Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

進入結合謎題、數學與藝術的空間── EnterSpace 咖啡實驗室

科學月刊_96
・2018/10/19 ・2934字 ・閱讀時間約 6 分鐘 ・SR值 536 ・七年級

  • 文/林家妤 │ EnterSpace 數學藝術總監,以 Shark Lin 為筆名,進行跨域的數學寫作策展與藝術創作,希望能為世界帶來一點樂趣。

對一般大眾而言,數學給人的印象常是生硬且有距離感,而認識數學的場所幾乎都是在重複著計算與考試的教室,絲毫無法激起任何的想像力或熱情。讓人不禁想問:是否有遠離教室;真正親近、探索數學的地方呢?

也許有人聽過一些國外的案例,像是德國 Imaginary 機構於海德堡策劃的數學購物中心──將數學元素融合於賣場中,讓民眾親近數學的空間。但不要以為這麼有趣的地方只在國外有,其實臺北一個同樣特別的空間── EnterSpace 咖啡廳,結合了密室、謎題、咖啡、數學、藝術等多重元素的奇妙場域。

充滿了謎題與數學驚喜的咖啡廳

起初咖啡廳只是密室玩家的接待區,老闆們為了讓大家玩完遊戲之後,能夠有個地方能夠嘻笑討論與享用餐點,便決定設置咖啡廳提升整體質感,並以「EnterSpace 進入空間」為名,希望來到這裡的每一個人,都能體會到各種新奇有趣的事物──無論是蔚為風潮的密室逃脫、咖啡廳的實境遊戲,甚至是創意餐點與飲品。

圖/Enterspace 提供

店裡的招牌「可可實驗組」就是一個新奇有趣的範例:將未知口味的糖漿放入試管中,搭配附上的熱牛奶、法芙娜 70% 巧克力與海鹽,讓客人用滴管吸取不同的糖漿品嘗,挑戰猜出各色糖漿的口味之餘,還能夠在燒杯中進行味覺實驗,自由調配出獨一無二的風味,在餐桌上體驗探究未知的科學精神與樂趣。

-----廣告,請繼續往下閱讀-----

另一個引人注意的是,每一張桌子上都有 3×3×3 之立方體積木,乍看之下就像索瑪立方體(Soma cube),其實是由科芬(Stewart Coffin)設計的 Half Hour Puzzle,作者認為一般人應可在半小時內解出此積木的唯一解,因而命名之。不光是在桌上,Half Hour 積木化身成裝潢元素甘蔗板,以方塊形狀點綴輕工業風的空間,到處充滿了謎題與數學驚喜。

將數學原本的靈光與藝術美感分享給更多人

為什麼咖啡廳會有這些數學巧思呢?其實是 EnterSpace 創辦人家中收藏了許多 puzzle 與數學科普書籍,他們父子認為這些東西不該只是私人收藏,更想與大家分享數學的樂趣,因此在咖啡廳放了不少收藏以及讓人會心一笑的彩蛋,讓整個空間就像是一個小型博物館,等待有緣人探索與發現。

這間咖啡廳十分有趣且數學味濃厚,因此我在今年(2018) 1 月時加入 EnterSpace 團隊,希望能把小時候在葛老爹(葛登能,Martin Gardner,1914~2010)數學書中感受到的喜悅──「啊哈!我解出來了(Aha! reactions)」,以及數學本身蘊含的靈光與藝術美感分享給更多人。

咖啡廳內 puzzle 展示區。 圖/EnterSpace 提供

來尋寶吧!帕索爺爺的數學寶物

3 月 14 日是國際圓周率日(π Day)與國際數學日,也恰好是 EnterSpace 的生日。在別具意義的這一天,我們推出了「帕索爺爺的數學寶物」解謎遊戲暨集點挑戰,透過挑選難度與類型不同的puzzle,期待玩家可以手腦並用,感受空間解謎的樂趣!

-----廣告,請繼續往下閱讀-----

藉由故事與遊戲化的呈現,加上精緻的視覺設計,成功引起許多玩家的好奇心,即使沒有接觸過,也能沉浸在 puzzle 的小宇宙。曾經有數學教授與家人來到 EnterSpace 咖啡廳,邊喝下午茶邊動手解 puzzle,最後一家人共同完成任務,玩得不亦樂乎。

一位喜愛天文與收藏 puzzle 的帕索爺爺,最近莫名喪失了記憶他的收藏之中有許多蘊含宇宙秩序規則的數學寶物,解開這些謎題就能夠連起北天的七顆星喚醒他的記憶。你能夠接下這個任務成為帕索爺爺的指引嗎?

《錯視維度》:與數學呼應的當代錯視藝術展

數學蘊藏了宇宙秩序的原理,其視覺化與實體化就是一種藝術。我們決定在這裡做個全新嘗試,以錯視藝術為主題策展,並且在 4 月 1 日愚人節進行展覽開幕。《錯視維度》(Dimension of Illusion)這一檔展覽從主視覺設計到展品挑選,無一不是呼應其核心概念──呈現當代錯視藝術的多重面向與趣味。

首先來看看展覽中的數學與藝術維度,吳寬瀛老師經典的〈柱面投影〉作品,利用軟體將正常圖像轉化成變形的圖樣(anamorphosis),再以不銹鋼柱面還原其原本面貌,製造出兩者之間的反差錯視。沈岳霖師生製作出立體碎形幾何──謝爾賓斯基四面體(Sierpinski Tetrahedron),將密碼〈YES, I DO〉巧妙藏在立體作品之中,得站在特定位置才看得到。此外,還有由杉原厚吉教授設計,讓人分不清到底是方還是圓的 Ambiguous Cylinder Illusion。

《錯視維度》不只呈現數學與藝術,還包含了文化與設計的維度。為了此次展覽,EnterSpace 特別與魔翻文創合作,以林國慶設計師的雙向字(ambigram)翻轉設計,製作出以臺灣地名為靈感的互動作品──喜「翻」台灣。每個臺灣人都可以在地圖上找到自己家鄉的雙向字,親自動手見證雙向字的奧妙。

-----廣告,請繼續往下閱讀-----
雙向字翻轉設計作品──喜「翻」台灣。
文字設計:林國慶
地圖概念:Shark Lin、Ching-Yu Tsao
視覺設計:魔翻文創
展板製作:EnterSpace 圖/EnterSpace 提供

無獨有偶,我們還邀請到日本雙向字設計師野村一晟參展,也包含上回花蓮地震特別創作的〈台灣加油〉,為了讓觀眾了解雙向字創作的多元面向,同時呼應本次展覽主題,野村先生提供各種類型的雙向字作品,而這也是他首次海外展覽。 發揮最好 FRIV 網站 遊戲。

本展規模雖然不大,但多元且精彩的主題甚至吸引南部的觀眾特地來看展;我以本檔展覽策展人的身份,誠摯邀請正在讀這篇文章的你/妳,進入空間與我們一起眼見為憑,享受《錯視維度》的多重驚喜。(文末附有展覽資訊)

在咖啡廳裡一起科普

不單是遊戲與展覽,我們也嘗試以活動的方式推廣數學與科普,以及關注各種與數學相關的議題,例如曾經舉辦過「積木與組木實驗與軟體操作工作坊」,讓大眾親手體會 puzzle 中的數學趣味與巧思;在「台灣女性數學家紀錄片影展」,邀請《數學女鬥士》與《學數學的女孩們》系列紀錄片的兩位導演至咖啡廳映後座談,與現場觀眾一同討論如何突破性別在科技中的既定框架。

「台灣女性數學家紀錄片影展」王慰慈與井迎兆導演映後座談。 圖/EnterSpace 提供

在這裡,有時候會以為自己身在小型博物館,工作除了涵蓋博物館傳統的典藏、研究、展示、教育項目;咖啡廳本身還是一個傳達數學趣味與美感價值的場域,而這樣的空間很有可能是全球首創。未來,我們將持續把 EnterSpace 打造成公開展示數學藝術的場域,以及不定期的選書和選品,讓大家從不同角度發現數學各種有趣的面貌,並且期許未來有更多元的跨界混搭。

-----廣告,請繼續往下閱讀-----

EnterSpace 咖啡廳基於對科學、數學、邏輯與謎題的熱愛,我們願意提供學術活動的場地贊助,希望透過各種研討會、講座或活動,推廣這些有意義的主題,若需要場地或希望合作的話歡迎來訊洽詢,一起讓大家體驗有趣新奇的事物。

《錯視維度》特展

「我們看錯了世界,卻說它欺騙我們。」
“We read the world wrong and say that it deceives us.”──詩人泰戈爾(Rabindranath Tagore, 1861~1941)

長久以來錯視藝術令人目眩神迷,許多藝術家與設計師為此不疲,創造出衝擊世人感官與意識的圖形,模糊錯覺與真實的邊界;維度除了是描述時空座標的參數,也代表一件事物的特點與面向。本展試著透過國際與臺灣在地設計、文化、數學類的作品,呈現當代錯視藝術的多重趣味與驚喜。

Seeing is believing? 讓我們進入空間,一起眼見為憑。 展期至 12 月 31 日,詳情請見 EnterSpace 官網

-----廣告,請繼續往下閱讀-----

EnterSpace

地址:臺北市中山區明水路 581 巷 15 號 B1

  • p.s.只要報上是《科學月刊》的讀者粉絲,餐飲將有特別優惠喔!

延伸閱讀:Mathematikon: A Mathematical Shopping Center

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
睡眠不足來杯咖啡?小心!這可能是個惡性循環——《人類文明》
天下文化_96
・2024/06/19 ・2251字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

咖啡因對大腦的影響

咖啡因是一種分子上的模仿大師。人類醒著的每一分鐘,腦中都會不斷增加腺苷(adenosine)這種化學物質,像是沙漏的沙子不斷累積,能夠告訴我們已經醒著多久,且會讓大腦運作逐漸放緩,創造出一種睡眠壓力,讓人體做好入眠的準備。所以醒著 12 個小時到 16 個小時,人就會感受到一種難以抗拒的誘惑,想回臥室躺著進入夢鄉。

然而,咖啡因的分子結構十分類似腺苷,能夠搶先一步與腺苷的受體結合,卻不會活化受體;這樣一來,反而是對這些腺苷受體形成一種化學封鎖。所以,只要你的腦中有大量咖啡因,腺苷就無法與受體結合,難以傳遞正常的訊號咖啡因就是靠著這種藥理作用來抑制睡意,使大腦保持警覺與專注。雖然腺苷依然不斷在大腦中堆積,只不過所發出的訊號就這樣被咖啡因給堵住了。但是,等到身體分解了咖啡因,腺苷就會宛如大壩潰堤,讓人感受到沛不可擋的睏意——這就是可怕的咖啡因崩潰(caffeine crash)。

植物合成咖啡因,原本是做為一種天然的殺蟲劑,避免葉子或種子遭到啃食,甚至還能殺死昆蟲。但奇怪的是,像是包括幾種咖啡類與柑橘類植物在內,有些植物的花蜜也含有咖啡因,花蜜原本該是用來吸引昆蟲授粉的。實驗結果顯示,咖啡因能夠增強蜜蜂的嗅覺學習能力,讓蜜蜂更能記得這些花的氣味,於是不斷回訪這些有著咖啡香氣的花朵。也就是說,這些植物等於是讓蜜蜂吸了興奮劑,引誘它們成為自己忠實的授粉者;可以說,正是咖啡因讓蜜蜂願意不斷嗡嗡嗡上工。

研究顯示,咖啡因是蜜蜂的興奮劑,可以讓他們願意不斷嗡嗡嗡上工。圖/envato

咖啡因的另一個作用是增加依核裡的多巴胺濃度,同時也會提高多巴胺受體的敏感性。這會刺激我們前面提過的中腦邊緣報償路徑,讓人在喝到一杯好茶或咖啡的時候,感受到愉悅的好心情;但也會讓人上癮。人類之所以愛喝咖啡或茶之類的飲料,是因為這能夠刺激大腦、抑制睡意;而且只要一開始喝了,就會因為咖啡因成癮而讓人維持這樣的習慣。於是回過頭來,我們就看到咖啡因對歷史產生了長久的影響。

-----廣告,請繼續往下閱讀-----

在啟蒙時代,咖啡在歐洲咖啡館裡刺激了知識份子的思想與話語;到了不斷變化的工業時代,則是茶讓英國工人階級的身心得以調適。工業革命淘汰了像是編織、打鐵這些傳統工藝,以龐大的機器加以取代。從煤氣燈到電燈泡,各種人造光源讓工廠開始能夠一路運作到深夜。而咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。茶裡面加的糖也能提供熱量,讓人在長時間的輪班期間維持體力。咖啡因就這樣將工人變成了更好的零件,更能配合那些永遠不知疲倦為何物的鋼鐵機器。

〔附注:出於類似的原因,戰爭時期的軍隊也會運用各種精神藥物。像是希特勒速度驚人的閃電戰,先是在 1939 年 9 月橫掃波蘭,接著在 1940 年初攻下法國與比利時。這一方面靠的當然是德意志國防軍裝甲師的機動性,坦克既配備了無線電裝置用於協調,還能得到德意志空軍轟炸機的空中支援。但另一方面,這項成功的背後還有另一項技術的支援:靠著合成興奮劑「甲基安非他命」(methamphetamine,分子結構類似腎上腺素),德軍能夠戰得更猛更久,而不會感覺精神倦怠或身體疲勞。安非他命的化學作用讓人進入高度警覺狀態,也大大提升了自信與攻擊性。閃電戰的成功,靠的其實也是部隊嗑了藥。就連希特勒本人也同時混打多種藥物(古柯鹼、甲基安非他命、睪固酮),提供作戰指揮時的體力。〕

咖啡因不但能讓工人在單調無趣的工廠環境裡,維持清醒專注,連那些營養不良造成的飢餓感也能一併排除。圖/envato

所以講到工業革命,工廠與磨坊的動力靠的是蒸汽機,但如果是操作機器的工人,靠的燃料就是東印度公司帶來的茶葉、加上來自西印度群島的糖。於是,茶的歷史深深植根於對勞工的剝削——從印度的茶園、加勒比海的甘蔗栽培園、再到英國的工廠,都壓榨著這些工人所有清醒的時分。

如今,若想要控制我們的睡眠清醒週期(sleep-wake cycle),咖啡因仍然是一項重要工具。這個科技社會的步調太過急促,不允許我們被動順應自己的生物時鐘,得主動加以調整,適應數位時鐘的要求。而很多人靠的就是自行攝取咖啡因,在每天上班途中把自己叫醒、讓自己能在辦公桌前熬夜趕工,或是在長途飛行後,把生理時鐘同步到新的時區。很多咖啡因成癮者都能自己調整這種藥物的劑量,一方面巧妙發揮咖啡因的正面作用,讓自己更能面對現代世界對專注力的需求,另一方面也能避免過度攝入造成的負面作用,像是焦躁不安、心跳加速、胃部不適。

然而,咖啡因雖然讓我們得以抑制大腦發出的睡意訊號,卻也成了現代人常常睡眠不足的一大主因。咖啡和茶就這樣和人類玩著兩面手法:我們喝咖啡和茶,是為了緩解長期的嗜睡;但造成這種情形的元凶也正是咖啡因。事實上,我們早上會想趕快來杯咖啡,讓腦子清醒一點、或是提振精神,很多時候其實是在緩解一夜難眠的戒斷症狀。

-----廣告,請繼續往下閱讀-----

——本文摘自《人類文明:生物機制如何塑造世界史》,2024 年 05 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

30
1

文字

分享

0
30
1
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。