的 Paul Griswold Howes。圖/取自 參考資料3

如果真的是那道菜的材料,那麼狀況就是:俱樂部用綠蠵龜做菜,宣稱是大地懶,報紙以訛傳訛寫成猛獁象。

「吃猛獁象」之類的傳聞,雖然不是嚴謹的科學,卻因為有噱頭而容易引人注目。作為沒多少負面影響的玩笑,也沒有人想要特別澄清。使得這類事件的真相,往往不了了之。

-----廣告,請繼續往下閱讀-----

儘管沒有特別獲得搞笑諾貝爾獎關注,對於這道海龜湯的追根究底,倒是相當符合搞笑諾貝爾獎的精神。

海龜湯以後,扎拉謝維奇的文章意識又跳躍到另一種已經滅團的生物:貨幣蟲(Nummulites)。許多古生物,當初也是其他古生物的食物。儘管擁有堅硬的外殼保護,貨幣蟲這種生物依然有機會成為美食。

1912 年的時候,英國古生物學家庫克派崔克(Randolph Kirkpatrick)提出一個觀點:地球有一段時間存在非常大量的貨幣蟲,後來它們變成稱為「貨幣球(Nummulosphere)」的地層,是地殼岩石的源頭。

看起來很搞笑,可是庫克派崔克是認真的。所以他即使生在現代,應該也沒有獲得搞笑諾貝爾獎的機會。

-----廣告,請繼續往下閱讀-----

2023 年搞笑諾貝爾獎頒獎典禮影片(化學與地質獎從 10:18 開始):

延伸閱讀

參考資料

  1. The 33rd First Annual Ig Nobel Prizes
  2. Eating fossils
  3. Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?
  4. Mammoth meat was never served at 1950s New York dinner, says researcher

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。